

City of Hamilton GENERAL ISSUES COMMITTEE REVISED

Meeting #:	20-006
Date:	February 13, 2020
Time:	IMMEDIATELY FOLLOWING THE GIC BUDGET MEETING
Location:	Council Chambers, Hamilton City Hall
	71 Main Street West

Stephanie Paparella, Legislative Coordinator (905) 546-2424 ext. 3993

1. APPROVAL OF AGENDA

(Added Items, if applicable, will be noted with *)

- 2. DECLARATIONS OF INTEREST
- 3. COMMUNICATIONS
- 4. DELEGATION REQUESTS
- 5. PUBLIC HEARINGS / DELEGATIONS
- 6. STAFF PRESENTATIONS

*6.1. Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide)

Discussion of Appendix "B" of this report in Closed Session is subject to the following requirement(s) of the City of Hamilton's Procedural By-law and the *Ontario Municipal Act, 2001*:

- Litigation or potential litigation, including matters before administrative tribunals, affecting the City;
- Advice that is subject to solicitor-client privilege, including communications necessary for that purpose; and,
- A position, plan, procedure, criteria or instruction to be applied to any negotiations carried on or to be carried on by or on behalf of the municipality or local board.

DUE TO ITS SIZE, APPENDIX "A" TO THIS REPORT IS AVAILABLE ON-LINE ONLY.

7. DISCUSSION ITEMS

7.1. Chedoke Creek Spill Update (PW19008(f)) (City Wide)

PLEASE NOTE CHANGE TO REPORT TITLE

8. MOTIONS

9. NOTICES OF MOTION

10. PRIVATE AND CONFIDENTIAL

10.1. Appendix "B" to Report PW19008(g)/LS19004(f), respecting the Chedoke Creek Ministry Order Update

Discussion of Appendix "B" to Report PW19008(g)/LS19004(f) in Closed Session is subject to the following requirement(s) of the City of Hamilton's Procedural By-law and the *Ontario Municipal Act, 2001*:

- Litigation or potential litigation, including matters before administrative tribunals, affecting the City;
- Advice that is subject to solicitor-client privilege, including communications necessary for that purpose; and,
- A position, plan, procedure, criteria or instruction to be applied to any negotiations carried on or to be carried on by or on behalf of the municipality or local board.

11. ADJOURNMENT

CITY OF HAMILTON PUBLIC WORKS DEPARTMENT Hamilton Water Division and CITY MANAGER'S OFFICE Legal and Risk Management Services Division

TO:	Mayor and Members General Issues Committee
COMMITTEE DATE:	February 13, 2020
SUBJECT/REPORT NO:	Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide)
WARD(S) AFFECTED:	City Wide
PREPARED BY:	Cari Vanderperk (905) 546-2424 Ext. 3250 Larry Tansley (905) 546-2424 Ext. 3588
SUBMITTED BY: SIGNATURE:	Andrew Grice Director, Hamilton Water Public Works Department
SUBMITTED BY: SIGNATURE:	Nicole Auty City Solicitor Legal and Risk Management Services

Discussion of Appendix B of this report in closed session is subject to the following requirement(s) of the City of Hamilton's Procedural By-law and the *Ontario Municipal Act, 2001*:

- Litigation or potential litigation, including matters before administrative tribunals, affecting the City
- Advice that is subject to solicitor-client privilege, including communications necessary for that purpose
- A position, plan, procedure, criteria or instruction to be applied to any negotiations carried on or to be carried on by or on behalf of the municipality or local board

RECOMMENDATION(S)

- (a) That Report PW19008(g)/LS19004(f) be received; and,
- (b) That the Legal Opinion of Rosalind Cooper attached as Appendix "B" to Report PW19008(g)/LS19004(f) respecting the ongoing investigation and potential litigation remain confidential and not be released as a public document.

EXECUTIVE SUMMARY

This Report PW19008(g)/LS19004(f) contains information relating to the potential contamination of Chedoke Creek as a result of the discharge from the Main/King Combined Sewer Overflow (CSO) tank. More specifically it provides the following:

- An update on the status of the Director's Order served on the City of Hamilton (City) by the Ministry of the Environment, Conservation and Parks (MECP);
- A summary of the consultant report, provided by SLR Consulting (Canada) Ltd. (SLR), titled "Ecological Risk Assessment, Chedoke Creek" required in the Director's Order, outlining the results of Ecological Risk Assessment (ERA) for the specified study area of Chedoke Creek, attached as Appendix "A" to Report PW19008(g)/LS19004(f);
- The City's decision on appropriate remedial actions, based on the results of the ERA that will be outlined in a letter that will be submitted to the MECP on February 14, 2020, as required in the Director's Order;
- Privileged and confidential legal advice and an update relating to the investigation into this matter by the MECP's Investigations and Enforcement Branch (IEB) that may potentially result in regulatory litigation if charges are laid against the City and/or City staff, attached as Appendix "B" to Report PW19008(g)/LS19004(f).

The City has been served Director's Order No. 1-MRRCX (Director's Order) by the MECP on November 28, 2019, pursuant to their authority under the *Environmental Protection Act (EPA)* and the *Ontario Water Resources Act (OWRA)*.

The Director's Order requires the City to, by February 14, 2020, submit a written report setting out the results of an ERA in regard to the impacts to Chedoke Creek (creek) from the Main/King CSO discharge that occurred between January 2014 and July 2018. It also requires a review and selection of preferred remedial option, with justification and associated implementation timelines.

The Director's Order requires the City to, by May 1, 2020, submit a written report evaluating the impacts of the sewage discharge to Cootes Paradise, and any proposed remedial recommendations and actions with associated timelines.

SUBJECT: Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide) - Page 3 of 8

Staff have worked closely with SLR to satisfy the requirements of the Director's Order and intend to submit a letter identifying the City's remedial option for Chedoke Creek to the MECP Director, with the SLR report appended, by the February 14, 2020 deadline.

The ERA was completed to assess whether metals, polycyclic aromatic hydrocarbons (PAHs), nutrients and bacteria (E. coli), collectively known as Contaminants of Potential Concern (COPC), found in Chedoke Creek pose unacceptable risks to aquatic life, amphibians and aquatic-dependent wildlife. The findings show that prior to and after the 2014 to 2018 discharge event, there were persistent elevated levels of COPC in the sediment. In surface water, nutrient and bacteria levels were higher during the discharge event, but decreased in the study area after the discharge, to levels at or below those observed prior to the discharge event. In addition, E. coli levels observed in 2018-2019, after the discharge, were lower in the study area than at some locations upstream of the Main/King CSO.

The ERA notes that given these findings along with disadvantages associated with direct removal (dredging), the requirement for remediation of the creek would appear unnecessary to address effects from the sewage discharge.

With regards to long term monitoring, Staff are working on an internal water quality program, in consultation with external stakeholders, that will improve our overall governance of urban watercourses that receive discharges from City infrastructure.

Alternatives for Consideration – Not applicable

FINANCIAL – STAFFING – LEGAL IMPLICATIONS

Financial: There are costs associated with the regards to the development and implementation of an internal water quality program. The scope and timing of the program will be more accurately determined following the appropriate consultation process. A Full Time Equivalent (FTE) for Hamilton Water has already been approved by Council and recruitment is underway.

There are also potential costs associated with any charges that may be laid by the MECP against the City and/or its employees and any other litigation that may arise, which are reviewed under the Legal implications section below.

- Staffing: There are no staffing implications at this time.
- Legal: Legal and Risk Management Services staff will continue to provide legal assistance as this matter unfolds.

SUBJECT: Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide) - Page 4 of 8

HISTORICAL BACKGROUND

Provincial Orders:

The City has been served three orders related to Chedoke Creek. Provincial Officer's Order No. 1-J25YB (1st Order) was served on the City of Hamilton (City) by the MECP on August 2, 2018; Provincial Officer's Order No. 1-J3XAY (2nd Order) was served on the City by the MECP on November 21, 2019, and the subsequent Director's Order No. 1-MRRCX (Director's Order) was served on the City by the MECP on November 28, 2019, pursuant to their authority under the *Environmental Protection Act* (*EPA*) and the *Ontario Water Resources Act* (*OWRA*).

As the Members of the General Issues Committee were advised verbally by Legal Services staff on November 20, 2019, and in Report PW19008(d)/LS1904(d) on November 27, 2019, the MECP issued the 2nd Order on November 14, 2019 that included requirements related to Cootes Paradise which was unexpected to the City and would require a significant extension to the timeline. The 1st Order issued to the City by the MECP and the consultant studies that followed had been restricted to the effect of the discharge on Chedoke Creek.

Accordingly, on November 21, 2019, the City filed a formal request that this 2nd Order be reviewed by the MECP, with the hope that the new language in relation to Cootes Paradise be removed, or the timeline for completion of work be extended. Appended to the City's request for review was an opinion from the City's technical consultant, SLR Consulting (Canada) Ltd. (SLR), regarding the constraints to the feasibility of the additional work.

The results of the review by the MECP were received by the City on November 28, 2019, in the form of a Director's Order which, in summary, maintains the intent of the 2nd Order with a deadline of February 14, 2020 for the report related to Chedoke Creek, and separates the requirements for Cootes Paradise, assigning a deadline of May 1, 2020.

The Director's order also requires the City to provide the MECP with written, biweekly progress updates. Bi-weekly meetings with the MECP are ongoing and the progress reports are being posted on the City's website.

Staff have worked closely with SLR to satisfy the requirements of the Director's Order and intend to submit a letter identifying the City's remedial option for Chedoke Creek to the MECP Director by the February 14, 2020 deadline. To assist with the response to the Director's Order, the City retained SLR to fill gaps identified in the peer review of the original assessment by Wood Environment and Infrastructure Solutions (Wood), which was submitted in response to the 1st Order. The Wood Report included information on

SUBJECT: Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide) - Page 5 of 8

the physical characteristics and the quality of the sediment found at the bottom of Chedoke Creek, the aquatic invertebrates living in this sediment, the fish living in or migrating to Chedoke Creek and the quality of the water in the creek. However, according to the peer review findings only sediment quality had been used to evaluate whether conditions in the creek potentially caused adverse effects to aquatic life. For this reason, SLR recommended re-analyzing the data presented in the Wood Report along with collection of additional data to fill in the identified data gaps for completion of an Ecological Risk Assessment (ERA) to determine and recommend appropriate remedial action(s) in Chedoke Creek.

POLICY IMPLICATIONS AND LEGISLATED REQUIREMENTS

N/A

RELEVANT CONSULTATION

Hamilton Water staff have been working closely with Public Health Services, Legal and Risk Management and Corporate Communications staff regarding this matter. In addition, external legal counsel who is a specialist in environmental law, and has significant experience with environmental investigations and charges, has been retained to assist City staff as this matter progresses.

ANALYSIS AND RATIONALE FOR RECOMMENDATION(S)

Ecological Risk Assessment (ERA) Results:

SLR, in response to the MECP Director's Order, prepared an aquatic ERA to assess the environmental impacts to Chedoke Creek from the Main/King CSO discharge that occurred between January 2014 and July 2018. The subject area is defined as the lower section of Chedoke Creek, parallel to Highway 403 between Glen Road and Princess Point.

The objective of the ERA was to evaluate the potential risks to aquatic plants and invertebrates, fish, amphibians and aquatic-dependent wildlife associated with exposure to Contaminants of Potential Concern (COPC) in sediment and surface water in the study area. The COPC evaluated in the report included:

- Metals (in sediment and surface water)
- Polycyclic aromatic hydrocarbons, PAH (in sediment only)
- Nutrients (in sediment and surface water)

Fecal coliforms including E. coli were identified as uncertain COPC in surface water and sediment as there are no screening benchmarks for the protection of ecological

SUBJECT: Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide) - Page 6 of 8

receptors. E.coli levels were, however, assessed within the report as well, as they may indicate fecal contamination.

The risk assessment methods used were based on established procedures recommended by MECP and Environment Canada. Field sample results representing reasonable spatial coverage were used to determine current exposure to selected ecological receptor groups/species, which included:

- 22 sediment samples (collected by Wood in 2018 and SLR in 2019)
- 8 surface water samples (collected by SLR in 2019)

Relevant sediment and surface water data was used to discuss trends prior to and following the Main/King CSO discharge event. SLR produced a series of calculations and analyses to determine the degree to which aquatic ecological receptors were likely exposed to COPC and an evaluation of the adverse effects posed by the COPC. The results of the analyses indicated that potential risks to aquatic life and amphibians exposed to surface sediment were negligible for select nutrients and negligible to low for metals. The analyses also identified potential low, moderate or high risks, depending on the location in the creek, for aquatic life and amphibians exposed to select PAHs in surface sediment. PAHs were identified as the risk drivers among the COPC.

The findings of the ERA indicate that elevated concentrations of COPC (PAHs, metals, nutrients and bacteria) have been a persistent and ongoing issue in Chedoke Creek sediment and/or surface water prior to and after the 2014-2018 discharge event, including in areas upstream of the Main/King CSO. These observations are consistent with the fact that Chedoke Creek is predominantly an urbanized watershed that has been altered over time as a result of intense urban development and continues to be subject to numerous point source (e.g., CSOs, stormwater outfalls) and nonpoint source discharges (e.g., highway runoff, runoff from urban and industrial areas). Comparable conclusions were also made in a report completed by Wood (MECP Order # 1-J25YB Item 1b Chedoke Creek Natural Environment and Sediment Quality Assessment and Remediation Report, City of Hamilton, January 24, 2019).

For the above reasons, the ERA notes that it is not possible to target remediation to COPC and sediments solely associated with the 2014-2018 Main/King CSO discharge. However, SLR evaluated four feasible remediation options to address potential risks, which were originally provided in the Wood 2019 report:

- Physical capping applying cover of clean material over contaminated sediment;
- Chemical inactivation use of a chemical to bind with phosphorus in sediment to reduce the release of it from sediment into the water column;
- Direct removal hydraulic dredging of organic sediment;
- No action.

SUBJECT: Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide) - Page 7 of 8

A technical analysis of these options was completed. A detailed review of the direct removal option found that the disadvantages outweighed the advantages. Key disadvantages of direct removal include potential disruption of aquatic habitat (including for species of potential concern), and it only provides short term benefits as Chedoke Creek continues to operate as an urban watercourse.

Options to remediate and monitor the creek, per Item 1 of the Director's Order, were contingent on the assessment of impact. Information available for review in the ERA showed nutrient contamination and phosphorus loading typically associated with sewage discharge have reduced and are comparable to pre-discharge levels, indicating no apparent and persistent impacts in Chedoke Creek resulting from the sewage discharge spill event. Given these findings, the requirement for remediation of the creek would appear unnecessary to address the effects from the sewage discharge.

As a result of the findings of the ERA staff are supportive of consultant's recommendation to not remediate the creek as a direct result of the discharge from the Main/King CSO tank between January 2014 and July 2018. Staff intend to submit a letter identifying this decision to the MECP Director, with the SLR report appended, by the February 14, 2020 deadline.

With regards to long term monitoring, staff are working on an internal water quality program, that will improve our overall governance of urban watercourses that receive discharges from City infrastructure. Staff have reached out to representatives from stakeholders such as Hamilton Conservation Authority, HHRAP, Environment Hamilton and the RBG, in order to solicit feedback for this program, and to ensure communication lines between the City and our community partners remain open.

ALTERNATIVES FOR CONSIDERATION

Not applicable

ALIGNMENT TO THE 2016 – 2025 STRATEGIC PLAN

Community Engagement and Participation

Hamilton has an open, transparent and accessible approach to City government that engages with and empowers all citizens to be involved in their community.

Healthy and Safe Communities

Hamilton is a safe and supportive City where people are active, healthy, and have a high quality of life.

SUBJECT: Chedoke Creek Ministry Order Update (PW19008(g)/LS19004(f)) (City Wide) - Page 8 of 8

Clean and Green

Hamilton is environmentally sustainable with a healthy balance of natural and urban spaces.

Built Environment and Infrastructure

Hamilton is supported by state of the art infrastructure, transportation options, buildings and public spaces that create a dynamic City.

Our People and Performance

Hamiltonians have a high level of trust and confidence in their City government.

APPENDICES AND SCHEDULES ATTACHED

Appendix "A" – Ecological Risk Assessment, Chedoke Creek SLR Consulting (Canada) Ltd. (SLR)

Appendix "B" - Legal Opinion of Rosalind Cooper

Appendix "A" to Report PW19008(g)/LS19004(f) Page 10f 402 of 486

global environmental solutions

Ecological Risk Assessment

Chedoke Creek Hamilton, Ontario

February 2020 SLR Project No.: 209.40666.00000

ECOLOGICAL RISK ASSESSMENT

CHEDOKE CREEK

HAMILTON, ONTARIO

SLR Project No.: 209.40666.00000

Prepared by

SLR Consulting (Canada) Ltd. 300 Town Centre Blvd., Suite 200 Markham, ON L3R 5Z6

for

City of Hamilton 77 James Street North, Suite 400 Hamilton, ON L8R 2K3

February 12, 2020

Distribution: 1 copy – City of Hamilton 1 copy – SLR Consulting (Canada) Ltd.

EXECUTIVE SUMMARY

INTRODUCTION

SLR Consulting (Canada) Ltd. (**SLR**) was retained by the City of Hamilton to complete an Aquatic Ecological Risk Assessment (**ERA**) for the lower section of Chedoke Creek, parallel to Highway 403 between Glen Road and Princess Point (i.e., study area).

An accidental sewage discharge from the Main/King Combined Sewer Overflow (**CSO**) facility to Chedoke Creek occurred between January 28, 2014 and July 18, 2018.

On November 14 and 28, 2019, MECP issued a revised provincial order and Directors Order to the City, including a requirement for completing an ERA report for Chedoke Creek.

The purpose of the ERA was to evaluate the potential risks to aquatic plants and invertebrates, fish, amphibians and aquatic-dependent wildlife associated with exposure to contaminants of potential concern (**COPCs**) in sediment and surface water in the study area. The ERA was conducted in response to the sewage discharge. Specifically, the Order specified that the ERA should include an evaluation of the sewage remaining in the creek, identification of any on-going environmental impacts to the creek as a result of the sewage spill and a review of remediation options for the creek. Typical components of sewage discharge include nutrients and bacteria, with relatively small amounts of metals and polycyclic aromatic hydrocarbons (PAHs). However, because this is a CSO, metals and PAHs were also analyzed because these are components of CSO discharge.

ERA APPROACH

The methods used to conduct this ERA were based on risk assessment procedures recommended by the Ministry of Environment, Conservation and Parks (**MECP**) and Environment and Climate Change Canada (**ECCC**).

The study area considered in this ERA includes the lower section of Chedoke Creek running parallel to Highway 403. The upstream extent of the study area is defined by Glen Road at which point Chedoke Creek is channelized underground. The downstream limit of the study area is the Desjardin Recreational Trail Bridge at Princess Point (Drawing 1). The bridge at Princess Point marks the boundary of the Chedoke Creek subwatershed (Hamilton Conservation Authority - **HCA**, 2008).

The datasets used in this ERA included a total of twenty-two sediment samples collected by Wood in 2018 and by SLR in 2019, as well as a total of eight surface water samples obtained by SLR in 2019. Sediment and surface water samples obtained prior to the Main/King CSO discharge event were also used, when available, to evaluate whether concentrations have returned to conditions observed before the discharge event. The ERA focused on the shallow sediment dataset (collected entirely within the top 15 cm of sediment) following MECP guidance (MOE 2008) specifying that surficial sediments (to about 10 cm depth) are where most sediment-dwelling organisms live and should therefore be the focus of the sediment assessment. The 2019 sediment results. The design of the sampling program was intended to provide a gradient of chemical concentrations in the resultant data and provide reasonable spatial coverage of the study area.

The first part of this ERA is the problem formulation. For there to be any possibility of risks to ecological health, aquatic receptors must be exposed to one or more stressors (i.e., one or more COPCs). This question was addressed systematically by identifying the COPCs, the ecological receptors of concern (**ROCs**) that might be exposed to the COPCs, and the specific pathways through which the ROCs might be exposed. The information was summarized in a conceptual site model (**CSM**). The CSM combines information on COPCs, potential receptors, and potential exposure pathways to provide an overall picture of interactions within the study area and identifies complete exposure pathways which are carried forward for risk characterization.

The next steps in the ERA were the calculation of the degree to which the ROCs were exposed to the COPCs (i.e., Exposure Assessment) and an evaluation of the adverse effects posed by the COPCs (i.e., Effects Assessment). The exposure assessment evaluated the spatial distribution of the COPC groups and quantified the concentrations of individual COPCs at the point of contact with a receptor (e.g., aquatic plants, aquatic invertebrates, fish and/or amphibians). The COPC concentration at the point of contact is also referred to as the exposure point concentration (**EPC**). As part of the Effects Assessment, toxicity reference values (**TRVs**) were compiled for each of the COPCs to assess the potential effects and characterize the potential risks. A TRV is a receptor-specific concentration of a chemical, above which adverse effects have the potential to occur, and below which there is a low likelihood that adverse effects will occur.

In the Risk Quantification, the EPC obtained as part of the Exposure Assessment were divided by the TRVs to calculate hazard quotients (**HQs**). The HQs were compared to MECP ecological risk-based targets to characterize risks. According to MECP guidance, HQs greater than 1 indicate potential risks are present, while HQs less than 1 indicate negligible risk. In addition to calculating HQs, additional lines of evidence (**LOEs**) were evaluated to further assess the risks for benthic invertebrates. The benthic invertebrate LOEs included toxicity tests and the assessment of benthic invertebrates living in the creek. These additional LOEs were used because concentrations of contaminants in sediment may exceed the applicable guidelines; however, contaminant concentrations are not necessarily strongly correlated to bioavailability and toxicity. Because relationships between concentrations of contaminants in sediment and their bioavailability are poorly understood, and vary on a site-specific basis, determining effects of contaminants in sediment on aquatic organisms often requires a combination of approaches, including biological observations, controlled toxicity tests and measures of effects on benthic communities inhabiting sediments.

PROBLEM FORMULATION FINDINGS

Which compounds have been retained as COPCs?

COPC screening benchmarks were used to identify substances that could cause negative effects to ecological receptors. Chemicals with concentrations exceeding the screening benchmarks were deemed to be final COPCs and were carried forward for evaluation in the ERA.

The sediment screening benchmarks included, in the following order of preference, the Provincial Sediment Quality Guidelines (**PSQGs**) Lowest Effect Level (**LEL**), the Canadian Sediment Quality Guidelines (**CCME**) freshwater Interim Sediment Quality Guidelines (**ISQGs**), or the background sediment concentrations for metals in the Great Lakes region.

The surface water screening benchmarks included, in the following order of preference, the Provincial Water Quality Objectives (**PWQOs**), MECP Aquatic Protection Values (**APVs**), CCME Water Quality Guidelines, and BC Approved WQG for the protection of freshwater aquatic life.

The surface water results were screened against values protective of aquatic life, and of wildlife or livestock to account for wildlife potentially using Chedoke Creek as a source of drinking water.

COPC Group	Sediment (0-0.15)	Surface Water
Metals	Arsenic, cadmium, chromium, copper, lead, manganese, mercury and zinc	Aluminum and iron (total)
PAHs	Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs	None
Nutrients	Total Kjeldahl nitrogen (TKN) and total phosphorus	Nitrite and total phosphorus

The final COPCs retained in the ERA are presented below.

Fecal coliforms including *E. coli* were identified as uncertain COPCs in surface water and sediment as there are no screening benchmarks for the protection of ecological receptors.

What species were identified as ROCs and how?

Numerous databases and reports were consulted to identify the ecological receptors potentially present in the study area. In addition, SLR biologists gathered information on aquatic plants and animals and their habitat while in the field. This information was used to compile a list of the species potentially present in the study area. It is standard practice in completing an ERA to select a subset of representative plant and animal species (surrogate receptors) to evaluate a reasonable number of receptors because it is impractical in terms of time and cost to conduct a risk assessment for every plant and animal species that might occur in a particular area. Provincial and federal agencies provide criteria to assist in the selection of surrogate receptors. These criteria were used to compile the final list of species considered in this ERA.

The following receptor groups and species were selected. Some species were selected to represent different feeding guilds.

- Aquatic plants
- Benthic aquatic invertebrates (community of organisms living in or on the sediment)
- Aquatic invertebrates (community of organisms living in the water column)
- Fish (benthivorous represented by the white sucker and piscivorous represented by the northern pike)
- Amphibians (represented by the leopard frog)
- Reptiles (represented by the northern water snake and snapping turtle)
- Herbivorous dabbling ducks (represented by the mallard)
- Omnivorous dabbling ducks (represented by American Black duck)
- Carnivorous birds (represented by the Great Blue heron)
- Piscivorous birds (represented by the osprey)
- Herbivorous mammals (represented by the muskrat)

How can the ecological ROCs come into contact with the COPCs and what was evaluated in the ERA?

The ecological ROCs can come into contact with the COPCs via several exposure pathways including:

- Direct contact with contaminated environmental media (e.g., sediment, surface water)
- Ingestion (consumption) of sediment and water
- Ingestion of contaminated prey items.

As per risk assessment guidance, only complete exposure pathways are carried forward for evaluation in the ERA. Complete exposure pathways require a receptor to contact an environmental medium where COPCs have been identified. Complete exposure pathways have varying levels of importance; consequently, the pathways that reflect the highest potential exposure of a ROC to a specific COPC or group of COPCs are generally identified.

Complete exposure pathways were identified for:

- Aquatic plants exposed to COPCs in sediment and surface water
- Aquatic invertebrates exposed to COPCs in sediment and surface water
- Fish exposed to COPC in sediment and surface water
- Amphibians exposed to COPC in sediment and surface water

COPC SEDIMENT DISTRIBUTION AND TRENDS

Nutrients

Nutrients are a component of raw sewage. Total Kjeldahl nitrogen (TKN¹) and total phosphorus (TP) were the nutrients used to evaluate nutrients in sediment and surface water after the discharge event.

In 2018, both TKN and TP in surface sediment were above the PSQG LEL but below the PSQG SEL. In 2019, TKN decreased at all locations and all sediment samples had TKN in concentrations below the PSQG LEL. Concentrations of TP in surface sediment were comparable in 2018 and 2019. Studies that included historical sediment samples analyzed for TP in the study area were not found. However, sediment samples were collected in Cootes Paradise in 2006 and 2013, including two sediment samples from Chedoke Bay (CC-1 and CC-2). TP concentrations obtained from Chedoke Bay in 2006 and 2013 were comparable to concentrations obtained in 2018 and 2019.

Nutrients concentrations in the surface water samples obtained in 2019 were characteristics of waters influenced by organic inputs. TKN in the study area ranged from 500 to 1500 μ g/L and indicates nutrients enrichment². TP concentrations in 2019 (314 to 428 μ g/L) exceeded the PWQO

¹ TKN measures ammonia and organic nitrogen. In many wastewaters and effluents, organic nitrogen will convert to ammonia.

² There is no Ontario guideline for TKN; however, waters not influenced by excessive organic inputs typically range from 0.100 to 0.500 mg/l (Environment Canada 1979).

(30 μ g/L) indicative of an excessive amount of TP in rivers. Elevated nutrients concentrations are a common occurrence in Chedoke Creek. In 1996, a mean TKN concentration of 2840 μ g/L was reported for Chedoke Creek (Chow-Fraser 1996). The mean total phosphorus concentration in the same study was reported to be 375 μ g/L. These concentrations are higher (TKN) or comparable (TP) to those obtained in 2019.

TP concentrations were measured in the study area (CP-11) before (2009 to 2013), during the discharge (May 2014 to July 2018) and after the discharge (August 2018 to October 2018) (HCA data as provided by City of Hamilton, 2019). The results show that TP concentrations were significantly higher in 2018 during the Gate 2 failure. After the discharge, TP concentrations returned to concentrations observed before the discharge event.

Chow-Fraser indicated that the high nutrient levels observed in 1996 in Chedoke Creek were probably linked to the several CSOs discharging into the creek. In addition, urban runoff has been recognized as a major nonpoint source of TP in the growing season, for example urban runoff has been identified as the second most important nonpoint loading source of TP to Cootes Paradise (Dong-Kyun et al 2016).

Bacteria

E. coli counts in surface water are commonly elevated throughout the Chedoke Creek watershed. *E coli* levels in water were measured in the study area and at three locations upstream of the Main/King CSO (CC-3, CC-7 and CC-9) in 2018, during and after the sanitary sewer discharge event. The results show that *E. coli* levels were significantly higher downstream of the King/Main CSO than in the upstream stations at CC-2, CC-7, and CC-9, during the discharge. After the discharge period, *E coli* downstream of the King/Main CSO decreased to levels lower than those observed at the upstream locations. This distribution pattern points to several sources of *E. coli* in Chedoke Creek subwatershed. In sediment, fecal coliforms were elevated after the discharges and have since decreased. Fecal coliforms are, however, still detectable in surface sediment downstream from the CSO and could be released to the water column when the sediment is stirred.

Metals

Metals in surface sediment reflect the various inputs present in an urban watershed such as Chedoke Creek subwatershed and are present in concentrations that are comparable to those in a composited sample obtained in the study area by Environment Canada in 2002.

Metals exceeding the PSQG LELs in one or more samples included arsenic, chromium, copper, lead, manganese, mercury and zinc. Copper was the only metal that exceeded the PSQG SEL (at locations C-3 West, C-4 West and C-5 East). The highest concentrations of metals in surface sediment were generally obtained at locations 3 West, C-4 West and C-5 East. This indicates that the storm sewers located immediately upstream of C3-West and C5-East may also contribute metals to the study area.

Polycyclic Aromatic Hydrocarbons (PAHs)

All surface sediment sampling locations except for one (G3) had one or more PAHs and total PAHs in concentrations exceeding the PSQG LELs in 2018 and 2019. Total PAHs were below the SEL in all samples in 2018 and 2019.

In all samples, fluoranthene was the dominant PAH, followed by pyrene and phenanthrene or chrysene. The similar distribution of individual PAHs in the samples across the study area points to a common source. A study on PAHs in Cootes Paradise Marsh and select tributaries completed by Chow-Fraser et al (1996) indicated that PAHs in sediment in Spencer, Borer's and Chedoke Creeks most likely originated from automobile exhaust and residual asphalt based on the high levels of fluoranthene and pyrene, which are derivatives of engine combustion.

In 2002, Environment Canada investigated PAH concentrations in the sediment of 131 tributaries draining into the Niagara River or Lake Ontario. A composited sediment sample was obtained upstream of the mouth of Chedoke Creek as part of the 2002 study. The results indicated that at the time, individual PAHs and total PAHs also exceeded the SQG LELs. Similar to the samples obtained in 2018 and 2019, pyrene, fluoranthene and phenanthrene were the dominant PAHs in the composited sample obtained in 2002. The Environment Canada study concluded that PAHs were widespread in the tributaries, with concentrations generally appearing to be higher in or near urbanized areas. Ten out of the 131 tributaries had concentrations of total PAHs greater than 10 mg/kg. These tributaries were located in the most densely populated portions of the basin, between Hamilton and Toronto, and included Chedoke Creek. Out of the ten tributaries, seven had higher concentrations of total PAHs than Chedoke Creek.

KEY FINDINGS OF THE ERA

The hazard quotients calculated as part of the risk characterization indicated that potential risks to aquatic life and amphibians exposed to surface sediment were negligible for nutrients and negligible to low for metals. This however does not preclude potential risks from exposure to nutrients for which TRVs are not available. Based on the hazard quotients for COPCs with available TRVs, potential risks were identified for aquatic life and amphibians exposed to PAHs in surface sediment. The potential risks were qualified as low, moderate or high depending on location. PAHs were identified as the risk drivers among the COPCs for which TRVs were available.

One mussel species of special conservation concern, Lilliput (*Toxolasma parvum*), has been observed in Cootes Paradise Marsh and Princess Point near the study area. For this reason, potential risks were conservatively assessed for this species although it is not known if it is present in the study area. The ERA found potential risks for this species at all sampling locations for metals and/or PAHs in sediment and nutrients in surface water.

Additional lines of evidence (LOEs) were used to evaluate potential risks to benthic invertebrates exposed to COPCs in sediment. The toxicity tests showed that the freshwater midge *Chironomus dilutus* was not significantly impacted after being exposed the sediment obtained from the study area. Adverse effects to amphipod (*Hyalella azteca*) growth and survival were observed in the toxicity tests. The benthic community in the study area comprised stress tolerant species consistent with those observed in urban streams draining areas of high percent impervious cover.

The results of the ERA indicate that the PAHs, metals and bacteria in the study area sediment, as well as the sediment oxygen demand resulting from the degradation of natural organic detritus and/or organic waste, likely restricts the benthic invertebrate community makeup to stress tolerant organisms. While the Main/King CSO discharge likely impacted the benthic invertebrates, the benthic community assemblage observed in the study area is consistent with that observed in streams in urban watersheds with a high percent of impervious cover and connectivity issues. The review of the COPCs distribution indicates that concentrations of PAHs, metals, nutrients and bacteria in sediment and/or surface water are comparable to concentrations measured prior to

the discharge. The elevated concentrations of COPCs have been an ongoing issue in Chedoke Creek sediment and/or surface water prior to and after the 2014-2018 discharge event, including in areas upstream of the Main/King CSO. These observations are consistent with the fact that Chedoke Creek is predominantly an urbanized watershed that has been altered over time as a result of intense urban development within the Hamilton area, and the creek has been and continues to be subject to numerous point source (e.g., CSOs, storm water outfalls) and nonpoint source discharges (e.g., highway runoff, runoff from urban and industrial areas).

RECOMMENDATIONS

Item 1 of the Director's Order required "an identification and evaluation of sewage remaining in the creek, anticipation of any ongoing environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek."

Recommendations proposed by Wood (2019) were reviewed by SLR based on information collected during 2019 (and not available to Wood) and findings in the current ERA. As a result of this review, none of the following recommendations considered in Wood (2019) – physical capping, chemical inactivation, or sediment removal by hydraulic dredge – are recommended at this time.

Options to remediate and monitor the creek were contingent on the assessment of impact. Monitoring the environmental condition of the creek as it relates to ongoing operations for the Main/King CSO is occurring. Information available for review in the ERA showed nutrient contamination and phosphorus loading typically associated with sewage discharge have reduced and are comparable to pre-discharge levels, indicating no apparent and persistent effects in Chedoke Creek resulting from the sewage discharge. Given these findings, the requirement for remediation of the creek as stated in the Director's Order would appear unnecessary to address effects from the sewage discharge, and the '**no action**' alternative is recommended.

TABLE OF CONTENTS

EXEC	CUTIV	E SUMMARY	
LIST	LIST OF ACRONYMS AND ABBREVIATIONSXIII		
1.0	.0 INTRODUCTION		
	1.1	Background	.1
	1.2	ERA Scope and Approach	.2
		1.2.1 Spatial Scope	2
		1.2.2 Temporal Scope	2
		1.2.3 General Approach	.3
	1.3	Report Organization	.4
2.0	APPL	LICABLE GUIDELINES AND/OR STANDARDS	.5
	2.1	Sediment	.5
	2.2	Surface Water	.5
3.0	SUM	MARY OF PREVIOUS ENVIRONMENTAL STUDIES	.6
	3.1	Royal Botanical Gardens Water Quality Monitoring Program	.6
	3.2	Hamilton Conservation Authority (HCA) Water Quality Monitoring Program	.6
	3.3	Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of	
		the Bay of Quinte) Screening-Level Survey	.6
	3.4	Royal Botanical Gardens (RBG) Marsh Sediment Quality Assessment	.7
	3.5	Wood Environment and Infrastructure Solution (2019)	.8
4.0	ENVI	RONMENTAL DATA COLLECTED IN SUPPORT OF THE ERA	.9
5.0	PRO	BLEM FORMULATION	11
	5.1	Chedoke Creek	11
		5.1.1 Study Area	12
	5.2	Aquatic Receptors of Concern	13
		5.2.1 Aquatic Life	13
		5.2.2 Aquatic Dependent Wildlife	15
		5.2.3 Species of Concern	15
		5.2.4 Summary of Potential Ecological Receptors	17
	5.3	Data Considered in the ERA	19
		5.3.1 Sediment Chemistry Dataset	19
		5.3.2 Surface Water Chemistry Dataset	20
		5.3.3 Porewater Chemistry Dataset	20
		5.3.4 Sediment Toxicity Dataset	20
		5.3.5 Benthic Invertebrate Community Structure Dataset	20
		5.3.6 Dataset Use	21
	5.4	Contaminants of Potential Concern	21 24
		5.4.1 COPC Screening Method	21
		5.4.1.2 Surface water	21 21
		5.4.2 COPC Screening Results	22
		5.4.2.1 Final Sediment COPCs	22
		5.4.2.2 Final Surface Water COPCs	23
		5.4.2.3 Uncertain Sediment and Surface Water COPCs	23
		5.4.2.4 Innocuous Substances	24
		5.4.3 Bioaccumulation Screening	24
		5.4.3.1 Bioaccumulation and Biomagnification of PAHs	26

	5.5	Exposure Pathway Identification	.26
		5.5.2 Exposure to Surface Water	.28
	5.6	Conceptual Site Model	.28
	5.7	ERA Risk Analysis Plan	.30
		5.7.1 Assessment and Measurement Endpoints	.30
6.0	EXPO	DSURE ASSESSMENT	.32
	6.1	COPCs Spatial Distribution and Trends	.32
		6.1.1 Metals	.32
		6.1.2 PAHs	.35
		6.1.3 Nutrients	.36
		6.1.4 Bacteria	.38
	• •	6.1.5 Biochemical Oxygen Demand (BOD) and Dissolved Oxygen (DO)	.39
	6.2	Exposure Point Concentrations (EPC)	.40
7.0	EFFE	CTS ASSESSMENT	.40
	7.1	Literature-Based Toxicity Reference Values	.41
		7.1.1 Sediment TRVs for Aquatic Life	.41
	7 0	7.1.2 Surface Water TRVs for Aquatic Life	.43
	1.2	Sealment Loxicity Lests	.44
	1.3	7.2.1 Ponthic Invertebrate Community Structure Analysis	.43
		7.3.1 Denthic Invertebrate Community Structure Analysis Method	.45
0 0	חסוס		47
0.0	0 1	Sadimant HO	.4/
	0.1	8 1 1 Aquatic Plants and Bonthic Invertebrates	.40
		8 1 2 Fish and Δmnhibians	<u>.</u> 40
		8.1.3 Invertebrates Species at risk	49
	8.2	Surface Water HQs	.50
	•	8.2.1 Invertebrates	.50
		8.2.2 Aquatic Plants	.50
		8.2.3 Fish	.51
		8.2.4 Amphibians	.51
		8.2.5 Interpretation of Surface Water Results	.52
	8.3	Lines of Evidence (LOEs) for Select 2019 Sediment Samples	.53
		8.3.1 Approach	53
		8.3.2 Chemistry Line of Evidence	.54
		8.3.3 Toxicity Test Line of Evidence	54
		0.3.4 DICS LINE OF Evidence	.30
~ ~		8.5.5 Weight of Evidence	.50
9.0		ERIAINIY ANALYSIS	.5/
	9.1	Problem Formulation Uncertainties	.30
		9.1.1 Data Collection and Evaluation Uncertainties	
		9.1.2.1 Depth-Specific COPC Screening	
		9.1.2.2 Uncertain COPCs	59
		9.1.3 Receptor Identification Uncertainties	.60
		9.1.4 Exposure Pathway Uncertainties	.61
	9.2	Exposure Assessment Uncertainties	.61
		9.2.1 Estimated Exposure Concentrations	.61
		9.2.1.1 Depth-Specific EPCs	. 61

	9.3	Effects Assessment Uncertainties	62
		9.3.1 Toxicity Testing and BICS Analysis	63
	9.4	Risk Characterization Uncertainties	63
10.0	SUM	MARY AND CONCLUSIONS	64
11.0	RECO	OMMENDATIONS	66
12.0	STAT	EMENT OF LIMITATIONS	70
13.0	REFE	ERENCES	71

TABLES WITHIN TEXT

Table 1-1:	Report Organization	4
Table 3-1:	Total PAHs Concentrations in Ten Lake Ontario Tributaries	7
Table 4-1:	Summary of SLR 2019 Surface Water and Sediment Analytes	9
Table 5-1:	Chedoke Creek Subwatershed Land Use Statistics (Source: HCA 2008)	.11
Table 5-2:	Native Fish Species Known to occur in Chedoke Creek	.14
Table 5-3:	Summary of Species at Risk	.16
Table 5-4:	Ecological Receptor Selection	.18
Table 5-5:	Sediment COPC Summary	.23
Table 5-6:	Surface Water COPC Summary	.23
Table 5-7:	Uncertain COPC Summary	.24
Table 5-8:	Bioaccumulation Potential of Preliminary COPCs	.25
Table 5-9:	Summary of Potential Exposure Pathways	.29
Table 5-10:	ERA Assessment and Measurement Endpoints	.31
Table 6-1:	Chedoke Creek COPC Concentrations in 2002, 2018 and 2019	.34
Table 6-2:	Chedoke Bay Historical and Current Surface Sediment Metal Maximum COPC Concentrations	.34
Table 6-3:	Total PAHs Results in Chedoke Creek	.36
Table 6-4:	Chedoke Bay Historical and Current Maximum Sediment TKN and TP Concentrations in Surface Sediment	.37
Table 6-5:	Surface Water TP Concentrations Before, During and After the Discharge	.38
Table 6-6:	Chedoke Creek E. Coli Levels in Surface Water Downstream and Upstream of Main/King CSO in 2018	.39
Table 6-7:	Surface Water Exposure Point Concentrations	.40
Table 7-1:	Sediment Toxicity Reference Values for the Protection of Aquatic Life (mg/kg)	.42
Table 7-2:	Surface Toxicological Reference Values for the Protection of Aquatic Life $(\mu g/L)$.44
Table 7-3:	Summary of Chironomus dilutus and Hyalella azteca Percent Difference	.45
Table 7-4:	Mean Species Richness and Hilsenhoff's Biotic Index (HBI) in 2018 and 2019	.47
Table 8-1:	Summary of Sediment Samples with HQs > 1.0	.48

Table 8-2:	Risk Categories and Associated Criteria Used to Rank Sediment Samples Presented in Table 8-1 Based on Analytical Chemistry	.49
Table 8-3:	Invertebrate Hazard Quotients (HQ) for Surface Water	.50
Table 8-4:	Aquatic Plant Hazard Quotients (HQ) for Surface Water	.51
Table 8-5:	Fish Hazard Quotients (HQ) for Surface water	.51
Table 8-6:	Amphibian Hazard Quotients (HQ) for Surface water	.52
Table 8-7:	Summary of 2019 Sediment Samples with Additional Lines of Evidence	.53
Table 8-8:	2019 Sediment Samples Risk Categories	.54
Table 8-9:	Risk Categories and Criteria for Toxicity LOE	.55
Table 8-10:	Risk Categories for the Toxicity Testing LOE	.55
Table 8-11:	COPCs above TRV in Samples Submitted for Toxicity Tests	.56
Table 8-12:	WOE Risk Rankings for Sediment Samples	.57
Table 9-1:	Depth-Specific Sediment COPC Summary	.59
Table 9-2	Uncertain COPC Summary	.60
Table 11-1:	Some Effects Associated with Sediment Removal by Dredge in Chedoke Creek.	.68

TABLES FOLLOWING TEXT

Table 1:	Contaminants of Potential Concern (COPC) Screening for Aquatic Life -
	Sediment (0-0.15 mbss)

- Table 2:
 Contaminants of Potential Concern (COPC) Screening for Aquatic Life -Surface Water
- Table 3:
 Contaminants of Potential Concern (COPC) Screening for Wildlife -Surface Water
- Table 4: Sediment EPCs and HQs
- Table 5: Sediment EPCs and HQs SAR
- Table 6: Surface Water HQs

DRAWINGS

- Drawing 1: Site Location Plan
- Drawing 2: Sample Locations
- Drawing 3: Sample Details and Reference Locations
- Drawing 4: Conceptual Site Model

APPENDICES

- Appendix A: Previous Environmental Investigations Sampling Locations
- Appendix B: Laboratory Analytical Report
- Appendix C: Ecological Receptors Supporting Information
- Appendix D: ERA Analytical Chemistry Dataset
- Appendix E: Entomogen Report and BV Toxicity Report
- Appendix F: ProUCL Outputs
- Appendix G: TRVs
- Appendix H: Uncertainty Assessment

LIST OF ACRONYMS AND ABBREVIATIONS

AEC	Area of Environmental Concern
ANOVA	Analysis of Variance
APVs	Aquatic Protection Values
ARCS	Assessment and Remediation of Contaminated Sediment
ATSDR	Agency for Toxic Substances and Disease Registry
AWF	Freshwater Aquatic Life
BC	British Columbia
BICS	Benthic Invertebrate Community Structure
BOD	Biochemical Oxygen Demand
BV	Bureau Veritas
CC	Chedoke Creek
CCME	Canadian Council of Ministers of the Environment
cfu/ml	Colony Forming Unit per Milliliter
cm	centimetre
COPC	Contaminants(s) of Potential Concern
COSEWIC	Committee on the Status of Endangered Wildlife in Canada
CP	Cootes Paradise
CSAP	Contaminated Sites Approved Professionals Society
CSM	Conceptual Site Model
CSO	Combined Sewer Overflow
CUM	Cultural Meadow
CUS	Cultural Savana
DFO	Fisheries and Oceans Canada
DO	Dissolved Oxygen
DOC	Dissolved Organic Carbon
DQRA _{CHEM}	Detailed Quantitative Risk Assessment for Chemicals
EC	Environment Canada
EC ₂₀	Environmental Concentration where 20% Effect Occurs
EPC	Exposure Point Concentration
EPR	Environmental Project Report
EPS	Environmental Protection Series
EPT	Ephemeroptera, Plecoptera, Trichoptera
ERA	Ecological Risk Assessment
ESA	Environmental Sensitive Area
FCSAP	Federal Contaminated Sites Action Plan

FOD	Deciduous Forest
HBI	Hilsenhoff's Biotic Index
HCA	Hamilton Conservation Authority
HHRAP	Hamilton Harbour Remedial Action Plan
HQ	Hazard Quotient
HMW	High Molecular Weight
IBA	Important Bird Area
IMPARA	Important Reptile and Amphibian Area
ISQGs	Interim Sediment Quality Guidelines
km ²	square kilometers
L	Litre
LEL	Lowest Effect Level
LMW	Low Molecular Weight
LOE	Line of Evidence
LOEL	Lowest Observed Effect Level
LRT	Light Rail Transit
m	metre
MAC	Maximum Allowable Concentration
MAS	Shallow Marsh
MECP	Ministry of the Environment, Conservation and Parks
mg/kg	milligram per kilogram
mg/L	milligram per litre
MOE	Ministry of the Environment
NA	Not Applicable
na	not available
NAI	Natural Areas Inventory
NOAEL	No Observed Adverse Effect Level
O ₂	Oxygen
OAO	Open water
OMNR	Ontario Ministry of Natural Resources
ON	Ontario
PAH	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PEC	Consensus-Based Probable Effect Concentration
PEL	Probable-Effect Level
POPs	Persistent Organic Pollutants
PWQO	Provincial Water Quality Objectives

PSQGs	Provincial Sediment Quality Guidelines
Q	Quotient
QA/QC	Quality Assurance and Quality Control
RBG	Royal Botanical Gardens
ROC	Receptor of Concern
SA	Shallow Aquatic
SAR	Species at Risk
SARA	Species at Risk Act
SedQC	Sediment Quality Criteria
SEL	Severe Effect Level
SLR	SLR Consulting (Canada) Ltd.
SOP	Standard Operating Procedure
SQG	Sediment Quality Guideline
TCEQ	Texas Commission on Environmental Quality
TKN	Total Kjeljdahl Nitrogen
TOC	Total Organic Carbon
TP	Total Phosphorus
TRV	Toxicity Reference Value
TSS	Total Suspended Solids
UCLM	Upper Confidence Limit of the Mean
UNEP	United Nations Environmental Programme
US	United States
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
VECs	Valued Ecosystem Components
WOE	Weight of Evidence
Wood	Wood Environmental & Infrastructure Solutions
WQG	Water Quality Guidelines
µg/L	micrograms per litre

1.0 INTRODUCTION

SLR Consulting (Canada) Ltd. (**SLR**) was retained by the City of Hamilton to complete an Aquatic Ecological Risk Assessment (**ERA**) for the lower section of Chedoke Creek, parallel to Highway 403 (Drawing 1). The purpose of the ERA was to evaluate the potential risks to aquatic plants and invertebrates, fish, amphibians and aquatic-dependent wildlife associated with exposure to contaminants of potential concern (**COPCs**) in sediment and surface water in the study area. The ERA was conducted in response to the sewage discharge.

The ERA was carried out using data and information presented in the Wood Environmental & Infrastructure Solutions (**Wood**) report titled, *MECP Order # 1-J25YB Item 1b Chedoke Creek Natural Environment and Sediment Quality Assessment and Remediation Report, City of Hamilton,* dated January 24, 2019 as well as environmental data collected by SLR during the week of September 30, 2019.

1.1 Background

An accidental sewage discharge from the Main/King Combined Sewer Overflow (**CSO**) facility to Chedoke Creek occurred between January 28, 2014 and July 18, 2018.

On August 2, 2018, the Ministry of Environment, Conservation and Parks (**MECP**) issued Provincial Officer's Order #1-J25YB (the 2018 Order) to the City. The 2018 Order included requirements for an evaluation of the impacts of the sewage discharge to Chedoke Creek. To fulfil this requirement, the City retained Wood to complete a site assessment and an impact assessment, and to prepare a remedial plan, if required (Wood, 2019).

In the spring of 2019, the City asked SLR to provide peer review services related to the investigation and mitigation recommendations presented in the 2019 Wood Report. Findings of the peer review were provided in a memorandum dated May 15, 2019 and follow-up report entitled *"Peer Review Related Services and Environmental Technical Support"* dated June 7, 2019.

The findings of the peer review indicated that the 2019 Wood Report included information on the physical characteristics and the quality of the sediment found at the bottom of Chedoke Creek, the aquatic invertebrates living in this sediment, the fish living in or migrating to Chedoke Creek, and the quality of the water in the creek. However, only sediment quality compared to the Provincial Sediment Quality Guidelines had been used to evaluate whether conditions in the creek potentially caused adverse effects to aquatic life. For this reason, SLR recommended re-analyzing the data presented in the Wood Report in the context of an ERA to determine next steps for Chedoke Creek, including a data gap analysis and the development of a workplan to collect additional information where required.

Following a review of the data contained in the 2019 Wood Report and consultation with the City of Hamilton, a sediment and surface water sampling program was conducted in September 2019 by SLR to support the completion of a risk assessment report. Sediment sampling sites in Chedoke Creek were selected based on a review of the sediment chemistry data provided in the 2019 Wood Report. The sampling design was intended to provide a gradient of chemical concentrations in the resultant data and provide reasonable spatial coverage of the study area. Though every effort was made to include a local sediment reference location in a comparable urban creek (i.e., Red Hill Creek), no nearby location included fine sediments suitable for chemical or toxicological analyses.

The field program consisted of the collection of surface water and sediment samples from Lower Chedoke Creek for analytical chemistry evaluation. Two surface water samples were also collected upstream and downstream of the CSO at Red Hill Creek, a local urban stream. In addition to chemical analysis, select sediment samples were submitted for toxicological characterization (i.e., toxicity testing). Benthic invertebrate community structure (**BICS**) analysis was also conducted.

On November 14 and 28, 2019, MECP issued a revised provincial order and Directors Order (1-MRRCX) to the City, including a requirement for completing an ecological risk assessment report for Chedoke Creek as a result of the sewage discharge.

1.2 ERA Scope and Approach

The risk assessment presented in this report is an aquatic ecological risk assessment and considered ecological receptors including aquatic life (aquatic plants, aquatic invertebrates and fish), amphibians and aquatic-dependent reptiles, birds and mammals.

1.2.1 Spatial Scope

The study area considered in this ERA includes the lower section of Chedoke Creek running parallel to Highway 403. The upstream extent of the study area is defined by Glen Road at which point Chedoke Creek is channelized underground. The downstream limit of the study area is the Desjardin Recreational Trail Bridge at Princess Point (Drawing 1). The bridge at Princess Point marks the boundary of the Chedoke Creek subwatershed (Hamilton Conservation Authority - **HCA**, 2008; drawing provided in Appendix A). The outlet of the Main/King CSO facility is located at the upstream limit of the study area.

Some environmental samples were collected immediately downstream of the bridge in Chedoke Bay (also referred to as Chedoke Delta). Chedoke Bay is located in the south east corner of Cootes Paradise Marsh at the mouth of Chedoke Creek (Theijsmeijer and Bowman, 2016). These samples, while collected from within Cootes Paradise, are discussed in the ERA as they characterize the outlet area of Chedoke Creek.

Environmental samples obtained in Chedoke Creek upstream of the study area were also considered in this ERA. These samples provide information on conditions in sections of the creek not affected by the Main/King CSO. Finally, environmental samples obtained in Red Hill Creek were considered in this ERA. These samples provide information on environmental conditions in an urban creek draining a similar urban watershed.

As per the scope of work for this ERA, Cootes Paradise Marsh was not included in the ERA.

1.2.2 Temporal Scope

The ERA focuses on current environmental conditions in the study area. Therefore, environmental data collected prior to or during the Main/King CSO discharge were not included in the dataset used to evaluate the current exposure of ecological receptors (i.e., data obtained before July 18, 2018).

Environmental data obtained from Chedoke Creek prior to the CSO discharge were; however, considered in this report to support the discussion of environmental trends prior to and following the Main/King CSO discharge.

1.2.3 General Approach

The ERA was conducted in general accordance with the ecological risk assessment guidance available from the following sources:

- Ministry of the Environment (**MOE**³). 2008. Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario.
- MOE 2011a. Soil, ground water and sediment standards for use under Part XV.1 of the Environmental Protection Act.
- MOE 2011b. Rationale for the Development of the Soil and Groundwater Standards for Use at Contaminated Sites in Ontario. Ministry of the Environment Standards Development Branch. April 15, 2011.
- MECP. 2017. Procedures for the Use of Risk Assessment under Part XV.1 of the Environmental Protection Act. Published August 18, 2017, Updated May 15, 2019.
- Environment Canada (EC). 2012. Federal Contaminated Sites Action Plan (FCSAP) Ecological Risk Assessment Guidance. March 2012.

The first part of this ERA is the problem formulation. For there to be any possibility of a risk to ecological health, aquatic receptors must be exposed to one or more stressors (i.e., one or more COPCs). This question was addressed systematically by identifying the COPCs, the ecological receptors of concern (**ROCs**) that might be exposed to the COPCs, and the specific pathways through which the ROCs might be exposed. The information was summarized in a conceptual site model (**CSM**⁴) to determine the ROC-COPC combinations arising from complete exposure pathways that were carried forward for risk characterization.

The next steps were the calculation of the degree to which the ROCs were exposed to the COPCs (i.e., Exposure Assessment) and the toxicity of the COPC (i.e., Effects Assessment). Using these two factors, risk calculations were completed and the resulting hazard quotients (**HQs**) were compared to MECP ecological risk-based targets (i.e., Risk Characterization). According to MECP guidance, HQs greater than 1 indicate potential risks are present, while HQs less than 1 indicate negligible risk. In addition to calculating HQs to evaluate the risks, additional lines of evidence (**LOEs**) were evaluated to further assess the risks for benthic invertebrates. The benthic invertebrate LOEs included the evaluation of sediment toxicity to freshwater organisms in controlled laboratory conditions, and the assessment of benthic invertebrate living in the creek.

³ Now the Ministry of Environment Conservation and Parks (MECP)

⁴ A CSM combines information on COPCs, potential receptors, and potential exposure pathways to provide an overall picture of interactions on a site and identifies complete exposure pathways which are carried forward for risk characterization (refers to Section 5.7).

1.3 Report Organization

The report is organized into the sections described in Table 1-1.

Report Section	Content
Section 1 – Introduction	Outlines site objectives and scope.
Section 2 – Applicable Guidelines and/or Standards	Provides an overview of the standards and guidelines applied to the data to identify the COPCs
Section 3 – Summary of Previous Environmental Studies	Provides brief summaries of previous environmental studies relevant to the ERA.
Section 4 – Data Collected in Support of the ERA	Provides a summary of the field investigations completed by SLR to support the ERA.
Section 5 – Problem Formulation	Provides site information; describes characterization data and historical and current analytical results; presents the COPC screening process and identifies COPCs in affected media; screens potential ecological receptors; discusses relevant exposure pathways; presents the CSM identifying complete exposure pathways to be evaluated in the ERA.
Section 6 – Exposure Assessment	Discusses the distribution of the final COPCs and identifies exposure point concentrations (EPCs) for each medium, pathway and receptor pairing.
Section 7 – Effect Assessment	Provides toxicity reference values (TRVs) and discusses methods and results for toxicity tests, benthic invertebrate community structure and biological surveys.
Section 8 – Risk Characterization	Evaluates potential risks by combining the exposure information and TRVs to calculate HQs on a study area-wide basis. Presents the additional LOEs used in the evaluation of risks and integrates each LOEs into a final ERA weight of evidence (WOE).
Section 9 – Uncertainty Analysis	Identifies areas of greatest uncertainty and any assumptions that could affect the conclusions of the ERA
Section 10 – Summary and Conclusions	Provides a summary and conclusions of the ERA.
Section 11 – Recommendations	Provides a summary of the recommendations.
Section 12 – Statement of Limitations	Discusses obligations and responsibilities of SLR regarding this report.
Section 13 – References	Lists references used in the ERA.

Table 1-1: Report Organization

2.0 APPLICABLE GUIDELINES AND/OR STANDARDS

The following subsections present the environmental guidelines and/or standards specifically used to identify the COPCs selected in the ERA (i.e., COPC screening benchmarks). The COPC identification process (or COPC screening) is further discussed in Section 5.4.

2.1 Sediment

The Provincial Sediment Quality Guidelines (**PSQGs**) Lowest Effect Levels (**LELs**) are the basis of the MECP Sediment Standards (MOE 2011a) and were used to identify sediment COPCs for aquatic life (macrophyte, benthic invertebrates and benthic fish) (MOE 2011b and MOE 2008). The PSQG LEL "*indicates a level of contamination that can be tolerated by the majority of sediment-dwelling organisms*. Sediments meeting the LEL are considered clean to marginally polluted" (MOE 2008).

The Canadian Sediment Quality Guidelines (Canadian Council of Ministers of the Environment - CCME 1999) freshwater Interim Sediment Quality Guidelines (**ISQGs**) were used as secondary values to identify COPCs for the parameters for which PSQG LELs have not been developed.

The background sediment concentrations for metals in the Great Lakes region (MOE, 2008) were also used as screening benchmarks, where available.

The selected COPC screening values for sediment are provided in Table 1 after the text.

2.2 Surface Water

The surface water results were compared to the guidelines/standards listed below to identify COPCs for aquatic life. Where provincial water quality objectives or values were unavailable, guidelines and standards from other jurisdictions were selected if methods and protection goals aligned with MECP approaches.

- Provincial Water Quality Objectives (PWQOs) and Interim PWQOs for the protection of aquatic life (MOE 1994 and updates);
- MECP Aquatic Protection Values (APVs) (MOE 2011b);
- CCME Water Quality Guidelines (**WQG**) for the protection of aquatic life (2008);
- BC Approved WQG for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV, 2019); and
- BC Working WQGs for the protection of AWF Long-term Values (BC ENV 2018).

In addition to the guidelines listed above, the CCME WQG for the protection of livestock were used to identify COPCs for aquatic-dependent wildlife potentially using Chedoke Creek as a source of drinking water. In the absence CCME WQG for livestock, the BC Approved and Working WQG for wildlife and/or livestock were used. Finally, in the absence of WQG specific to wildlife or livestock, the MECP value protective of potable water (GW1) were conservatively applied to identify COPCs for wildlife ingesting surface water.

The selected COPC screening values for surface water are provided in Tables 2 and 3 after the text.

3.0 SUMMARY OF PREVIOUS ENVIRONMENTAL STUDIES

The following is a summary of recent environmental studies considered in this ERA.

3.1 Royal Botanical Gardens Water Quality Monitoring Program

The Royal Botanical Gardens (**RBG**) has been conducting an annual water quality monitoring program since the early 1970's in Cootes Paradise Marsh and Grindstone Marsh. The monitoring program focuses on the marshes, but also monitors inflowing waters including Chedoke Creek, Spencer Creek, Borer's Creek, and Grindstone Creek. One sampling location, CP11, is within Chedoke Creek in the study area. RBG records show that CP11 was monitored from June 1994 to May 2014.

Surface water samples were analyzed for bacteriology and nutrients (total ammonia, ammonia un-ionized, Total Kjeldahl Nitrogen (**TKN**), nitrate, nitrite, total nitrogen, and total phosphorus (**TP**)). In addition, temperature, conductivity, dissolved oxygen, pH, and turbidity were measured in the field. The sample locations are provided in Appendix A.

3.2 Hamilton Conservation Authority (HCA) Water Quality Monitoring Program

In 2014, HCA became responsible for the surface water sampling in Spencer Creek, Ancaster Creek, Borers Creek and Chedoke Creek, previously completed by RBG. This sampling program included biweekly grab samples was implemented under the Hamilton Harbour Remedial Action Plan (**HHRAP**) to gather information on inputs from nonpoint sources of nutrients, sediments and bacteria into Cootes Paradise Marsh and ultimately the Hamilton Harbour. The HCA monitoring program included one sampling location in Chedoke Creek, in the study area (CP-11). As part of the 2017/2018 sampling program, eight additional sampling locations were added in Chedoke Creek (CC-3. CC-5, CC-7, CC-9, CC-2, CC-5a, CC-10, CC11 Outlet). These samples locations were added in order to identify the sources of elevated levels of nutrients and bacteria that had been observed at CP-11. Sampling locations CP-11 and CC11 Outlet are within the study area. The other seven locations are upstream of the study area.

Samples obtained by HCA were analyzed for bacteriology and nutrients (ammonia + ammonium, nitrate, nitrite, TP, and o-Phosphate). In addition, temperature, conductivity, dissolved oxygen, pH, and turbidity were measured in the field. Sample locations are provided in Appendix A.

3.3 Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of the Bay of Quinte) Screening-Level Survey

In the summer of 2002, Environment Canada completed a screening-level survey of the quality of recently deposited sediment near the mouths of tributaries draining to the Niagara River and Lake Ontario as far east as the Bay of Quinte. Sampling method followed the United States Geological Survey (**USGS**) protocol and sub-samples were combined at each site to obtain one sample representative of the overall conditions in a given tributary. A total of 147 samples were obtained including 131 tributaries and 16 field duplicate samples (Dove et al 2003). One sample was obtained from lower Chedoke Creek and analyzed for metals, polycyclic aromatic hydrocarbons (**PAHs**), total polychlorinated biphenyls (**PCBs**) and organochlorine pesticides. Total PCBs and pesticides results were below the detection limits of the laboratory methods. Most individual PAHs and total PAHs in the Chedoke Creek sample were above the SQG LEL. In addition, phenanthrene, fluoranthene, pyrene and benz(a)anthracene were above the CCME

probable effect level (**PEL**). Arsenic, cadmium, chromium, copper, mercury, manganese, lead and zinc were above the SQG LEL. Zinc was also above the CCME PEL.

The study concluded that PAHs were widespread in the tributaries, with concentrations generally appearing to be higher in or near urbanized areas. Ten of the tributaries had concentrations of total PAHs greater than 10 mg/kg. These tributaries were located in the most densely populated portion of the basin, between Hamilton and Toronto (Table 3-1).

Tributary	Total PAH concentration (mg/kg)
Pioneer Creek	71.6
Stoney Creek	26.0
Rambo Creek	20.0
Applewood Creek	19.3
Shoreacres Creek	18.8
Wendigo Creek	17.0
Montgomery Creek	14.8
Chedoke Creek	14.5
Roseland Creek	12.6
Tuck Creek	11.7

 Table 3-1:
 Total PAHs Concentrations in Ten Lake Ontario Tributaries

The study also concluded that some metals commonly exceeded the SQG LEL, including cadmium (at 94 sites), copper (at 83 sites), manganese (at 87 sites), and zinc (at 64 sites).

3.4 Royal Botanical Gardens (RBG) Marsh Sediment Quality Assessment

In November 2013 sediment grab samples were obtained from Cootes Paradise Marsh and Grindstone Marsh areas as part of the sediment quality monitoring program completed by RBG (Bowman and Theijsmeijer, 2014). Sediment samples were obtained from ten locations. While the inflowing creeks were not sampled, two samples were obtained from Chedoke Bay (CC-1 and CC-2). The locations were selected based on results of the RBG 2006 sediment sampling program so that results could be compared to evaluate trends in sediment quality. Sediment samples were analyzed for nutrients and metals. Concentrations of TKN, TP, cadmium, copper. iron, manganese, lead, nickel and zinc exceeded the PSQG LEL but were below the SEL in Chedoke Bay. Metals exceeding the PSQGs LEL were observed at most locations in Cootes Paradise and Grindstone Marsh, with copper exceeding the LEL at all ten locations. Chedoke Bay and West Pond had the greatest number of metals exceeding the LEL (seven LEL exceedances for both stations). All stations exceeded the LEL for TKN and TP. In addition, TP exceeded the SEL at the Desjardins Canal sampling locations. The study concluded that the sediments of Cootes Paradise Marsh and Grindstone Marsh demonstrate low to moderate contamination of some heavy metals and nutrients, with the exception of TP in the Desjardin Canal. Sample locations are provided in Appendix A.

The study did not recommend additional monitoring for metals in sediment because concentrations "were only slightly elevated above LEL's and include a number of naturally

occurring metals sources from high contact with rock in the area". The study recommended follow up monitoring for nutrients (specifically TP and TKN) in areas of concern including West Pond, Westdale Inlet, the Desjardins Canal, and Long Pond. Remediation of the Desjardins Canal sediment was identified as a priority.

3.5 Wood Environment and Infrastructure Solution (2019)

Wood completed a site assessment and impact assessment of Chedoke Creek downstream from the Main/King CSO facility (Wood, 2019). The study used several LOEs including sediment physical characteristics and analytical chemistry, benthic invertebrate community data, fish community data and surface water analytical chemistry to evaluate the environmental conditions in lower Chedoke Creek.

The sediment thickness characterization indicated that a greater accumulation of fine sediment was present along the west shoreline of the creek, with upstream sampling locations generally containing less soft sediment than downstream sampling locations.

Wood collected sediment core and/or grab samples from ten locations in Chedoke Creek. All locations were downstream of the Main/King CSO facility. Sediment samples were analysed for bacteria, nutrients, metals and PAHs. Analytical results were compared to the PSQG LELs and SELs. Porewater biochemical oxygen demand (BOD) was also measured. The highest level of BOD was observed at the downstream end of the creek immediately upstream of the Princess Point bridge and coincided with the highest level of organic matter observed in the creek. The highest fecal bacteria counts were obtained downstream of the Kay Drage Park bridge. The report noted that inputs/sources of fecal bacteria were ongoing in the creek (e.g., permitted CSO, wildlife, dogs). Nutrients concentrations exceeded the PSQG LEL, but were below the SEL. The report indicated that these results suggested that the "sediments contain a level of contamination that can be tolerated by the majority of sediment-dwelling organisms, but not necessarily stressintolerant taxa". Metals exceeding the PSQG LELs included arsenic, cadmium, chromium, copper, lead, nickel, silver and zinc. Exceedances of the LELs were observed at all locations. In surficial sediment (< 15 cm), copper was the only metal to exceed the PSQG SEL. In deeper sediment (>15 cm), cadmium, copper, nickel and zinc exceeded the PSQG SELs. The report indicated that several sources of metal contamination were present in the Chedoke Creek watershed (e.g., other CSOs and urban runoff) and added that isolating these sources from the Main/King CSO facility inputs was not considered feasible. Wood also reviewed sediment data provided in studies completed prior to the CSO event and indicated that the results suggested that legacy metals enrichment had occurred prior to the Main/King CSO facility event. One or more PAHs exceeded the PSQG LELs at all locations. Comparisons to the SELs were not provided. Similar to the metals-enrichment discussion, Wood reported that many historical and ongoing sources of PAHs were present in the Chedoke Watershed.

Wood collected seven sediment samples for BICS analysis. Results indicated that "the community was made of taxa generally tolerant of poor water quality and environmental stress". Sampling for benthic invertebrates in Chedoke Creek was not completed prior to 2018 to evaluate predischarge conditions. Wood noted that "benthic macroinvertebrate community data provide a measurement of the existing conditions and do not solely represent impacts attributable to the discharge event. Other confounding factors such as other sources of contaminants (e.g., other CSOs and urban runoff) have likely contributed to the environmentally degraded state of the creek, however as noted earlier, establishing a clear distinction as to the attributable sources is not considered feasible with the available data."
Wood did not implement field studies to evaluate fish in Chedoke Creek, and instead used fish community survey data provided by the RBG. The data interpretation showed "*changes typically indicative of environmental stresses during the discharge event time period; however, some recent (2018) data suggest improvement*". Wood added that monitoring would be required to confirm the apparent improving trend.

As with the evaluation of fish, Wood used existing surface water data in the impact assessment. The data included nutrient concentrations prior to, during and after the discharge. The Wood evaluation showed a decline in water quality during the discharge and a "*dramatic improvement in water quality*" after the discharge ceased. Wood recommended monitoring to confirm this apparent improving trend.

Wood recommended sediment dredging based on the degraded ecological conditions in the creek. Wood did note that these conditions likely existed "*long before the beginning of the spill event in 2014*". Wood also reported that "*future accumulation and pollutant loading is likely since multiple CSOs and stormwater outfalls exist upstream*".

4.0 ENVIRONMENTAL DATA COLLECTED IN SUPPORT OF THE ERA

During the week of September 30, 2019, SLR collected thirteen (13) surface water and nine (9) sediment samples (including one duplicate) from Lower Chedoke Creek. A surface water sample was also collected upstream and downstream of the Main/King CSO at Red Hill Creek, a local urban stream. The surface water samples were submitted to the City of Hamilton laboratory for analysis, while the sediment samples were submitted to Bureau Veritas Laboratories (**BV** - previously known as Maxxam). Target analytes for surface water and sediment are summarized below.

Surface Water	Sediment
pH and hardness	Particle size
TOC and DOC	TOC and moisture
BOD	Bacteriology
TSS	Nutrients (total ammonia, TKN, total phosphorus)
Bacteriology	Metals including mercury
Nutrients (total phosphorus, dissolved ortho-phosphate, total ammonia, ammonia un-ionized, nitrate and nitrite)	BOD (porewater)
Metals including mercury	Hydrogen sulphide (porewater)
PAHs	PAHs

 Table 4-1:
 Summary of SLR 2019 Surface Water and Sediment Analytes

DOC - dissolved organic carbon

BOD – Biochemical oxygen demand (BOD)

PAH - Polycyclic aromatic hydrocarbons

TKN – Total Kjeldahl nitrogen (sum of organic nitrogen and ammonia/ammonium)

TSS - Total suspended solids

TOC - Total organic carbon

In addition, surface water pH, temperature, conductivity and dissolved oxygen were measured in the field.

Sediment sampling sites in Chedoke Creek were selected based on a review of the sediment chemistry data provided in the Wood Report. The design was intended to provide a gradient of chemical concentrations in the resultant data and provide reasonable spatial coverage of the study area. Though every effort was made to include a local sediment reference location in a comparable urban creek, i.e. Red Hill Creek, no location included sediments with grain size ranges suitable for chemical or toxicological analysis.

Grab sediment samples were collected by deploying and retrieving a Ponar dredge sampler. The sampling method was selected to be consistent with that used by Wood so that the sample results could be compared. Grab samples were collected side-by-side at each location until enough material was obtained for chemical characterization, toxicity testing, and BICS analysis.

Six (6) sediment samples obtained from the Study area were submitted to BV for toxicological characterization using the freshwater midge *Chironomus dilutus* and the freshwater amphipod *Hyalella azteca*.

Benthic invertebrate samples were collected, and field filtered at the same locations where sediments were collected. Samples from 10 locations (eight in the Study area, one in Chedoke Bay and one in Red Hill Creek), with three replicates at each location (for a total of 30 samples), were submitted to Entomogen for benthic invertebrate identification to the lowest practical level (species or genus). The sample in Red Hill Creek was used to provide qualitative information on benthic community assemblage in another urban stream with a similar watershed. Sediment could not be collected at this location due to the nature of the substrate (e.g., cobble), for this reason, this sample will not be used as a local reference for direct comparisons.

Laboratory analytical reports are provided in Appendix B.

5.0 PROBLEM FORMULATION

The problem formulation is considered the planning phase of the risk assessment. The steps include:

- Describing the study area;
- Screening the environmental data to identify COPCs;
- Evaluating the fate and transport of COPCs in environmental media;
- Identifying ecological receptors of concern; and
- Determining COPC and exposure pathway combinations considered to be complete.

The information herein will form the basis for developing the CSM, which will illustrate the applicable exposure pathways between sources of contamination and potential receptors evaluated in the ERA. Only complete exposure pathways are to be quantified in this ERA.

5.1 Chedoke Creek

Chedoke Creek watershed covers an area of 25.1 km², with the head waters located above the Niagara Escarpment. The watershed comprises six catchment basins, including, from the headwaters to the outlet: Chedoke West, Lang's Creek, Mid-Chedoke, Cliffview, Chedoke East, and Lower Chedoke Creek (HCA) (2008). Chedoke Creek flows eastward and aligns parallel with Highway 403, within its lower section, before outletting into the south shore of Cootes Paradise Marsh. Chedoke Creek combined with Ancaster Creek and Borer's Creek, two other creeks of similar size outletting in the marsh, account for 16% of the total watershed of the Cootes Paradise Marsh (Cootes Paradise Water Quality Group 2012).

The watershed is predominantly urbanized with more than 70% of impervious surface. HCA (2008) noted that "*much of the Chedoke Creek subwatershed has been altered over time as a result of intense urban development within the Hamilton area; subsequently the majority of the stream flow directly results from storm water input. Therefore, erosion, sedimentation and insufficient channel sizes occur at the outlet*". HCA (2008) inventories nineteen (19) stormwater outfalls/(CSOs) in Chedoke Creek, including four in Lower Chedoke Creek. Land use statistics provided by HCA (2008) are summarized in Table 5-1.

Land Use/Descriptor	Area (km²)
Area	25.1
Agricultural	0.001
Commercial	0.7
Industrial	0.6
Institutional	3.2
Open space	3.0
Residential	11.0
Transportation	5.5
Utility	1.1
Impervious area (%)	76

Table 5-1: Chedoke Creek Subwatershed Land Use Statistics (Source: HCA 2008)

Water quality in Chedoke Creek indicates contamination with urban sewage and cross connections, and urban runoff with high levels of nitrate, phosphorus and bacteria (*E. coli* and total coliform) commonly observed (Vander Hout et al 2015). Chedoke Creek is generally considered to have degraded habitat conditions for aquatic life (SNC Lavalin 2017).

The waters of Chedoke Creek are reported to "bypass the majority of Cootes Paradise as it enters the marsh near the outlet to the harbour with minimal impact to the centre of the marsh" (Theÿsmeÿer as cited in Cootes Paradise Water Quality Group 2012).

5.1.1 Study Area

As indicated in Section 1.3.1, the study area includes the lower section of Chedoke Creek extending parallel to Highway 403, between Glen Road and the Desjardin Recreational Trail Bridge at Princess Point (Drawing 1). Chedoke Bay at the mouth of Chedoke Creek is also described in this section as it is the outlet area of Chedoke Creek.

The area of study of Chedoke Creek within the Cootes Paradise Environmental Sensitive Area (ESA) is a linear small riverine warmwater system and is part of the broader Spencer Creek Watershed and Management Area (Bowlby et al. 2009, HCA 2008). The vegetation communities along the shorelines reflect this whereby there are no wetland embayment communities (Photograph 1, Appendix C). The riparian bank slopes are moderate along the length of Chedoke Creek study area and comprise modified (armour stone) sections (Photograph 2, Appendix C).). Near the large box culvert, steep concrete banks occur (Photograph 3, Appendix C).). Two bridges and a pedestrian trail also occur along the banks. The trail fragments the creek from adjacent Deciduous Forest (FOD) and Cultural Savana (CUS) of the study area. Treed vegetation along the banks are composed mostly of Manitoba Maple (Acer negundo), Willow Species (Salix), and Sugar Maple (Acer saccharum) intermixed with Poplar (Populus sp), Ironwood (Ostrya virginiana), Black Walnut (Juglans nigra), Elm (Ulmus sp) and Ash (Fraxinus sp) (Photograph 4, Appendix C). These remnant creek valley slopes of floodplain forests have experienced significant degradation. Cultural Meadow (CUM) (Photograph 5, Appendix C).) almost exclusively occurs along the eastern banks and includes a suite of tolerant broad-leaf vegetation typical of old fields and disturbed areas. Efforts in recent years have focused on restoring these shoreline areas (Photograph 6, Appendix C).) and areas of Chedoke Bay.

The aquatic community is a mixture of mostly open water (OAO), with pockets of Mixed Shallow Aquatic (SA). Small areas of Shallow Marsh (MAS) occur at the northern end near sampling Station C5/G6 and in smaller pockets especially near sampling station G3. Water levels and flows fluctuate during spring freshets and rain events. During low flow periods, exposed flats occur along the banks and near the Main/King CSO. Submergent and emergent vegetation observed throughout the study area includes those species tolerant of dryer and or prolonged flooding periods. Broad-leaved and Narrow-leaved Cattail (Typha latifolia / Typha angustifolia) and Reed Canary Grass (Phalaris arundinacea) are common along the riparian banks, with Broad-leaved Arrowhead (Sagittaria latifolia) and Water Smartweed (Persicaria amphibia) occurring infrequently in smaller cluster areas. Invasive flora such as Eurasian Manna Grass (Glyceria maxima) occurs with pockets of Common Reed (*Phragmites australis*). Generally, the submergent and floating leaved community is lacking, but restoration efforts in recent years by the RBG (Chedoke Bay Project and Stream Habitat Improvement program) has seen a reintroduction of some species. In the summer duckweed species, Canada Waterweed (Elodea canadensis), Water Smartweed (Polygonum amphibium) and Pond Weed (Stuckenia pectinata) occur in small backwater areas. Photographs 7 and 8 (Appendix C), provide examples of these SA areas. The

shallow vegetation communities provide refuge, foraging, spawning and nesting opportunities for a variety of fish and wildlife (Photographs 9 and 10, Appendix C).

5.2 Aquatic Receptors of Concern

As part of the problem formulation process, aquatic ecological receptors potentially exposed to COPCs are identified. The ecological receptors of potential concern (ROCs) in the study area include aquatic life (invertebrates, plants and fish) and aquatic dependent wildlife (e.g., mammals, waterfowl, amphibians and reptiles) that are confirmed within the study area, or potentially present in the study area based on the available habitat and therefore may potentially be exposed to COPCs through sediments or surface water. The aquatic life and wildlife receptor groups are briefly described in the sub-sections below. The ROCs selected in the ERA are presented in Section 5.2.4.

5.2.1 Aquatic Life

Aquatic life as defined in this report encompasses aquatic plants, aquatic invertebrates and fish. The confluence of Chedoke Creek with Cootes Paradise Marsh is unimpeded. The flora and fauna community in Cootes Paradise Marsh is diverse, owing to its position at the interface between Lake Ontario and the Spencer Creek watershed. However, the aquatic habitat communities of Chedoke Creek are limited due to the degraded habitat in the creek.

Aquatic plants largely consist of macrophytes, phytoplankton, and periphyton. Aquatic macrophyte is the general term applied to large vascular and non-vascular plants that grow in aquatic systems [including both submergent and emergent plants]. Phytoplankton are small non-vascular plants that are suspended in the water column and are comprised of several types of algae. Periphyton are typically larger non-vascular plants that grow on other aquatic plants, or on the bottom surface of the water body often encrusting large cobble and rocks.

Aquatic invertebrates include species that reside in the water column (zooplankton), in the sediment (infaunal) or on the sediment (epifaunal). Wood (2019) and SLR (2019) completed quantitative surveys of the aquatic invertebrates associated with the sediment in Chedoke Creek (i.e., benthic invertebrates). Species observed by Wood and SLR consisted mainly of stress tolerant organisms such as chironomids and oligochaetes. These species are typical of urban streams. Species observed in Chedoke Creek are provided as part of Entomogen Report in Appendix E.

Fish species in Chedoke Creek were documented in Bowlby et al (2009) and the Royal Botanical Gardens (RBG, 2001 thru 2018) and are summarized in Table 5-2. The fish assemblage in Chedoke Creek reflects a warm water system. Chedoke Creek is significantly groundwater fed; therefore in the summer it will draw in fish species that prefer cooler water from the habitats of Cootes Paradise (Tys Theijsmeijer personal communication 2018). In the reaches of Chedoke Creek (south of Main Street), Creek Chub (*Semotilus atromaculatus*), Brook Stickleback (*Culaea inconstans*) and Pumpkinseed (*Lepomis gibbosus*) have been observed. Movement of the warm water and cool water fish from Cootes Paradise is expected within the study area given unrestricted access at the confluence. For example, White Sucker (*Castostomus commersoni*), Brown Bullhead (*Ameiurus nebulosus*) Pumpkin Seed and Large Mouth Bass (*Micropterus salmoides*) dominate the fish community in Chedoke Creek. Foraging opportunities and habitat in the study area exists for other piscivores such as Northern Pike (*Esox Lucius*) and small community bait fish ((e.g., Emerald shiner (*Notropis atherinoides*), Spottail shiner (*Notropis hudsonius*)).

Black Bullhead Amolurus molas 2 X Black Crappie Pomoxis nigromaculatus 3 x Bluegill Lepomis macrochirus 3 x Bluegill Lepomis macrochirus 3 x Bowfin Arnia caha 3 x Bowfin Arnia caha 3 x Brook Silverside Labidesthes sicculus 3 B Brown Bullhead Arnieurus nebulosus 4 x Channel Catfish Ictalurus punctatus 4 x Common White Sucker C astostomus connersoni 4 x Greek Chub Semotilus atronaculatus 1 C Gizzard Shad Dorosoma cepedianum x x Fresh Water Drum Alpoindouts grunnens 4 x Golden Redhorse Moxostoma valenciennesi 1 Greater Redhorse Moxostoma valenciennesi 1 S x Johnny Darter Etheostoma nalenciennesi 1 x Lorgnoose Gar	Species Scientific		Observations and	Observed by RBG,
biack Cappie Attention of the state of t		Amalurua malaa	Abundances ³	2001 - 2018
Dieck Clappie PointAks Ingrolitatualus 3 X Bluegill Lepoims macrochirus x Burtonse Minnow Pimephales notatus 3 x Bowfin Amia calva 3 x Brook Silverside Labidesthes sicculus 3 x Brown Bullhead Ameiurus nebulosus 4 x Channel Caffish Ictalurus punctatus 4 x Common Shiner Luxilus comultus 2 Common White Sucker Castostomus commersoni 4 x Gizzard Shad Dorosoma cepedianum x x Emerald Shiner Natropia atherinoides 4 x Fresh Water Drum Aplodinotus grunniens 4 Golden Redhorse Moxostoma erythrurum 1 Green Sunfish Golden Redhorse Moxostoma angrum 3 x Johnny Darter Etheostoma nigrum 3 x 1 Green Sunfish Lepoing cyanellus 3 x Longnose Dace Rhicrichtrys cataractae 1 x 1 x Longnose Gar Lepisosteus osseus 2 Lognerch Pericha sp.	Black Builneau	Amenulus melas	2	X
Billughing Lepoints IntactOchilus 3 x Bowfin Amia calva 3 x Bowfin Amia calva 3 x Brook Silverside Labidesthes sicculus 3 x Brown Bulhead Ameiurus nebulosus 4 x Channel Caffish Ictalurus punctatus 4 x Common Shiner Luxilus comutus 2 Common While Sucker Castofmus commersoni Carek Chub Semotilus atromaculatus 1 x Emerald Shiner Notropis atherinoides Emerald Shiner Notorigo atherinoides 4 x Creek Chub 5 A Emerald Shiner Notorigo attennoides 4 x Emerald Shiner Alotofinotus grunniens 4 Golden Shiner Notorigonus crysoleucas 2 x Solden Redhorse Moxostoma valenciennesi 1 Grean Sunfish Leponis cyanellus 3 x Langnose Gar Lepisosteus osseus 2 Longnose Gar Lepisosteus osseus 2 Longnose Gar Lepisosteus osseus 2 Longonese Base		Pointoxis migroniaculatus	3	X
Bundindse Minitide Minite Minitide Minitide Minitide Minitide Minitide Minitide Minitide	Bluegili Bluetacco Minnous	Leponnis macrochinus	2	X
Bowini Athla Carva 3 X Brook Silverside Labidesthes siculus 3	Biuntnose Minnow	Pimephales notatus	3	X
Brook Silvérside Labdestnés Sicculus 3 Brown Bullhead Améuirus nebulosus 4 x Channel Catfish Ictalurus punctatus 4 x Common Shiner Luxilus comutus 2 x Common White Sucker Castostomus commersoni 4 x Creek Chub Semotilus atronaculatus 1 x Gizzard Shad Dorosoma cepedianum x x Emerald Shiner Notopis atherinoides 4 x Fresh Water Drum Aplodinotus grunniens 4 x Golden Shiner Notemigonus crysoleucas 2 x Golden Redhorse Moxostoma valenciennesi 1 c Greater Redhorse Moxostoma valenciennesi 1 x Largemouth Bass Micropterus sathoides 4 x Longnose Gar Lepiosteus osseus 2 x Logperch Percina sp. x x Northerm Pike Esox lucius 3 x River Chub Nocostoma antarcitae 1 x Logporch Percina	Bowtin	Amia calva	3	X
Brown Bullnead Amelurus nebulosus 4 x Channel Catfish Ictaturus punctatus 4 Common Shiner Luxilus cornutus 2 Common White Sucker Castostomus commersoni 4 x Creek Chub Semotilus atomaculatus 1	Brook Silverside	Labidestnes sicculus	3	
Channel CathishIctaturus punctatus4Common ShinerLuxilus commutss2Common White SuckerCastostomus commersoni4xCreek ChubSemotilus atromaculatus1Gizzard ShadDorosoma cepedianumxEmerald ShinerNotropis atherinoides4Fathead MinnowPimephales promelas3Fresh Water DrumAplodinotus grunniens4Golden ShinerNotemigonus crysoleucas2Koostoma erythrurum1Greater RedhorseMoxostoma erythrurumGreater RedhorseMoxostoma erythrurumGreater RedhorseMicopterus salmoidesLargemouth BassMicropterus salmoides4Longnose DaceRhinichthys cataractae1Longnose GarLepisosteus osseus2LogperchPercina sp.xNorthern PikeEsox lucius3Sand ShinerNotcomis micropogon1Rok BassAmbloghles rupestris3Sand ShinerNotropis ludibudus1Shorthead RedhorseMoxostoma anacolepidotum2Silver RedhorseMoxostoma anisurum1Shorthead RedhorseM	Brown Bullhead	Ameiurus nebulosus	4	Х
Common Shiner Luxilus comutus 2 Common White Sucker Castastomus commersoni 4 x Creek Chub Semotifus atromaculatus 1 1 Gizzard Shad Dorosoma cepedianum x x Emerald Shiner Notropis atherinoides 4 x Fathead Minnow Pimephales promelas 3 x Fresh Water Drum Aplodinotus grunniens 4 4 Golden Rethorse Moxostoma erythrurum 1 5 Greater Rethorse Moxostoma valenciennesi 1 1 Greater Rethorse Micropierus salmoides 4 x Johnny Darter Etheostoma nigrum 3 x Largemouth Bass Micropierus salmoides 4 x Longnose Gar Lepomis cyanellus 3 x Longnose Gar Lepolisoteus osseus 2 2 Logperch Percina sp. x x Nothern Pike Esox lucius 3 x River Chub Nocomis micropogon 1 1 River Chub Nocorim anicropo	Channel Cattish	Ictalurus punctatus	4	
Common White SuckerCastostomus commersoni4xCreek ChubSemotilus atromaculatus1Gizzard ShadDorosoma cepedianumxEmerald ShinerNotropis atherinoides4Rathead MinnowPimephales promelas3Fresh Water DrumApiodinotus grunniens4Golden ShinerNotropis atherinoides2Golden ShinerNotropis atherinoides2Golden ShinerNotemigonus crysoleucas2Golden ShinerMoxostoma erythrurum1Greater RedhorseMoxostoma valenciennesi1Johnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4Kuropterus salmoides4xLongnose GarLepisosteus osseus2LogperchPercina sp.xNorthern PikeEsox lucius3PumpkinseedLepomis gibbosus4River ChubNocomis micropogon1Roke BassAmbioplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Silver RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1S	Common Shiner	Luxilus cornutus	2	
Creek ChubSemotilus atromaculatus1Gizzard ShadDorosoma cepedianumxEmerald ShinerNotropis atherinoides4Fathead MinnowPimephales promelas3Fresh Water DrumAplodinotus grunniens4Golden ShinerNotemigonus crysoleucas2Kater BedhorseMoxostoma erythrurum1Greater RedhorseMoxostoma valenciennesi1Greater RedhorseMoxostoma valenciennesi1Greater RedhorseMicostoma valenciennesi1Largemouth BassMicropterus salmoides4Longnose DaceRhinichthy cataractae1Longnose GarLepisosteus osseus2LogperchPercina sp.xNorthern PikeEsox lucius3River ChubNocomis micropogon1Rock BassAmblopilies rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma anisurum1Silver RedhorseMoxostoma anisurum1Silver RedhorseMoxostoma anisurum1Silver RedhorseMoxostoma anisurum2Silver RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1 <td>Common White Sucker</td> <td>Castostomus commersoni</td> <td>4</td> <td>Х</td>	Common White Sucker	Castostomus commersoni	4	Х
Gizzard Shad Dorosoma cepedianum x Emerald Shiner Notropis atherinoides 4 x Fathead Minnow Pimephales promelas 3 x Fresh Water Drum Aplodinotus grunniens 4	Creek Chub	Semotilus atromaculatus	1	
Emerald ShinerNotropis atherinoides4xFathead MinnowPirnephales promelas3xFresh Water DrumAplodinotus grunniens4Golden ShinerNotemigonus crysoleucas2xGolden RedhorseMoxostoma erythrurum1Greater RedhorseMoxostoma valenciennesi1Greater RedhorseMoxostoma valenciennesi1Green SunfishLepomis cyanellus3xJohnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4xLongnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus2LogperchPercina sp.xPumpkinseedLepomis gibbosus4xRiver ChubNoconis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Silver RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Shorthead RedhorseMoxostoma anisurum1Tadpole MadtomNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWhite BassMorone chrysops1White PerchMorone chrysops1White PerchMorone americanax	Gizzard Shad	Dorosoma cepedianum		Х
Fathead MinnowPimephales promelas3xFresh Water DrumAplodinotus grunniens4Golden ShinerNotemigonus crysoleucas2xGolden RedhorseMoxostoma erythrurum1Greater RedhorseMoxostoma valenciennesi1Greater RedhorseMoxostoma valenciennesi1Greater RedhorseMoxostoma valenciennesi1Johnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4Longnose DaceRhinichthys cataractae1Longnose GarLepisosteus osseus2LogperchPercina sp.xNortherm PikeEsox lucius3PumpkinseedLepomis gibbosus4River ChubNocomis micropogon1Rock BassAmbioplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RednorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis ludibundus1Shorthead RednorseMoxostoma anisurum1Staded GarLepisosteus osseus1Spottail ShinerNotropis hudsonius4XSpotted GarLepisosteus osseus1Tadpole MadtomNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNotropis annularis1White BassMorone chrysops1White PerchMorone americanax <td>Emerald Shiner</td> <td>Notropis atherinoides</td> <td>4</td> <td>Х</td>	Emerald Shiner	Notropis atherinoides	4	Х
Fresh Water DrumAplodinotus grunniens4Golden ShinerNotemigonus crysoleucas2xGolden RedhorseMoxostoma erythrurum1Greater RedhorseMoxostoma valenciennesi1Green SunfishLepomis valenciennesi3xJohnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4xLongnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus2LogperchPercina sp.xxNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmblopilites rupestris3sSand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma anscribejidolum2Silver RedhorseMoxostoma anisrum1Smallmouth BassMicropterus dolonieu2Spottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWhite BassMoropterus dolonieu2xWhite BassMorone chrysops1White PerchMorone americana1White PerchMorone americanax	Fathead Minnow	Pimephales promelas	3	Х
Golden ShinerNotemigonus crysoleucas2xGolden RedhorseMoxostoma erythrurum1Greater RedhorseMoxostoma valenciennesi1Green SunfishLepomis cyanellus3xJohnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4xLongnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus22LogperchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRock BassAmbiopites rupestris3sSand ShinerNotropis ludibundus15Shorthead RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius2xWalleyeSander vitreus2xWalleyeSander vitreus2xWhite BassMorone chrysops11White CrappiePormoxis annularis11White PerchMorone americanax <td>Fresh Water Drum</td> <td>Aplodinotus grunniens</td> <td>4</td> <td></td>	Fresh Water Drum	Aplodinotus grunniens	4	
Golden RedhorseMoxostoma erythrurum1Greater RedhorseMoxostoma valenciennesi1Green SunfishLepomis cyanellus3Johnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4Longnose DaceRhinichthys cataractae1Longnose GarLepiosteus osseus2LogperchPercina sp.XNorthern PikeEsox lucius3PumpkinseedLepomis gibbosus4River ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xMicropterus dolomieu2xWalleyeSander vitreus2xWhite BassMorone chrysops11White BassMorone chrysops11White PerchMorone americana11	Golden Shiner	Notemigonus crysoleucas	2	Х
Greater RedhorseMoxostoma valenciennesi1Green SunfishLepomis cyanellus3xJohnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4xLongnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus22LogperchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1xRock BassAmbloplites rupestris3sSand ShinerNotropis ludibundus1sShorthead RedhorseMoxostoma anisurum1sSilver RedhorseMoxostoma anisurum1sSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus1sTadpole MadtomNotrus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1sWhite PerchMorone americana1s	Golden Redhorse	Moxostoma erythrurum	1	
Green SunfishLepomis cyanellus3xJohnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4xLongnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus2LogperchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Spottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xWalleyeSander vitreus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White PerchMorone americana1	Greater Redhorse	Moxostoma valenciennesi	1	
Johnny DarterEtheostoma nigrum3Largemouth BassMicropterus salmoides4xLongnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus22LogperchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma anisurum1Silver RedhorseMoxostoma anisurum1Spottail ShinerNotropis hudsonius4Spottail ShinerNotropis hudsonius4Shorthead RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4XSpottail ShinerNotropis hudsoniusMaleyeSander vitreus2XWalleyeSander vitreusYangelePomoxis annularis1White BassMorone chrysops1White PerchMorone americanaX	Green Sunfish	Lepomis cyanellus	3	Х
Largemouth BassMicropterus salmoides4xLongnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus2LogperchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon11Rock BassAmbloplites rupestris33Sand ShinerNotropis ludibundus11Shorthead RedhorseMoxostoma macrolepidotum25Silver RedhorseMoxostoma anisurum11Smallmouth BassMicropterus dolomieu25Spottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus11Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops11White PerchMorone americana11	Johnny Darter	Etheostoma nigrum	3	
Longnose DaceRhinichthys cataractae1xLongnose GarLepisosteus osseus2LogperchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmbloplites rupestris3sSand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White PerchMorone americana1	Largemouth Bass	Micropterus salmoides	4	Х
Longnose GarLepisosteus osseus2LogperchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White PerchMorone americana1White PerchMorone americanax	Longnose Dace	Rhinichthys cataractae	1	Х
LogberchPercina sp.xNorthern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius4xSpottail ShinerNotropis hudsonius2xWalleyeSander vitreus2xWalleyeSander vitreus2xWhite BassMorone chrysops1xWhite PerchMorone americanax	Longnose Gar	Lepisosteus osseus	2	
Northern PikeEsox lucius3xPumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White PerchMorone americana1	Logperch	Percina sp.		Х
PumpkinseedLepomis gibbosus4xRiver ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White PerchMorone americana1	Northern Pike	Esox lucius	3	Х
River ChubNocomis micropogon1Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4XSpotted GarLepisosteus osseusTadpole MadtomNoturus gyrinus2WalleyeSander vitreus2White BassMorone chrysops1White PerchMorone americanaX	Pumpkinseed	Lepomis aibbosus	4	Х
Rock BassAmbloplites rupestris3Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4XSpotted GarLepisosteus osseusTadpole MadtomNoturus gyrinus2XalleyeSander vitreus2White BassMorone chrysops1White PerchMorone americanaX	River Chub	Nocomis micropogon	1	
Sand ShinerNotropis ludibundus1Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4XSpotted GarLepisosteus osseusTadpole MadtomNoturus gyrinus2XXWalleyeSander vitreus2White BassMorone chrysops1White PerchMorone americanaX	Rock Bass	Ambloplites rupestris	3	
Shorthead RedhorseMoxostoma macrolepidotum2Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4XSpotted GarLepisosteus osseusTadpole MadtomNoturus gyrinus2WalleyeSander vitreus2White BassMorone chrysops1White PerchMorone americana1	Sand Shiner	Notropis Iudibundus	1	
Silver RedhorseMoxostoma anisurum1Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4Spotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2WalleyeSander vitreus2White BassMorone chrysops1White PerchMorone americana1	Shorthead Redhorse	Moxostoma macrolepidotum	2	
Smallmouth BassMicropterus dolomieu2Spottail ShinerNotropis hudsonius4xSpotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White PerchMorone americanax	Silver Redhorse	Moxostoma anisurum	1	
Spottall ShinerNotropis hudsonius4xSpottall ShinerLepisosteus osseus1Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White CrappiePomoxis annularis1White PerchMorone americanax	Smallmouth Bass	Micropterus dolomieu	2	
Spotted GarLepisosteus osseus1Tadpole MadtomNoturus gyrinus2WalleyeSander vitreus2White BassMorone chrysops1White CrappiePomoxis annularis1White PerchMorone americanax	Spottail Shiner	Notropis hudsonius	4	x
Tadpole MadtomNoturus gyrinus2xWalleyeSander vitreus2xWhite BassMorone chrysops1White CrappiePomoxis annularis1White PerchMorone americanax	Spotted Gar	L'enisosteus osseus	1	X
Notatis gynnas2WalleyeSander vitreusWhite BassMorone chrysopsWhite CrappiePomoxis annularisWhite PerchMorone americanaX	Tadpole Madtom	Noturus avrinus	2	Y
Wate yearSander vinces2XWhite BassMorone chrysops1White CrappiePomoxis annularis1White PerchMorone americanaX	Walleve	Sander vitreus	2	x
White Dass Morone cirrysops 1 White Crappie Pomoxis annularis 1 White Perch Morone americana x	White Bass	Morone chrysons	1	^
White Orappie Fornoxis annolaris 1 White Perch Morone americana X	White Crannie	Domovis annularis	1	
	White Derch	Morono amoricana	1	v
Vallow Parch Dorca flavoscons A	Vellow Derch	Dorea flavoscons	Λ	Å V

Table 5-2:	Native Fish S	pecies Known t	o occur in	Chedoke Creek
			000001111	

** Invaders (e.g. Goldfish, Carp, Rudd, Round Goby) occur but are excluded

⁵ Warm and Cool Recorded fish community observed in seining and electrofishing fish surveys since 1970. Data from the watersheds were obtained from over 600 unpublished studies and were compiled into databases by the Hamilton Conservation Authority and Conservation Halton. Data from electrofishing, and entrapment surveys by DFO, RBG, and OMNR. Abundance Levels are based on quartiles with "1" as the lowest, and "4" as the highest relative abundance as described by Bowlby et AI, 2009.

5.2.2 Aquatic Dependent Wildlife

Information on aquatic dependent wildlife potentially using the study area was gathered from the following sources:

- Nature Counts Natural Areas Inventory (NAI) (https://conservationhamilton.ca/natural-areas-inventory-nai/);
- Information from wildlife surveys completed in the Chedoke Watershed / Cootes Paradise by various organizations and/or consultants (Royal Ontario Botanical Gardens, Research and monitoring Cootes Paradise);
- Hamilton Naturalist Club Bird Counts;
- EBird, 2019 and Ontario Freshwater Fishes Life History Database;
- Environmental Review of Hendrie Valley. RBG Report No. 2019-6;
- Hamilton Harbour and Watershed Fisheries Management Plan (2009);
- City of Hamilton B-Line Light Rapid Transit Draft Environmental Project Report, Appendix B.1 Natural Heritage Features, Prepared by SNC Lavalin (2010);
- Cootes Paradise Heritage Lands Management Plan, Inventory, Issues and Opportunities, May 2018;
- Hamilton Conservation Authority Chedoke Creek Subwatershed Stewardship Action Plan (2008);
- Chedoke Creek Watershed Fact Sheet (2018);
- Cootes Paradise Nature Sanctuary Lower Chedoke Creek Area Water Quality & Fisheries (RBG, 2001);
- Project Paradise (2017)
- Observations through field evaluations by SLR biologists during the September 30, 2019 field program.

In addition, the study area is near Cootes Paradise a Nationally Important Reptile and Amphibian Area (**IMPARA**) and known Nationally Important Bird Area (**IBA**) for migratory waterfowl staging and feeding⁶.

SLR used the above information to compile a list of aquatic dependent wildlife ROCs relevant to the project study area (e.g., potentially exposed to sediment and surface water COPCs). These include birds, amphibians and mammals that potentially use the site during all or part of the year. Aquatic dependent groups and representative species are provided in Appendix C.

5.2.3 Species of Concern

Species that are listed either provincially under the Endangered Species Act, 2007 (Ontario Regulation 230/08) or federally by the Committee on the Status of Endangered Wildlife In Canada (**COSEWIC**) under the Species at Risk Act (s.c. 2002 c.29)⁷ as special concern, threatened, or

⁶ Cootes Paradise has the highest biodiversity of plants per hectare in Canada and the highest biodiversity of plants in the Hamilton and Halton regions with 877 species (https://www.hamilton.ca/city-initiatives/our-harbour/cootes-paradise-marsh).

endangered collectively for the purpose of this assessment are referred to as Species at Risk. As per the Procedures for the Use of Risk Assessment under Part XV.1 of the Environmental Protection Act (MECP 2017) threatened and endangered species were considered for inclusion as valued ecosystem components [**VECs**].

Species at risk (**SAR**) were included as receptors of concern to be evaluated in the ERA if they were confirmed to be present within the study area or may occur based on habitat affinities. There are approximately 35 identified SAR species within the Cootes Paradise area, including several locally rare birds within the Hamilton Region. Not all these species are relevant, "aquatic dependent species". For this reason, the species list was refined to include those with a "riverine" habitat type – for example waterfowl, herons, gulls, terns, and sandpipers.

No SAR were observed during the 2019 sampling program conducted by SLR⁸.

The SAR review identified one mussel, one reptile and three birds listed as either threatened or endangered in the area of Chedoke Creek. A summary of each SAR and its potential presence within the study area is included in Table 5-3, below.

Species	Provincial Designation	General Habitat Affinities	Potentially Present in Study Area?
Lilliput (Toxolasma parvum)	Threatened	Variety of habitats, from small to large rivers to wetlands and the shallows of lakes, ponds and reservoirs. It prefers to burrow in soft substrates (river and lake bottoms) made of mud, sand, silt or fine gravel (COSEWIC, 2013)	Yes – Recorded in Cootes Paradise, Chedoke Bay Hendrie Valley (RBG, 2019) DFO SAR Mapping, 2019
Blanding's Turtle <i>(Emydoidea blandingii)</i>	Threatened *General Habitat Defined	Primarily aquatic species; prefers shallow water rich in nutrients, organic soil and rich vegetation. Requires terrestrial basking and nesting sites and can nest in dry conifer forests up to 410 m from a body of water.	Yes – Recorded in Cootes Paradise, Chedoke Bay Hendrie Valley (RBG, 2019)
American White Pelican (Pelecanus erythrorhynchos)	Threatened	The White Pelican is a habitat generalist. Breeding occur on islands and shallow wetlands and rely on diet of mainly eat fish and occasionally crustaceans	Yes – Recorded in Cootes Paradise, Chedoke Bay Hendrie Valley (RBG, 2019)
Golden Eagle (Aquila chrysaetos)	Endangered	Golden Eagles breeding habitats typically include Northern Ontario but will migrate, overwinter and have been recently documented nesting in parts of Southern Ontario. They use variety of habitat throughout their range and are often observed foraging in managed wetlands and reservoirs for fish, reptiles and birds.	Yes – Recorded in Cootes Paradise, Chedoke Bay Hendrie Valley (RBG, 2019)
Red Knot <i>rufa</i> subspecies (Calidris canutus rufa)	Endangered	Only occurs in Ontario during migration, where the Red Knot <i>rufa</i> subspecies utilizes open and exposed mud flats, beach shoreline for staging where their primary diet consists of mollusks and crustaceans, other invertebrates.	Yes – Recorded in Cootes Paradise, Chedoke Bay Hendrie Valley (RBG, 2019)

 Table 5-3:
 Summary of Species at Risk

⁸ SLR recognizes work was conducted in late September early October. Work was not to complete targeted flora or fauna inventories, observations are incidental.

Blanding's Turtle was identified as potentially occurring within the study area due to confirmed presence within Cootes Paradise and marsh habitats of Hendrie Valley. Chedoke Creek lacks the typical wetland marsh communities preferred by this species. Therefore, occurrences are expected to be limited to vagrant individuals. Blanding's Turtle is unlikely to spend significant time within the study area.

Two endangered bird species were identified as potentially present within the study area (Golden Eagle and Red Knot *Rufa* Subspecies). The Golden Eagle prefers to forage in the larger open water habitats of Cootes Paradise and would be unlikely to spend significant time within the study area. Red Knot may utilize exposed shallow flats during low flow; however, the fluctuating water levels of Chedoke Creek are considered a limiting factor. The marsh communities and open areas of Cootes Paradise would be preferred. Occurrences are expected to be limited to vagrant individuals.

The Lilliput mussel was identified as potentially present within the study area. Based on the recent sightings of this invertebrate at the outlet of Chedoke Creek (Morris et al., 2015) and the lack of survey sites within Chedoke itself, this SAR species has been retained for further assessment.

In addition, several SAR fish and birds occur in the broader area, but no suitable habitat is found in the study site (e.g. extensive marshlands are not present). Other species have not been observed in the study area for more than 40 years and are considered historical (e.g. Lake Sturgeon, American Eel, Least Bittern, King Rail). These species were not retained as SAR species in this ERA.

5.2.4 Summary of Potential Ecological Receptors

Receptor refinement is conducted as it is not practical or necessary to characterize risks for all species belonging to the general receptor groups described above. Risk assessments must limit their focus to a smaller list of specific organisms, or receptors of concern, that might be present in the study area and come into contact with the COPCs. An ROC is an individual species chosen to serve as a surrogate for other species occupying a similar position in the food web; thus, results of the risk characterization for the surrogate receptor can be used to make inferences about risk to other species occupying a similar level in the food web. Surrogate ecological receptors were selected according to the following main criteria (CCME 1997; Environment Canada 2012):

- Species likely to be most exposed to contaminants;
- Species indigenous to the area;
- Species representative of the foraging guild or serve as a food item for higher trophic level species;
- Species recognized by the federal or territorial government as threatened, endangered, or of special concern;
- Species recognized as good indicators or surrogate species (i.e., representative of other similar organisms of a general type and feeding niche);
- Sedentary species or species with a small home range; and
- Species of aesthetic value or recreational value to the local human population.

The receptor groups and surrogate ecological ROCs selected for the problem formulation are provided in Table 5-4. Only the receptor group and/or surrogate receptors for which complete, and potentially significant exposure pathways were identified were carried forward in the risk assessment (Section 5.6).

Receptor Group	Туре	Surrogate Receptor	Primary Diet	Rationale for Selection or Exclusion of Receptor Group and/or Surrogate Receptor
Aquatic Plants	Submergent and Emergent	Community Level	-	Included – Directly exposed to sediment and/or surface water COPCs; important habitat item for fish, food items for herbivorous birds and mammals.
Aquatic Invertebrates	Benthic	Community and individual level (lilliput)	-	Included – Benthic invertebrates are directly exposed to sediment and/or surface water COPCs. Aquatic invertebrates are an important food item for fish, invertivorous birds and mammals. SAR (lilliput) may be present in the study area.
Fish	Herbivorous	None Selected.	Aquatic Plants	Not included – No herbivorous fish identified.
	Benthivorous, Carnivorous, & Omnivorous	White Sucker	Benthic forager; insect larvae, aquatic vegetation / macrophytes (invertivore/ detritivore)	Included – Exposed to surface water and/or sediment COPCs; eats mainly benthic macroinvertebrates with some vegetation. Consumed by larger fish, piscivorous birds, or wildlife. Widely distributed and common in both Chedoke Creek and Cootes Paradise. Open substratum and Litho-pelagophils spawners.
	Piscivorous	Northern Pike	Carnivore	Included – Exposed to surface water and/or sediment COPCs; consume smaller fish and are especially vulnerable to bioaccumulative COPCs. Fish in this group may be consumed by wildlife or piscivorous birds. Open substratum and phytophils spawners. Targeted by recreational and sustenance fishing. Known to occur in Cootes Paradise with unimpeded movement to habitats of Chedoke Creek which are suitable foraging, spawning and rearing of habitats young.
Amphibians	Herpetofauna	Leopard Frog	Terrestrial and aquatic invertebrates, including snails, small crayfish and a variety of insects	Included – Exposed to surface water and/or sediment COPCs; consume aquatic invertebrates. May hibernate in sediment of Chedoke Creek

Receptor Group	Туре	Surrogate Receptor	Primary Diet	Rationale for Selection or Exclusion of Receptor Group and/or Surrogate Receptor
Pontilos	Herpetofauna Snakes	Northern Watersnake	Fish and amphibians	Included – Exposed to surface water and/or sediment COPCs; consume smaller fish, amphibians.
Replies	Herpetofauna Turtles	Snapping Turtle	Omnivorous aquatic invertebrates and macrophytes	Included – Exposed to surface water and/or and sediment COPCs; consume smaller fish, amphibians.
Herbivorous Mallard Aquatic macroph Dabbling Ducks		Aquatic macrophytes	Included – Exposed to surface water and/or sediment COPCs; consume leaves, seeds, roots of many types of pond weeds, aquatic vegetation, tubers and rhizomes.	
Omn Dabblin Carn Pisci	Omnivorous Dabbling Ducks	American Black Duck	Omnivorous aquatic invertebrates and plants	Included – Exposed to surface water and/or sediment COPCs; consume aquatic macrophytes (e.g. smartweeds, pondweeds, algae and duckweeds) as well as aquatic insects, mollusks and crustaceans.
	Carnivorous	Great Blue Heron	Small fish crustaceans, mollusks, aquatic insects, leeches, and frogs	Included – Exposed to surface water and/or sediment COPCs; consume mostly fish, invertebrates, mollusks, crustaceans and amphibians.
	Piscivorous	Osprey	Large fish	Included – Exposed to surface water COPCs only; consume larger fish. SAR (Golden eagle and White Pelican) identified in the area.
Mammals	Herbivorous	Muskrat	Tubers, leaves, aquatic macrophytes	Included – Exposed to surface water and/or sediment COPCs; consume aquatic macrophytes (e.g. tubers)
-	Carnivorous/ Omnivorous	None	NA	Not Included – none identified.

5.3 Data Considered in the ERA

This section describes the datasets used in the ERA. The datasets represent current conditions in the study area (i.e., after the Main/King CSO discharge). All sample locations are illustrated in Drawing 2.

5.3.1 Sediment Chemistry Dataset

All sediment data collected in the study area by Wood in 2018 and by SLR in October 2019 were used to select sediment COPCs.

Two depth-specific sediment datasets were compiled for assessing exposure of aquatic receptors to COPCs: a shallow sediment dataset (collected entirely within the top 15 cm of sediment), and a deeper sediment dataset (collected at depths greater than 15 cm). The shallow dataset will be the focus of this ERA following MECP guidance (MOE 2008) specifying that surficial sediments (to about 10 cm depth) are where most sediment-dwelling organisms live and should therefore be the initial focus of the sediment assessment. The MOE (2008) guidance adds that deeper sediments should also be considered in the assessment as they may be relevant for evaluating

potential future risks to aquatic receptors (i.e., risks that could exist in the future if subsurface sediments become exposed). Impacts to deeper sediment (15 cm+) are discussed in the uncertainty section (Section 9.0).

As indicated in Section 4.0, a suitable sediment reference location could not be sampled by SLR in 2019. Similarly, a reference location was not provided in Wood (2019).

The ERA sediment datasets used for COPC screening are presented in Appendix D.

The sediment samples obtained by RBG in 2013 and 2006 were used to evaluate trends in sediment quality (Section 6.1). Historical sediment samples were not used to select COPCs.

5.3.2 Surface Water Chemistry Dataset

The surface water samples (7 samples plus one duplicate) obtained by SLR from Chedoke Creek during the week of September 30, 2019 were included in the surface water dataset.

Historical water quality data collected pre- and post- discharge was reviewed by SLR; however, only data representing current water quality conditions was included in the surface water dataset for the assessment of current risks to aquatic life.

In addition, SLR obtained two surface water samples from Red Hill Creek to gather information from an urban creek located in a similar watershed. Historical water quality data provided by the City from Red Hill Creek since August 2018 was also included to compile a "reference" dataset for surface water quality.

5.3.3 Porewater Chemistry Dataset

Porewater extracted from the sediment samples collected in 2019 was analysed for hydrogen sulphide and biochemical oxygen demand (BOD) to support the interpretation of toxicity tests and effects.

5.3.4 Sediment Toxicity Dataset

Six sediment samples were obtained from the study area and submitted to BV for toxicity testing. The following freshwater sediment toxicity tests were conducted on the samples:

- 10-day survival and growth test with the freshwater midge, *Chironomus dilutus*
- 14-day survival and growth test with the freshwater amphipod, Hyalella Azteca

The BV report is provided in Appendix E.

5.3.5 Benthic Invertebrate Community Structure Dataset

Sediment samples for BICS analysis were collected at seven locations by Wood in 2018, and at eight location by SLR in 2019. Additionally, a BICS sample was taken immediately downstream from the study area in Chedoke Bay and one sample was collected from Red Hill Creek. The locations of the 2019 BICS samples are illustrated on Drawing 3 and the 2019 statistical analyses report by Entomogen is provided in Appendix E. Details on the BICS samples collected by Wood are available in Wood (2019).

5.3.6 Dataset Use

The surface water and sediment datasets were used to identify COPCs for the protection of aquatic life (e.g., aquatic plants, invertebrates and fish as well as amphibians) and aquatic-dependent wildlife consuming food items obtained from the study area. This was achieved through a bioaccumulation assessment as described in Section 5.4.3.

Surface water was also screened for the protection of wildlife consuming water as drinking water.

5.4 Contaminants of Potential Concern

COPCs are substances that occur at elevated concentrations in environmental media, typically because of anthropogenic activity. More specifically, COPCs are the chemicals that occur at concentrations high enough to potentially cause adverse effects to receptors. Substances deemed COPCs are further evaluated in the risk assessment process, whereas contaminants with a low probability of posing risks to receptors are not identified as COPCs and are not evaluated further Typical components of sewage discharge include nutrients and bacteria, with relatively small amounts of metals and polycyclic aromatic hydrocarbons (PAHs). However, because this is a CSO, metals and PAHs were also analyzed because these are components of CSO discharge.

5.4.1 COPC Screening Method

COPCs were selected by comparing maximum concentrations to screening benchmarks from the sources listed in Section 2.0. Media-specific screening methodologies are described in the sections below.

5.4.1.1 Sediment

For sediment, a parameter was retained as a COPC if the maximum concentration exceeded the applicable guideline, standard or background concentration described in Section 2.1. Where SQG or sediment background values were not available for a parameter, the MECP Table 1 Background Standards for Soil (MOE 2011a) were used as screening benchmarks. If no guideline was available for a parameter, it was retained as an uncertain COPC.

5.4.1.2 Surface water

Aquatic Life

For screening of surface water for aquatic life, a two-stage screening process was implemented. A parameter was identified as a preliminary COPC if the maximum concentration exceeded the PWQO or CCME WQG (where the PWQO was unavailable). To ensure the risk assessment focuses on evaluating the COPCs that represent potential risk drivers, a COPC refinement process was implemented for surface water preliminary COPCs. The COPC refinement process was intended to support the development of a list of final COPCs for evaluation in the risk assessment and consisted of comparing the maximum concentration to the MECP APVs.

The PWQOs are "numerical and narrative ambient surface water quality criteria that represent a desirable level of water quality that the Ministry strives to maintain in the surface waters of the *Province*" (MOE 2011b). Chedoke Creek is an urban watercourse which collects a combination of storm water runoff and discharges from the City's combined sewer overflow tanks during large

storm events. It is also located adjacent to other potential sources of impacts such as a major highway (highway 403) and a former landfill (City of Hamilton Website, 2019). According to the City of Hamilton, warning signs advising against recreational use of the creek (including swimming, wading, paddling, fishing) due to historically degraded water quality pre-date the Main/King CSO discharge, indicating that degraded conditions have been present historically within the creek. Based on these observations, the APVs were selected for final screening of water quality COPCs as more appropriate values representative of an urban watercourse environment. APVs were developed by the MECP to support the derivation of the Site Condition Standards (MOE 2011a) for contaminated sites. MOE 2011b indicates that while PWQOs are conservative values that are protective of all forms of aquatic life and aspects of the aquatic life cycle during indefinite exposure to the water, the APVs are "designed to provide a scientifically defensible and reasonably conservative level of protection for most aquatic organisms".

Based on the urban environment of the stream, the APVs were considered appropriate for final screening of surface water COPCs where available. Where neither an APV or PWQO was available for a specific parameter, water quality guidelines from other jurisdictions were reviewed and selected for final screening as listed in Section 2.2. Guidelines from other jurisdictions were selected if methods and protection goals aligned with MECP approaches. If no guideline was available for a parameter, it was retained as an uncertain COPC.

<u>Wildlife</u>

For screening of wildlife consuming surface water as drinking water, a parameter was retained as a COPC if the maximum concentration exceeded the applicable guideline or standard described in Section 2.2. Since no provincial water quality guidelines are available for this exposure pathway, the CCME WQG for protection of livestock was selected as the primary screening benchmark. Where a CCME guideline was unavailable, values protecting wildlife and livestock from other jurisdictions were selected (as listed in Section 2.2). If no wildlife or livestock-specific values were available, the MECP GW1 values protective of consumption of water as drinking water (MOE 2011b) were applied conservatively as screening values.

If no guideline was available for a parameter, it was retained as an uncertain COPC.

5.4.2 COPC Screening Results

The final COPC screening results are presented in the sections below. Tables 1 to 3, after the text, provide details on the parameters screened for sediment and surface water datasets, including the number of samples, the number of detectable concentrations, the maximum concentrations and the second highest concentrations. Applicable screening benchmarks along with the rationale for retaining or dismissing parameters as COPCs are also presented.

5.4.2.1 Final Sediment COPCs

The final COPC screening results for sediment are presented in the table below.

COPC Group	Sediment (0-0.15)
Metals	Arsenic, cadmium, chromium, copper, lead, manganese, mercury and zinc
PAHs	Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs
Nutrients	Total Kjeldahl nitrogen (TKN) and total phosphorus

Table 5-5: Sediment COPC Summary

5.4.2.2 Final Surface Water COPCs

Preliminary and final surface water COPCs are summarized in the table below.

Receptor Group	COPC Group	Preliminary COPCs	Final COPCs
	Metals	Aluminum, boron, iron (total), zinc	Aluminum and iron (total)
Aquatic Life	PAHs	None	None
	Nutrients	Nitrite (As N) and total phosphorus	Nitrite (As N) and total phosphorus
Wildlife	Metals	-*	
	PAHs	-*	Nono
	Nutrients	-*	NONE
	Bacteria	_*	

 Table 5-6:
 Surface Water COPC Summary

*Preliminary screening not completed for wildlife screening (see Section 5.4.1.2).

Total boron exceeded the PWQO (200 μ g/L) at one location (206; C4-West). Dissolved boron exceeded the PWQO at three locations (maximum concentration: 211 μ g/L; C3-Centre, C3-West and C4-West). The PWQO for boron is an interim objective set for emergency purposes based on the best information readily available and was not subject to peer review and formal publication (MOE 1994). All total and dissolved boron concentrations are less than the CCME long-term WQG for the protection of aquatic life of 1500 μ g/L⁹. Boron was therefore not retained as a final COPC in surface water.

5.4.2.3 Uncertain Sediment and Surface Water COPCs

Uncertain COPCs are summarized in Table 5-7 and discussed in the Uncertainty Analysis (Section 9.1.2.2).

⁹ The CCME WQG for boron was developed in 2009 following CCME protocol (CCME 2009).

	Sadiment (0.0.45)	Surface Water		
COPC Group	COPC Group Sediment (0-0.15)		Wildlife	
Metals	Aluminum, antimony, silver	None	Iron (total), manganese	
PAHs	1-methylnaphthalene 10	None	None	
Nutrients ¹¹	Ammonia and ammonium (as N) ammonia as N nitrogen (total)	Kjeldahl nitrogen total silicon	Kjeldahl nitrogen total silicon	
Bacteria	E. coli; fecal coliform	E. coli	-	

Table 5-7: Uncertain COPC Summary

5.4.2.4 Innocuous Substances

COPC screening benchmarks or regional background concentrations were not available for bismuth, calcium, lithium, magnesium, potassium, strontium, tungsten and zirconium. Although commonly included in routine chemical analysis, government agencies such as the MECP do not develop regulatory criteria for these naturally occurring innocuous parameters (HC 2010c). As many of these parameters are considered essential nutrients and/or occur naturally in southern Ontario, they were not identified as uncertain COPCs.

5.4.3 Bioaccumulation Screening

In addition to identifying COPCs that are present above relevant sediment screening benchmarks for ecological life, MOE 2008 recommends *"identifying substances that could biomagnify and affect the health of biological communities at higher trophic levels*". Since available SQGs do not evaluate biomagnification, initial (conservative) decisions regarding biomagnification potential are based on the presence or absence of quantifiable amounts of substances that may biomagnify (MOE 2008).

Biomagnifying substances were identified by reviewing substances listed in MOE 2008, as well as those listed in the United Nations Environmental Programme (UNEP) Stockholm Convention on Persistent Organic Pollutants (POPs). In addition, substances that bioaccumulative in sediment and water were also identified conservatively through review of the following documents:

- (UNEP) Stockholm Convention on Persistent Organic Pollutants (POPs);
- Texas Commission on Environmental Quality (TCEQ). 2018. Conducting Ecological Risk Assessments at Remediation Sites in Texas. Draft August 2018; and
- Contaminated Sites Approved Professionals Society (CSAP). 2015. Bioaccumulation Research Project.

¹⁰ No guidelines were available for benzo(b)fluoranthene and benzo(b+j)fluoranthene; however these were included in the calculation for total PAHs and therefore were not identified as uncertain COPCs.

¹¹ No guidelines were available for organic phosphorus or orthophosphate (PO₄-P) however these parameters were assessed as total Phosphorus and therefore were not identified as uncertain COPCs (CCME 2016).

A summary of bioaccumulating and biomagnifying COPCs in the aquatic environment based on the review of the above-noted documents is presented in the table below. PAH parameters in sediment were not included in the summary table and are discussed further in the following section.

	Bioaccumulative Media		_	
Preliminary COPC	Sediment	Surface Water	Bioaccumulation Potential	Biomagnifying?
Aluminum	-	-	Not considered bioaccumulative	Not biomagnifying
Arsenic	Х	-	Bioaccumulative (sediment)	Not biomagnifying
Boron	-	-	Not considered bioaccumulative	Not biomagnifying
Cadmium	Х	-	Bioaccumulative (sediment)	Not biomagnifying
Chromium (III+VI)	-	-	Not considered bioaccumulative (sediment or water)	Not biomagnifying
Copper	Х	-	Bioaccumulative (sediment)	Not biomagnifying
Iron (total)	-	-	Not considered bioaccumulative	Not biomagnifying
Lead	-	-	Not considered bioaccumulative (sediment or water)	Not biomagnifying
Manganese	-	-	Not considered bioaccumulative	Not biomagnifying
Mercury	Х	х	Bioaccumulative (sediment and water)	Yes; as methylmercury (CCME 2000)
Zinc	Х	-	Bioaccumulative (sediment)	Not biomagnifying
Nutrients (Ammonia, Nitrite (As N), phosphorus TKN)	-	-	Not considered bioaccumulative ¹²	Not biomagnifying
Bacteria (Fecal Coliform, E.coli)	NA	NA	NA	NA

Table 5-8: Bioaccumulation Potential of Preliminary COPCs

NA - not applicable to COPC group

As indicated above, arsenic, cadmium, copper, mercury and zinc are potentially bioaccumulative sediment parameters, however arsenic and mercury were not retained as bioaccumulative COPCs in this ERA based on the following:

• Based on a review of arsenic distribution in the study area, the bioaccumulation potential of arsenic is considered low. Arsenic was only measured above the PSQG LEL

¹² Nutrients such as nitrate and ammonia are naturally occurring compounds and key intermediates in the nitrogen cycle. It is continually recycled in the environment; therefore, bioaccumulation does not occur (ATSDR, 2004).

(0.4 mg/kg) at one sediment sample location (12 mg/kg at C-5 East) and was below the PWQO at all sample locations in surface water.

 Mercury was not retained as a potentially bioaccumulating and biomagnifying COPC for this ERA. Based on a review of mercury distribution in the study area, the bioaccumulating and biomagnifying potentials of mercury is considered to me low. Mercury was only measured above the PSQG LEL (0.2 mg/kg) at one sediment sample location (0.255 mg/kg at C-3 West) and was not detected in surface water.

5.4.3.1 Bioaccumulation and Biomagnification of PAHs

PAHs were also identified as COPCs but were not included in the bioaccumulation table above. PAHs may bioconcentrate in aquatic organisms and animals; however extensive metabolism of these compounds by high-trophic level consumers has been demonstrated, and food chain uptake does not appear to be a major source of exposure to PAHs for aquatic animals (Agency for Toxic Substances and Disease Registry - **ATSDR**, 1995).

A study by Bleeker and Verbruggen (2009) re-evaluated bioaccumulation in aquatic organisms and indicated that bioaccumulation of PAHs in aquatic organisms varies between low molecular weight (LMW) PAHs (e.g., acenaphthylene, acenaphthene, anthracene, fluorene, 2—methylnaphthalene, naphthalene and phenanthrene) and high molecular weight (HMW) PAHs (e.g., benz[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene and pyrene). Phenanthrene and fluoranthene were not considered to be bioaccumulative in fish. HMW PAHs (four rings or more) were all found to potentially bioaccumulate in organisms lower in the food chain, but not in fish. LMW PAHs (2-3 rings) were noted to generally not bioaccumulate in fish or invertebrates. It has also been established that most vertebrates readily metabolize and excrete PAHs (Hylland, 2006). Tissue concentrations of PAHs do not increase (biomagnify) from the lowest to highest levels of food chains (Hylland, 2006). Therefore, direct effects of PAHs on invertebrates will be evaluated as part of this ERA but PAHs were not carried forward as bioaccumulating or biomagnifying COPCs for higher trophic levels.

5.5 Exposure Pathway Identification

Exposure pathways describe the movement of contaminants from sources such as sediment, to potential ecological receptors identified in Section 5.2. An exposure pathway is typically defined by the following four components:

- a source and mechanism of constituent release to the environment
- an environmental medium (e.g., sediment) for the released constituent(s)
- potential contact (exposure point) between a receptor and the affected environmental medium
- an exposure pathway (e.g., ingestion, dermal contact) at the exposure point.

The potential exposure pathways and the identified groups of ecological receptors of concern potentially exposed include:

- uptake of COPCs in sediment by aquatic plants
- direct contact with COPCs in sediment by benthic invertebrates
- direct contact with COPCs in sediment by benthic fish
- direct contact/dermal uptake of sediment and surface water COPCs by amphibians
- uptake of COPCs in surface water by aquatic plants
- direct contact with COPCs in surface water by aquatic invertebrates (e.g., zooplankton)

- direct contact with COPCs in surface water through skin or gills of fish
- ingestion of COPCs in sediment and prey items by benthic invertebrates
- ingestion of COPCs in food items and incidental ingestion of sediment by fish
- direct contact with, and incidental ingestion, of COPCs in sediment during feeding by aquatic-dependent wildlife
- ingestion of COPCs in surface water as drinking water for wildlife
- ingestion of bioaccumulating and/or biomagnifying COPCs in aquatic biota by aquatic dependent wildlife.

As per risk assessment guidance, only complete and potentially significant exposure pathways are carried forward for quantitative evaluation. Complete exposure pathways require a receptor to contact an environmental medium where COPCs have been identified. Complete exposure pathways have varying levels of importance; consequently, the pathways that reflect the highest exposure of a ROC to a specific COPC or group of COPCs are generally identified.

The significance of the exposure pathways listed above have been evaluated based on professional judgement, and have been categorized as follows:

- Exposure pathway is complete and potentially significant. Quantitative assessment of risk is recommended;
- Exposure pathway is complete but insignificant (no COPCs or limited exposure). Quantitative assessment of risk is not recommended; and
- Exposure pathway is incomplete. Quantitative assessment of risk is not recommended.

The following sections identify complete and potentially significant exposure pathways warranting further evaluation through quantitative ERA, as well as those exposure pathways that are incomplete or insignificant and are not considered to pose unacceptable risk.

5.5.1 Exposure to Sediment

Metals, PAHs and nutrients have been retained as the final groups of COPCs for the protection of aquatic life (benthic invertebrates, aquatic plants and fish). Complete and potentially significant exposure pathways for benthic invertebrates include direct contact with contaminated sediments, and ingestion of contaminated sediment (e.g., polychaetes that process sediment to obtain food). Direct contact with sediment and ingestion of sediment were also considered to be complete and potentially significant exposure pathways for fish. The uptake of COPCs through the root system was also considered to be a complete exposure pathway for some aquatic plants.

Direct contact with sediment is considered a complete and potentially significant exposure pathway for amphibians as some species may hibernate in the study area. Snakes and turtles may be directly exposed to COPCs in sediment via dermal contact and absorption through the skin as well as uptake through the food chain. Although these reptiles (including SAR) were identified as ROCs, based on their habitat affinities and availability of food in Cootes Paradise, turtles and snakes) are likely to use the more suitable habitat in Cootes Paradise, and are therefore unlikely to spend a significant amount of time within the study area.

Aquatic-dependent wildlife species (i.e., mammals and birds) may be directly exposed to COPCs in sediment via dermal contact. This exposure pathway was considered to be complete, but not a source of significant exposure as the integument of mammals and birds acts as a barrier to chemical exchange (BC MOE non-dated). Mammals and birds may also be exposed via uptake through the food chain, however based on the availability of food in Cootes Paradise, the home

range size of species identified, the size of the site and quality of habitat compared to Cootes Paradise, and the urban setting of the study area, birds (including SAR) and mammals are not expected to be present for significant periods of time in Chedoke Creek compared to Cootes Paradise. Exposure via food chain uptake was not identified as a significant exposure pathway.

5.5.2 Exposure to Surface Water

Aquatic plants, aquatic invertebrates, fish and the larval stage of amphibians can be directly exposed to surface water COPCs (e.g., uptake of contaminants through the roots, gills and/or through the skin). Aluminum, iron, nitrite, TP and *E. coli* were retained as final COPCs in surface water for the protection of aquatic life; therefore, complete and potentially significant exposure pathways were identified for aquatic plants, aquatic invertebrates, fish and amphibians.

Reptiles such as turtles and snakes may be directly exposed to COPCs in surface water via dermal contact. Although these receptor groups (including SAR) were identified as ROCs, based on their habitat affinities and availability of food in Cootes Paradise, turtles and reptiles are unlikely to spend a significant amount of time within the study area.

Mammal and bird receptors can potentially use surface water within the study area as a source of drinking water. No substances were retained as final COPCs in surface water for the protection of wildlife; however, select metals, nutrients and bacterial parameters were identified as uncertain COPCs. Although direct ingestion of surface water is recognized as a pathway of exposure, protection for aquatic organisms living directly within the surface waters should provide a higher level of protection than is required for organisms merely drinking the water (MOE 2011b). Therefore, since no final COPCs were identified, the ingestion of surface water as drinking water by wildlife was not further assessed. Exposure to uncertain COPCs are discussed in Section 9.0.

The ingestion of contaminated food items and the incidental ingestion of contaminated sediment was identified as a complete but insignificant exposure pathway for aquatic-dependent wildlife based on the distribution of the COPCs and on the foraging ranges of the aquatic dependent wildlife ROCs. As per MOE (2008) the biomagnifying potential of the COPCs was qualitatively evaluated. Mercury was the only COPC identified as a biomagnifying COPC. As indicated in Section 5.3.3, mercury exceeded the SQG LEL in one sediment sample only, and was not detected in surface water.

5.6 Conceptual Site Model

CSMs combine information on COPCs, ROCs, and exposure pathways to provide an overall picture of site related exposures. The CSM for ecological receptors is presented in Drawing 4. Complete exposure pathways carried forward in the risk assessment were shaded green on the CSM drawing. Some exposure pathways were considered potentially complete but were associated with a low likelihood of significant exposure (i.e., exposure would be very infrequent or the dose from exposure would be very low). These pathways were shaded yellow on the CSM drawing. Incomplete pathways are those through which exposure does not occur and were not shaded in the CSM drawing. Only complete and significant exposure pathways were evaluated further in the ERA.

In addition to the flow-chart CSM, a summary of the complete and potentially significant exposure pathways to be quantified in the risk assessment is provided in Table 5-9, below. This summary is based on the environmental media investigated in the Study Area and the COPCs identified as final COPCs.

Environmental Medium	Receptors of Concern	Exposure Pathway	Final COPCs	Further Qualitative or Quantitative Assessment of Risk in the ERA?
Sediment	Aquatic plants	Uptake	Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene,	Yes, complete and potentially significant exposure pathway
Sediment	Benthic Invertebrates	Direct contact	benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus	Yes, complete and potentially significant exposure pathway
Sediment	Fish	Direct contact	Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus	Yes, complete and potentially significant exposure pathway
Sediment	Amphibians (frog)	Direct Contact	benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus	Yes, complete and potentially significant exposure pathway
Sediment	Reptile (turtles & snakes)	Direct contact	Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus	No, complete but insignificant exposure pathway
Sediment	Wildlife (birds and mammals)	Direct Contact	Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus	No, complete but insignificant exposure pathway

Table 5-9:	Summary	of Potential	Exposure	Pathway	S
------------	---------	--------------	----------	---------	---

Environmental Medium	Receptors of Concern	Exposure Pathway	Final COPCs	Further Qualitative or Quantitative Assessment of Risk in the ERA?
	Amphibians (frog)	Direct Contact	Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs	Yes, complete and potentially significant exposure pathway
Surface Water	Aquatic Plants	Uptake		Yes, complete and potentially significant exposure pathway
Surface Water	Zooplankton	Direct contact	Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli.</i>	Yes, complete and potentially significant exposure pathway
Surface Water	Benthic Invertebrates	Direct contact		Yes, complete and potentially significant exposure pathway
Surface Water	Fish	Direct contact	Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli</i> .	Yes, complete and potentially significant exposure pathway
Surface Water	Reptile (turtles & snakes)	Direct Contact	Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli.</i>	No, complete but insignificant exposure pathway
Surface Water	Amphibians (frog)	Direct Contact	Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli.</i>	Yes, complete and potentially significant exposure pathway
Surface Water	Wildlife (birds and mammals)	Direct Contact, ingestion	None	No, no COPCs
Food Items	Fish	Ingestion	Cadmium, copper, and zinc *	No, complete but insignificant exposure pathway
Food Items	Amphibians	Ingestion	Cadmium, copper, and zinc	No, complete but insignificant exposure pathway
Food Items	Reptile (turtles & snakes)	Ingestion	Cadmium, copper, and zinc	No, complete but insignificant exposure pathway
Food Items	Wildlife	Ingestion	Cadmium, copper, and zinc	No, complete but insignificant exposure pathway

*Based on bioassessment; source of COPCs is sediment, no bioaccumulative COPCs identified in surface water.

5.7 ERA Risk Analysis Plan

The development of a risk analysis plan represents the final stage of the problem formulation process: it presents the overall implementation strategy of the ERA (EC 2012). An overview of the preliminary Risk Analysis Plan for the ERA is provided in this section, including selection of assessment and measurement endpoints and proposed methods to evaluate potential risks to aquatic plants, aquatic invertebrates, fish, amphibians and aquatic-dependent wildlife.

5.7.1 Assessment and Measurement Endpoints

Assessment endpoints define the values or attributes of the receptors which must be protected. The CCME (1996) defines an assessment endpoint as the "*characteristic of the risk assessment that is the focus of the risk assessment.*" Azimuth (2012) defines an assessment endpoint as "*an explicit expression of the environmental value to be protected*" and includes an entity (*a "thing" to be protected such as a receptor group*" and "*a specific property of that receptor (an attribute)*"). The selection of assessment endpoints is an essential element of the overall risk assessment process because it provides a means of focussing assessment activities on the key environmental values (e.g., survival of benthic invertebrates) that could be negatively affected by exposure to environmental contaminants.

Measurement endpoints are the criteria to measure the potential effects. Measurement endpoints can include measures of exposure such as concentrations of COPCs in environmental media, and measures of effects such as literature-based receptor-specific TRVs. The assessment and measurement endpoints which have been used in this ERA are outlined in Table 5-10 and pertain to the four receptor groups retained for assessment. As it would not be practical or possible to incorporate all possible measurement endpoints, the measurement endpoints that inform the assessment endpoints and provide the most useful information for evaluating the risks associated with exposure to the COPCs, have been identified.

Table 5-10: ERA Assessment and Measurement Endpoints

Decentor	-		Lines of Evidence						
Group	Assessment Endpoint	LOE	Measurement Endpoint	Overview of the Risk Evaluation Framework					
Aquatic Plants	Structure and ecological function (i.e. food and habitat for invertebrates, fish, and wildlife)	Chemistry (surface water and sediment)	Final COPC concentrations	 HQs derived using literature-based TRVs HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks HQs distribution Field observations 					
Aquatic	Structure and ecological function (i.e. food for fish, and wildlife)	Chemistry (surface water and sediment)	Final COPC concentrations	 HQs derived using TRV based on site-specific and literature toxicity information HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks HQs distribution 					
invertebrates		Toxicity test (sediment)	Survival, and growth	- Comparisons to laboratory control					
		Biological assessment	Abundance and richness	- Comparisons among year and sampling locations					
Fish	Viability of local fish populations (ability for the population to	Chemistry (surface water and	Final COPC concentrations	 HQs derived using TRV based on site-specific and literature toxicity information 					
1 1311	sustain itself over the long term)	sediment)		 HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks 					
Amphibian	Viability of local amphibian populations	Chemistry (surface water and sediment)	Final COPC concentrations	 HQs derived using TRV based on site-specific and literature toxicity information HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks 					

*Listed species assessment endpoint will be protective of the individual as opposed to the viable population

6.0 EXPOSURE ASSESSMENT

Exposure is defined as the contact of a receptor with a chemical or a physical agent. The goal of the exposure assessment is to quantify complete exposure pathways identified in the problem formulation and summarized in the conceptual site model. In doing so, exposure point concentrations (EPCs) are defined for each COPC carried forward in the ERA.

The measure of exposure for aquatic life is generally not discussed in terms of specific exposure pathways, but rather as concentrations in the exposure media, in this case surface water and/or sediment. For this reason, EPCs representing the concentrations of individual COPCs at the point of contact with a receptor (aquatic plant, aquatic invertebrate, fish and/or amphibian), are provided in the exposure assessment for aquatic life. The EPC are based on the data obtained by Wood in 2018 and by SLR in 2019. The environmental studies considered in the ERA are described in Sections 3.0 and 4.0 and the data used in the exposure assessment are presented in Section 5.6.1. Exposure assessment uncertainties are discussed in Section 9.2.

6.1 COPCs Spatial Distribution and Trends

The following section discusses the spatial distribution of the COPC groups in the surficial sediment and/or surface water, as well as comparisons to MECP guidelines.

6.1.1 Metals

Metals in surface sediment reflect the various inputs present in an urban watershed such as Chedoke Creek. Arsenic, cadmium, chromium (III+VI), lead, manganese, mercury and zinc concentrations in sediment exceeded the PSQG LELs, but were below the SELs in all samples. Copper was the only metal to exceed the PSQG SEL. In surface water, aluminum, iron and zinc exceeded the PWQO for the protection of freshwater aquatic life. The spatial distribution of these COPCs is briefly described below (for each COPC).

In surface water, total aluminum ranged from 160 μ g/L to 598 μ g/L, which exceeded the PWQO of 75 μ g/L. The lowest concentration was obtained immediately downstream of the King/Main CSO (C-1) and the highest concentration was obtained at the most downstream location (C5-East). Dissolved aluminum concentrations were significantly lower, ranging from non-detected (<2 μ g/L) to 14 μ g/L, indicating that total aluminum is mostly associated with particulates.

In surface water, total iron ranged from 202 μ g/L to 1180 μ g/L. The PWQO (300 μ g/L) was exceeded in six out of eight samples. The highest concentration was observed at C5 East. Iron was not retained as a COPC in sediment as concentrations were less than the sediment background value published by MECP (MOE 2008).

Arsenic in sediment exceeded the PSQG LEL (6 mg/kg) in one out of twenty-two samples (12 mg/kg, C-5 East in September 2018). All arsenic concentrations were below the SEL (33 mg/kg). Arsenic concentrations in surface water were below the PWQO.

Cadmium in sediment exceeded the PSQG LEL (0.6 mg/kg) in thirteen out of twenty-samples. The highest cadmium concentrations were obtained at location C5-East (8.5 mg/kg) and C-4 West (6.1 mg/kg) in September 2018. All cadmium concentrations were below the SEL (10 mg/kg). Cadmium was not detected in surface water (<0.1 μ g/L).

Chromium (III+VI) in sediment exceeded the PSQG LEL (26 mg/kg) in six out of twenty-samples. Chromium exceedances were seen at locations C-3, C-4 and C-5. The highest chromium concentrations were obtained at location C-4 West (41 mg/kg) and C5-East (37 mg/kg) in September 2018. All chromium concentrations were below the SEL (110 mg/kg). Chromium concentrations in surface water were below the CCME WQGs.

Copper in sediment exceeded the PSQG LEL (16 mg/kg) in all samples (n=15). Copper also exceeded the severe effect level (**SEL**) (110 mg/kg) at locations C-3 West (170 mg/kg) in September 2018, and C-4 West (125 mg/kg) in October 2019 and C-5 East (136 mg/kg) in September 2018. Copper concentrations in surface water were below the PWQO.

Lead in sediment exceeded the PSQG LEL (31 mg/kg) in eleven out of fifteen samples. The highest lead concentration was obtained at location C-3 West (87 mg/kg). All lead concentrations were below the SEL (250 mg/kg). Lead concentrations in surface water were below the PWQO.

Manganese in sediment exceeded the PSQG LEL (460 mg/kg) in five out of six samples. Manganese concentrations ranged from 390 mg/kg at G-6 Comp to 623 mg/kg at G-5 Comp. All manganese concentrations were below the SEL (1100 mg/kg). Manganese concentrations in surface water were below the PWQO.

Mercury in sediment exceeded the PSQG LEL (0.2 mg/kg) in one out of six samples (0.255 mg/kg; C3-West). All mercury concentrations were below the SEL (2 mg/kg). Mercury was not detected in surface water.

Zinc in sediment exceeded the PSQG LEL (120 mg/kg) in all samples (n=15). The highest zinc concentration was obtained at location C-4 West (532 mg/kg) in 2019. The second highest concentration (505 mg/kg) was obtained at C3-West in 2018. Zinc in surface water ranged from 15 to 22 μ g/L. The maximum concentration exceeded the PWQO of 20 μ g/L.

The concentrations of metal COPCs in sediment generally increased from upstream to downstream, with the highest concentrations typically observed at locations C5-East and C3-West. The metals distribution in sediment indicates that the storm sewers located immediately upstream of C3-West and C5-East may also contribute metals to the study area.

Generally, the concentrations of metals COPCs in the surficial sediments of Chedoke Creek and Chedoke Bay do not show an enrichment following the 2014-2018 discharge compared to historical results with the potential exception of copper. Environment Canada investigated metals concentrations in sediment in Chedoke Creek in 2002 (Dove et al 2003). Several surface (<5 cm) sediment sub-samples (e.g. mid-channel, left-bank, right-bank) were collected upstream of the mouth of Chedoke Creek The concentrations in the composited sediment sample obtained by Environment Canada in 2003 were compared to the range of concentrations. In 2018 and 2019 (Table 6-1). The results generally show comparable concentrations. In 2018 and 2019 combined, two out of fifteen samples had copper in higher concentrations than in 2002 and four out of 22 samples had cadmium in higher concentrations than in 2003. In 2018 and 2019, the samples with the highest concentrations of copper also had the highest concentrations of zinc and TP.

COPC	2002*	2018**	2019**
Arsenic	11	3 - 12	3.56-5.76
Cadmium	1	0.27 - 8.5	0.601-1.32
Chromium	39	16 - 41	19.8-35.9
Copper	86	30 - 170	38.1-125
Lead	70	13 - 145	24.5-51.3
Manganese	547	na	390 - 623
Mercury	0.403	na	0.057 - 0.255
Zinc	551	167 - 505	214- 532

Table 6-1: Chedoke Creek COPC Concentrations in 2002, 2018 and 2019

*one sample made up of several combined sub-samples representative of the overall conditions. **min-max

na – not available

All concentrations are in mg/kg.

In addition to the samples collected in Chedoke Creek, four sediment samples were obtained from Chedoke Bay (C6 East, C6-Centre, and C6-West in 2018; G7 in 2019). Cadmium, chromium (III+VI), copper, lead, manganese, mercury and zinc concentration in sediment exceeded the SQG LELs, but were below the SELs in these samples.

Sediment samples were also collected from Chedoke Bay in 2006 (CC-1) and in 2013 (CC-2). Cadmium, copper, iron, manganese, lead, nickel and zinc exceeded the PSQG LELs, but were below the SELs in these samples (Bowman and Theÿsmeÿer, 2014). The 2013 sediment study showed that metals exceeding the PSQG LELs were observed at most locations in Cootes Paradise and Grindstone Marsh, with copper exceeding the LEL at all ten locations investigated (Bowman and Theÿsmeÿer, 2014). Comparison of metals concentrations obtained in 2006 and 2013 to concentrations obtained in 2018 and 2019 shows similar results, except for copper showing a possible increase (Table 6-2). Note that the maximum copper concentration in West Pond in 2013 was 90.5 mg/kg. A study on contaminant loadings and concentrations to Hamilton Harbour reported "concerns about the concentration levels of copper in the sediments of Cootes Paradise and the Grindstone Creek Estuary. The Technical Team hypothesized that sources could include copper pipes and roofs in the area or residue from copper now used in brake pads instead of asbestos" (Hamilton Harbour Remedial Action Plan Office 2018).

Table 6-2:	Chedoke Bay Historical and Current Surface Sediment Metal Maximum
	COPC Concentrations

COPC	2006	2013	2018	2019
Cadmium	2.1	2.1	0.96	0.96
Copper	73	55	76	99.8
Manganese	-	630	-	537
Lead	69	50	63	61
Zinc	400	340	303	451

All concentrations are in mg/kg.

6.1.2 PAHs

PAHs were widespread in the study area. All sediment sampling locations except for G3 had one or more PAHs and total PAHs¹³ in concentrations exceeding the SQG LELs. All individual PAHs except for pyrene in one sample (C1-West) are below the SELs adjusted to the lowest TOC level obtained in Chedoke Creek (2 percent). SLR re-sampled location C1-West in 2019. Pyrene was below the SEL in 2019. Total PAHs were below the SEL in all samples in 2018 and 2019. PAHs were not detected in surface water.

Total PAHs concentrations in 2018 ranged from 2.97 to 98.69 mg/kg (n=16) and total PAHs in 2019 ranged from 5.3 to 13 mg/kg (n=6). The maximum concentration of total PAHs was obtained in C1-West by Wood in 2018. SLR re-sampled this location in 2019 and measured a total PAH concentration of 6.7 mg/kg for this location.

The distribution of total PAHs shows variability among stations located within the same area. Generally, total PAHs were highest at the location downstream of the King/Main CSO, decreased at locations G3 and G4, and increased downstream of Macklin Street Bridge. Total PAHs concentrations between Macklin Street Bridge and Princess Point appeared similar (based on the geomean; Table 6-3).

In all samples, fluoranthene was the dominant PAH, followed by pyrene and phenanthrene or chrysene. Benz(a)anthracene and benzo(a)pyrene were the fifth or sixth most dominant PAHs, depending on the sample. The similar distribution of individual PAHs in the samples across the study area points to a common source. A study on PAHs in Cootes Paradise Marsh and select tributaries completed by Chow-Fraser et al (1996) indicated that PAHs in sediment of Spencer, Borer's and Chedoke Creeks most likely originated from automobile exhaust and residual asphalt based on the high levels of fluoranthene and pyrene which are derivatives of engine combustion.

Based on the 2018 and 2019 results, PAH concentrations do not seem to be correlated with nutrient levels. For example, in 2018 the sampling location with the highest total PAH concentrations was the only sampling location with TP concentration below the PSQG LEL. TKN was also below the LEL in that sample.

Environment Canada investigated PAH concentrations in sediment in Chedoke Creek in 2002 (Dove et al 2003). Most of the individual PAHs and total PAHs (14. 5 mg/kg) exceeded the SQG LELs in the sediment sample obtained in 2002. Similar to the samples obtained in 2018 and 2019, pyrene, fluoranthene, phenanthrene and benz(a)anthracene were the dominant PAHs in the sample.

¹³ PAH (total) is the sum of 16 PAH compounds: Acenaphthene, Acenaphthylene, Anthracene, Benzo[k]fluoranthene, Benzo[b]fluoranthene, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[g,h,i]perylene, Chrysene, Dibenzo[a,h]anthracene, Fluoranthene, Fluorene, Indeno[1,2,3-cd]pyrene, Naphthalene, Phenanthrene, and Pyrene (MOE, 2008).

Location	Date	Total PAHs Conc.	Geomean
G-1 Comp	9/18/2018	42.2	
C-1 West	9/18/2018	98.7	
C-1 West	10/2/2019	6.7	20.1
G-2 Comp	9/18/2018	5.1	
C-2 West	9/18/2018	23.0	
G-3 Comp	9/18/2018	3.0	3.0
G-4 Comp	9/18/2018	4.4	4.0
G-4 Comp	10/2/2019	5.3	4.9
G-5 Comp	9/19/2018	8.2	
G-5 Comp	10/2/2019	5.7	
C-3 West	9/18/2018	11.0	0.0
C-3 West	10/2/2019	13.0	9.0
C-3 Centre	9/18/2018	16.0	
C-3 East	9/18/2018	4.9	
C-4 West	9/19/2018	20.5	
C-4 West	10/1/2019	7.8	0.7
C-4 Centre	9/19/2018	8.9	9.7
C-4 East	9/19/2018	6.2	
C-5 West	9/19/2018	6.5	
C-5 Centre	9/19/2018	5.3	7.0
C-5 East	9/19/2018	16.0	1.9
G-6 Comp	10/1/2019	7.3	

Table 6-3: Total PAHs Results in Chedoke Creek

6.1.3 Nutrients

Nutrients are a component of raw sewage. Nutrients were retained as COPCs in sediment (TKN and TP) and in surface water (nitrite and TP).

In sediment, TKN exceed the PSQG LEL (550 mg/kg) in twelve (600 to 1900 mg/kg) of twentytwo samples. TKN showed a decrease in concentrations in October 2019 and none of the samples had TKN concentrations above the LEL. The maximum TKN concentration in 2018 was 814 mg/kg obtained at C3-West and the maximum TKN concentration in 2019 was 330 mg/kg obtained at C-4 West. Ammonia also decreased between 2019 (maximum 400 mg/kg) and 2018 (maximum 130 mg/kg).

TP was widespread in the study area and exceeded the PSQG LEL (600 mg/kg) in twenty-one out of twenty-two sediment samples obtained in 2018 and 2019. The maximum TP concentration in 2018 was 1622 mg/kg obtained in sample C-3 West and the maximum TP concentration in 2019 was 1560 mg/kg obtained in sample C-4 West.

All samples had TKN and TP concentrations below the SELs (4800 and 2000 mg/kg, respectively).

Studies that included sediment samples analyzed for nutrients in Chedoke Creek before the Main/King CSO discharge were not found. However, sediment samples were collected in Cootes Paradise and Grindstone Marsh in 2006 and 2013, including two sediment samples from Chedoke Bay (CC-1 and CC-2) (Bowman and Theijsmeijer, 2014). These sediment samples were analyzed for TKN and TP and exceeded the LELs at all locations in Cootes Paradise and Grindstone Marsh. TP also exceeded the SEL in Desjardin Canal in 2006 and 2013 (Bowman and Theijsmeijer, 2014). Comparison of TP and TKN concentrations obtained from Chedoke Bay in 2006 and 2013 to concentrations obtained in 2018 and 2019 in sediment (within the top 15 cm of sediment) shows similar TP concentrations and a decrease in TKN concentrations (Table 6-4).

Table 6-4:	Chedoke Bay Historical and Current Maximum Sediment TKN and TP
	Concentrations in Surface Sediment

COPC	2006	2013	2018	2019
TKN	1250	1390	814	120
TP	1100	1100	1000	1140

Unit in 2006 and 2013 are in μ g/g and unit in 2018 and 2019 are in mg/kg; both are ppm.

In surface water, total nitrite exceeded the CCME long-term WQG (60 μ g/L) at all 2019 study area sample locations, ranging from 70 to 220 μ g/L. There is no PWQO for nitrite. The lowest concentration was obtained at the most downstream location (C5-East) and the highest concentration was obtained immediately downstream of the Main/King CSO outlet (C-1). TKN was retained as an uncertain COPC in surface water as no PWQO is available. Waters not influenced by excessive organic inputs typically range from 100 to 500 μ g/L (Environment Canada 1979). Measured concentrations within the study area ranged from 500 to 1500 μ g/L, with the highest concentration obtained at the most downstream location (C-5 East). It is noted that the concentrations measured in 2019 at Red Hill reference locations R-1 and R-2 were also below this range (300 and <200 μ g/L, respectively).

TP concentrations exceeded PWQO ($30 \mu g/L$) to prevent excessive algae growth in river at all sample locations and were within a comparable range across the study area (314 to $428 \mu g/L$). The maximum TP concentration was obtained in sample G-1 Comp West collected immediately downgradient of the CSO outlet, while the minimum was collected at the most downstream location (C5-East). Dissolved phosphorus concentrations were generally consistent with the total concentrations measured immediately downstream of the CSO outlet (C-1 and G-1) but were lower than the total concentrations measured at downstream locations. This indicates that particulates likely play a larger role in total phosphorus concentrations at downstream locations. TP was not detected in the Red Hill reference samples in 2019.

TP concentrations were measured in the study area (CP-11) before (2009 to 2013), during (May 2014 to July 2018) and after the discharge (August 2018 to October 2018) (HCA data as provided by City of Hamilton, 2019). The results show that TP concentrations were significantly higher in 2018 during the Gate 2 failure. After the discharge, TP concentrations returned to pre-discharge concentrations (Table 6-5).

Period	Year	Ν	Range	Median
Pre-discharge	2009	12	84-271	194
Pre-discharge	2010	11	111-269	185
Pre-discharge	2011	11	100-469	195
Pre-discharge	2012	11	158-365	290
Discharge	2014	8	156-956	350
Discharge	2015	17	113-1250	369
Discharge	2016	19	226-1004	433
Discharge	2017	27	130-740	359
Discharge	2018 (until end of July)	16	276-2780	1130
Post-discharge	2018 (August-October)	10	195-935	233

Table 6-5: Surface Water TP Concentrations Before, During and After the Discharge

Nutrients in Chedoke Creek surface water have been evaluated in several studies. Chow-Fraser reported a mean nutrient TKN concentration for May to September 1996 of 2840 μ g/L for Chedoke Creek. The mean TP concentration in the same study was reported to be 375 μ g/L. Chow-Fraser (1996) indicates that high nutrient levels in Chedoke Creek were probably linked to the several CSOs discharging into the creek. In addition, urban runoff has been recognized as a major nonpoint source of TP in the growing season, for example urban runoff has been identified as the second most important nonpoint loading source of TP to Cootes Paradise (Dong-Kyun et al 2016).

6.1.4 Bacteria

E. coli and fecal coliform were identified as an uncertain COPC in sediment and surface water based on the lack of guidelines specific to ecological receptors. While samples were also analyzed for fecal coliform, *E. coli* is a better indicator of bacterial fecal contamination. MOEE 1994 states that *E. coli* was selected for the guidelines for the protection of human health as *"studies have determined that, among bacteria of the coliform group, E. coli is the most suitable and specific indicator of fecal contamination".*

E. coli levels in sediment in 2019 ranged from 5,400 to 2,400 MPN/100g. *E coli* were not analyzed in sediment in 2018. Fecal coliforms in sediment were analyzed in both 2018 and 2019 and decreased from 2018 to 2019 at all sampling locations. Levels in 2018 ranged from 8,000 to 45,000 MPN/100g with a median concentration of 20,000 MPN/100g. In 2018, the highest levels were observed at C-3 West and C-3 East. Levels in 2019 ranged from 5,400 to 2,400 MPN/100g with a median concentration of 4450 MPN/100g. In 2018, the highest levels were observed at C-3 East. Levels in 2018, the highest levels were observed at C-3 West and C-3 East. Levels in 2018, the highest levels were observed at C-3 West, C-3 East and C-5 East.

E. coli levels in surface water in 2019 ranged from 390 to 4100 cfu/100 ml. E coli counts were higher at upstream location C1-West and lowest at downstream location C5-East. The 2019 median concentration was 1450 cfu/100 ml. Wood (2019) reported a median for *E. coli* during the discharge event of 12300 cfu/100 ml.

E. coli counts are elevated throughout the Chedoke Creek subwatershed. *E coli* levels were measured in the study area (CP-11) and at three locations upstream of the Main/King CSO (CC-3, CC-7 and CC-9; locations provided in Appendix A) in 2018. The results are provided in Table 6-6

for two time period, during the discharge (April to July 2018) and after the discharge (August to October 2018) (HCA data as provided by City of Hamilton, 2019). The results show that *E. coli* levels were significantly higher at station CP-11 than in the upstream stations at CC-2, CC-7, and CC-9, during the discharge. After the discharge, *E coli* decreased to levels lower than those observed at the upstream locations.

	Downstream of Main/King CSO				Upstream of Main/King CSO							
	CP-11 (study area)		CC-3		CC-7		CC-9					
	Ν	Range	Median	Ν	Range	Median	Ν	Range	Median	Ν	Range	Median
2018 (April -July)	11	290000- 4900000	1800000	8	590-104000	15900	8	570-6600	2800	8	590-18000	3200
2018 (August- October)	10	190- 20000	3300	5	800-610000	6400	5	440-6000	1600	5	1630-9000	7100
2019		390-4100	1450	na	na	na	na	na	na	na	na	na

Table 6-6:	Chedoke Creek E. Coli Levels in Surface Water Downstream
	and Upstream of Main/King CSO in 2018

na - not available

Unit are in CFU/100ml

April-July 2018 – during discharge

August-October 2018 – after discharge

Samples collected on the same dates at all locations but location CC-11 included duplicate. 2018 dates during discharge: April:11 and 25; May: 9 and 23: June: 7 and 20; July 4 and 18

2018 dates after discharge: August:1, 15 and 29; September 11 and 27; October: 10.

6.1.5 Biochemical Oxygen Demand (BOD) and Dissolved Oxygen (DO)

While BOD and DO were not selected as COPCs, the two parameters provide information on the potential indirect effect of natural organic detritus and/or organic waste. BOD is a measure of the amount of oxygen that bacteria will consume while decomposing organic matter under aerobic conditions thus reducing available dissolved oxygen for fish and other aquatic biota (e.g., invertebrates) (Wood 2019). BOD in the 2019 sediment sample (measured in the porewater) ranged from 6.4 to 31 mg/L. The highest BOD was observed at C-4 West. BOD measured at C-1 West, downstream of the CSO, was 8.5 mg/L. DO was measured in surface water at each location in the field and ranged from 2.96 to 10.23 mg/L. The location with the highest DO level was C5-East/G6. Both locations with the highest BOD (C-4 West: 31 mg/l and C5-East/G6: 17 mg/L) also showed the lowest DO (4.85 and 2.96 mg/L respectively). Sampling locations C-4 West and C5-East/G6 had DO levels lower than the CCME minimal DO guideline levels for the protection of warm water biota (6 mg/L). Surface water DO in the study area prior to the King/Main CSO discharge event ranged from 3 mg/L to 16 mg/L with the lowest DO levels observed in the summer.

Total organic carbon measured in sediment in 2019 ranged from 2.6% to 4.7% and was comparable to total organic carbon observed in the study area in 2002 (3.8% - Dove et al 2003).

6.2 Exposure Point Concentrations (EPC)

Aquatic plants and benthic invertebrates are sessile and thus, may be exposed to higher or lower concentrations in discrete area(s) of Chedoke Creek. For this reason, the concentrations of the individual sediment samples obtained in Chedoke Creek were used as EPCs.

EPCs for fish and amphibians are based on the calculated 95% UCLM concentrations because fish are mobile receptors and thus, may be exposed to the entire length of Chedoke Creek within the study area.

The EPCs for the individual samples and the 95% UCLM concentrations are presented in Table 4 after the text.

For surface water COPCs, the maximum concentrations were adopted as the EPCs for aquatic plant, invertebrates (benthic and zooplankton), fish and amphibians. The maximum concentrations were conservatively selected because surface water samples in the study area were only collected on one occasion (2019) from 8 locations, providing limited information on the temporal and spatial variations in surface water quality. The surface water EPCs are summarized below in Table 6-7.

The method followed to calculate the 95% UCLMs and the detailed results of the analyses are presented in Appendix F.

COPC	EPC	Unit	Statistic
Aluminum	598	µg/L	Maximum
Iron (total)	1340	µg/L	Maximum
Nitrite (as N)	280	µg/L	Maximum
Total Phosphorus	450	µg/L	Maximum
Total Phosphorus (Filtered)	420	µg/L	Maximum

 Table 6-7:
 Surface Water Exposure Point Concentrations

The EPCs are carried forward to the risk characterization section of this ERA.

7.0 EFFECTS ASSESSMENT

Exposure to COPCs in sediment and surface water has the potential to negatively affect aquatic organisms. Toxicity reference values (**TRVs**) were compiled for each of the COPCs to assess the potential effects and characterize the potential risks. A TRV is a receptor-specific concentration of a chemical, above which adverse effects have the potential to occur, and below which there is a low likelihood that adverse effects will occur. The selected TRVs were then used to quantify the potential risks (Section 8.0).

Concentrations of contaminants in sediment may exceed the applicable guidelines; however, contaminant concentrations are not necessarily strongly correlated to bioavailability and toxicity. Because relationships between concentrations of contaminants in sediment and their bioavailability are poorly understood and vary on a site-specific basis, determining effects of contaminants in sediment on aquatic organisms often requires a combination of approaches, including biological observations, controlled toxicity tests and measures of effects on benthic communities inhabiting sediments (Ingersoll et al., 1997). The following information was compiled and presented as part of the effect assessment:

- Sediment toxicity testing was completed using benthic invertebrates exposed to sediments collected from impacted locations to identify whether exposure to the COPCs caused decreases in survival, reproduction and/or growth compared to a laboratory control;
- BICS analysis was conducted to assess the benthic community composition at various locations; and
- Both toxicity testing and BICS analysis rely upon site-specific information to assess whether potential effects are due to elevated chemical concentrations and/or other biological and physical stressors (e.g., particle size, competition/predation).

The effects assessment presents key information used in the risk characterization presented in Section 8.0. Effects assessment uncertainties are discussed in Section 9.3.

7.1 Literature-Based Toxicity Reference Values

The TRVs were selected in accordance with ERA guidance (EC 2012, MECP 2019) and are outlined in the subsection below.

7.1.1 Sediment TRVs for Aquatic Life

While screening-level sediment quality guidelines (i.e., lowest effect level-type SQGs) were used to identify the COPCs, aquatic life, probable-effect level (PEL) type SQGs were adopted as TRVs to assess risks to aquatic life associated with exposure to sediment COPCs for non listed species. This approach was adopted because the results of the reliability evaluations of various types of SQGs indicate that PEL-type SQGs tend to be more predictive of sediment toxicity than threshold effect level SQGs (Long et al. 1995; MacDonald et al. 2000, 2003). In addition, for non-listed species, the goal of the ERA was not to protect each individual from a toxic effect, but rather to protect enough individuals so that a viable population and community of organisms can be maintained. More specifically, the following hierarchical approach was applied to select TRVs for aquatic life:

- MacDonald D.D., Ingersoll C.G. and Berger T.A. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology 39(1). 20-31.
- Canadian SQGs for the protection of freshwater aquatic life (i.e., PELs; CCME 1999 and updates).
- USEPA Assessment and Remediation of Contaminated Sediment (ARCS) probable effect concentrations (PECs) (Ingersoll et al. 1996).
- Persaud D. R. Jaagumagi and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy.

The consensus-based probable effect concentrations (**PECs**) developed by MacDonald *et al.* (2000) were developed by averaging probable effect-level concentrations from several guidelines to yield consensus-based PECs. The consensus-based PECs have been evaluated for their reliability in predicting toxicity in sediments by using matching sediment chemistry and toxicity data from field studies. The results of the reliability evaluation showed that most of the consensus-based values for individual contaminants provide an accurate basis for predicting the presence or absence of toxicity (MacDonald et al. 2000). The consensus-based PECs were adopted for all of the COPCs for which they were developed. The consensus-based PECs are lower than the PSQG SELs.

The CCME PEL represents the lower limit of the range of chemical concentrations that are usually or always associated with adverse biological effects. The PELs are calculated as the square root of the product (i.e., the geometric mean) of the 50th percentile concentration of the effect dataset and the 85th percentile concentration of the no-effect dataset (CCME 1999). The CCME PELs were adopted for those COPCs for which consensus-based PECs were not available. The CCME PEL based are lower than the PSQG SELs.

The PSQG SELs were selected as the TRV for COPCs for which consensus-based PECs or CCME PELs were not available.

As indicated in Section 5.2.3, aquatic life species of concern include freshwater mussels which have documented presence immediately downstream of the study area. While not observed in the study area, these species could potentially be present in Chedoke Creek. For this reason, lower-level SQGs from the above listed sources were used as TRV. The sediment background concentration (MOE 2008) was selected as the iron TRV.

As toxicity information for sediment COPCs relevant to aquatic plants, fish and amphibians is limited, the benthic invertebrate based TRVs have been applied to all aquatic life receptors. TRVs selected for aquatic life are summarized below in Table 7-1.

	Non-Listed Species		Listed Species			
COPC	TRV	Туре	Source	TRV	Туре	Source
Arsenic	33	PEC	Mac Donald et al (2000)	9.79	TEC	Mac Donald et al (2000)
Cadmium	4.98	PEC	Mac Donald et al (2000)	0.99	TEC	Mac Donald et al (2000)
Chromium (III+VI)	111	PEC	Mac Donald et al (2000)	43.3	TEC	Mac Donald et al (2000)
Copper	149	PEC	Mac Donald et al (2000)	31.6	TEC	Mac Donald et al (2000)
Iron	40000	SEL	Persaud (1993)	30000	Background	MOE 2008
Lead	128	PEC	Mac Donald et al (2000)	35.8	TEC	Mac Donald et al (2000)
Manganese	1100	SEL	Persaud (1993)	460	LEL	Persaud (1993)
Mercury	1.06	PEC	CCME PEL	0.18	TEC	Mac Donald et al (2000)
Silver	-	-		-	-	
Zinc	450	PEC	Mac Donald et al (2000)	121	TEC	Mac Donald et al (2003)
Acenaphthylene	0.128	PEL	CCME (1999)	0.01	ISQG	CCME (1999)
Acenaphthene	0.0889	PEL	CCME (1999)	0.006	ISQG	CCME (1999)
Anthracene	0.845	PEC	Mac Donald et al (2000)	0.22	LEL	Persaud (1993)
Benz(a)anthracene	1.05	PEC	Mac Donald et al (2000)	0.32	LEL	Persaud (1993)
benzo(g,h,i)perylene	6.40	SEL	Persaud (1993)	0.17	LEL	Persaud (1993)
benzo(k)fluoranthene	1.45	PEC	Mac Donald et al (2000)	0.24	LEL	MOE 2008
Benzo(a)pyrene	1.45	PEC	Mac Donald et al (2000)	0.37	LEL	Persaud (1993)
Chrysene	1.29	PEC	Mac Donald et al (2000)	0.34	LEL	Persaud (1993)
Dibenz(a,h)anthracene	0.135	PEC	Mac Donald et al (2000)	0.06	LEL	Persaud (1993)
Fluoranthene	2.223	PEC	Mac Donald et al (2000)	0.75	LEL	Persaud (1993)
Fluorene	0.536	PEC	Mac Donald et al (2000)	0.19	LEL	Persaud (1993)
Indeno(1,2,3-c,d)pyrene	6.40	SEL	Persaud (1993)	0.2	LEL	Persaud (1993)

Table 7-1: Sediment Toxicity Reference Values for the Protection of Aquatic Life (mg/kg)

	Non-Listed Species			Listed Species		
COPC	TRV	Туре	Source	TRV	Туре	Source
2- Methylnaphthalene	0.201	PEL	CCME (1999)	0.02	ISQG	CCME (1999)
Naphthalene	0.561	PEC	Mac Donald et al (2000)	0.176	TEC	Mac Donald et al (2003)
Phenanthrene	1.17	PEC	Mac Donald et al (2000)	0.56	LEL	Persaud (1993)
Pyrene	1.52	PEC	Mac Donald et al (2000)	0.49	LEL	Persaud (1993)
PAHs (sum of total)	22.8	PEC	Mac Donald et al (2000)	4	LEL	Persaud (1993)
Kjeldahl nitrogen total	4800	SEL	Persaud (1993)	550	LEL	Persaud (1993)
Phosphorus	2000	SEL	Persaud (1993)	600	LEL	Persaud (1993)

7.1.2 Surface Water TRVs for Aquatic Life

This section presents the selected TRVs for each of the selected surface water COPCs. The MECP has not developed aquatic protection values for the final surface water COPCs, therefore the PWQO rationale document and more recent literature sources were reviewed for the selection of TRVs. Sources reviewed included:

- MOE 1979. Rationale for the Establishment of the Provincial Water Quality Objectives. September 1979. Ontario Ministry of the Environment.
- MOE 1988. Scientific Criteria Document for Development of Provincial Water Quality Objectives and Guidelines. Aluminum. September 1988. Ontario Ministry of the Environment.
- Technical supporting documents published by CCME as part of the Canadian Environmental Quality Guidelines for the protection of aquatic life.
- Technical supporting documents published by BC MOE as part of the BC Approved WQG and Working WQG.

Preferences in TRV selection were given to chronic sublethal toxicity data for reproduction and growth for species representative of a warm water system, if available. For non-listed species, preferences were given to the lowest observed effect level (**LOEL**) or EC₂₀, where available. In the ERA the goal was not to protect each individual from any toxic effect, but rather to protect enough individuals so that a viable population and community of organisms can be maintained. Therefore, LOELs or EC₂₀s were considered appropriate TRVs where available for non-listed species. To account for the potential presence of SAR (i.e. the Lilliput mussel) in the study area, a no observed adverse effect level (NOAEL) was also selected for invertebrates following MECP guidance (MECP 2019).

The selected TRVs for aquatic life are summarized in Table 7-2 and discussed Appendix G.

Table 7-2:	Surface Toxicological Reference Values for the Protection
	of Aquatic Life (µg/L)

COPC	Invertebrates	Aquatic Plants	Fish	Amphibians	
Aluminum	320 (non-listed) 100 (listed-species)⁰	460	200	320	
Iron (total)	1740 (non-listed) 300 (listed-species)⁰	1740	300ª	1740	
Nitrite (as N)	60 (Listed and	non-listed) ^b	5,000 (warm water)	60ª	
Phosphorus	30 μg/L (benchmark to prevent algal growth) ^d				

a- PWQO guideline retained as TRV due to limited toxicity information for amphibians

b- PWQO guideline retained as TRV due to limited ROC-specific toxicity information available

c- A NOAEL was selected, where available, to account for the potential presence of SAR (i.e. the Lilliput mussel)

in the study area. If the NOAEL was below the provincial guideline, the guideline was retained as the TRV d- No TRVs were available for phosphorus, a target benchmark of 30 μg/L was selected to prevent excessive algal growth.

7.2 Sediment Toxicity Tests

Select sediment samples were submitted to Bureau Veritas Laboratory¹⁴ (BV) for toxicity tests. BV test methods and detailed results are presented in Appendix E. This section presents a summary of results.

Toxicity tests were completed using the freshwater midge *Chironomus dilutus* and the freshwater amphipod, *Hyalella azteca*. Both lethal (i.e., survival) and sublethal (i.e., growth endpoints) were measured. The tests were completed using the following testing protocols.

- Bureau Veritas Laboratories Standard Operating Procedure: *Chironomus dilutus* 10-Day Survival and Growth Test (BBY2SOP-00010) based on Environment Canada Biological Test Method: Test for Survival and Growth in Sediment Using the Larvae of Freshwater Midges (*Chironomus tentans* or *Chironomus riparius*) (Environmental Protection Series (EPS) 1/RM/32), and
- Bureau Veritas Laboratories SOP: *Hyalella azteca* 14-Day Survival and Growth Test (BBY2SOP-00011) based on the Environment Canada Biological Test Method: Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod *Hyalella azteca* (EPS 1/RM/33).

These two tests were selected as they are the two aquatic species that are the most highly recommended for most freshwater sediment quality assessments and have been used to evaluate sediment toxicity in Hamilton Harbour.

In addition to the toxicity tests, the overlying waters were analysed for ammonia (as N), hydrogen sulphide, temperature and pH at test initiation and completion to evaluate the potential influence on the toxicity test results (Appendix A of the BV Toxicity Testing Report).

¹⁴ Maxxam Analytics changed their name to Bureau Veritas Laboratory (BVL) in June, 2019.
Toxicity testing response endpoints (survival and growth) were evaluated statistically by BV to determine whether the impacted sediments differed significantly from the laboratory control sediment. These results are presented in Appendix E and summarized in Table 7-3.

Sample	<i>Chironomus dilutu</i> Compared t	<i>is</i> Percent Decreased to Lab Control	Hyalella azteca Toxicity Results Percent Decreased Compared to Lab Control			
	Mean Survival	Mean Weight	Mean Survival	Mean Weight		
C-5 East / G6	6.3	140	61.2*	71.4*		
C-4 West	18.8	116	98*	57.1*		
C-3 West	2.1	148	51*	78.6*		
C-3 Centre / G5	10.4	152	12.2	42.9*		
G-4	12.5	150	34.7*	64.3*		
C-1 West	16.7	148	8.4	28.6*		

	Table 7-3:	Summar	of Chironomus	dilutus and H	<i>lyalella azteca</i> Percen [®]	t Difference
--	------------	--------	---------------	---------------	--	--------------

* Statistically significant decrease observed by BV compared to the laboratory control.

The toxicity tests completed with C. dilutus did not show any significant differences between the samples versus the negative control for either the survival or growth endpoints. Therefore, organism survival and growth were not significantly impacted by the presence of COPCs.

The toxicity tests completed with H. azteca shows that all samples except for C3 Centre/G5, G4 and C1 West had a statistically significant decrease in mean survival compared to the negative control. All samples showed a statistically significant decrease in mean dry weight compared to the negative control (Table 7-3). *H. azteca* survival and growth were negatively affected by the presence of COPCs.

7.3 Benthic Invertebrate Community Structure Analysis

A BICS analysis was completed to characterize the benthic invertebrate communities; and thus, to provide a direct measurement of potential COPC-related effects to the ecological integrity of the benthic community metrics under actual field conditions.

7.3.1 Benthic Invertebrate Community Structure Analysis Method

SLR obtained sediment samples for BICS analysis from 10 locations in 2019 (eight in the study area, one in Red Hill Creek and one in Chedoke Bay). The samples were submitted to Entomogen where they were sorted under a dissecting microscope and identified to the lowest practicable taxonomic level (typically species or genus).

Entomogen employed Excel and R version 6.1 (including *iNext*, *vegan*, *stats* and *SpadeR* packages) to evaluate similarities and differences in the metrics, listed below, of benthic invertebrate community structure. A description of these indices and the associated formulae to calculate them are provided in the Entomogen report in Appendix E.

Biologica evaluated the data to further assess changes in the benthic community over time. In doing so, Biologica conducted a two-way analysis of variance (**ANOVA**) to examine the effect of year and site on species richness and the Hilsenhoff's Biotic Index. Biologica also completed cluster analysis in PRIMER-E v. 6.0 to assess differences in community structure among the 2019 macroinvertebrate community stations.

Benthic invertebrate community metrics used to describe the health of the benthic invertebrate communities, included:

- Species Richness
- Hilsenhoff biotic index (HBI);
- Simpsons Diversity Index (1-D);
- Shannon-Weiner Diversity Index (H);
- Pielou's eveness (J');
- % Chironomidae; and
- % Ephemeroptera, Plecoptera, Trichoptera (EPT).

The assessment of BICS carried out by Entomogen, including assessment of overall ecological condition, was provided to SLR in a summary report (report included in Appendix E). In addition, Biologica provided further statistical analysis of the benthic invertebrate community between sampling sites and year over year (2018 and 2019).

7.3.2 Benthic Invertebrate Community Structure Analysis Results

Benthic invertebrate taxa that are tolerant to environmental stress dominated the species composition of all sites sampled in 2018 and 2019. No sensitive species (EPT *spp.*) were observed in 2018 or 2019. Although chironomids, oligochaetes and isopods are generally considered tolerant to pollution, each group contains species with varying tolerance levels. Dominant organisms often characterize sediment pollution (Lenat, Smock and Penrose 1980). In 2018, each location sampled in Chedoke Creek was dominated by tubificids and chironomids; species known to dominate areas of higher organic pollution (Brinkhurst and Gelder 1991). These same species also were observed in high relative proportions in 2019, with a noted increase in isopod % contribution at G5 and G1. Coles et al (2012) note that "*isopods are found in slower moving streams that have relatively low dissolved oxygen concentrations*". Leeches were also observed at G1 and C-3 Centre/G5. "*Leeches are most common in warm, protected shallows where stream velocities are relatively low*" (Coles 2012). The dominant genus of chironomids was *Chironomus* (for both 2018 and 2019) which has been shown to increase in density in watercourses with domestic sewage input (Oliveira, Martins, Alves 2010, Gower and Buckland 1978).

Grain size analysis was completed for all benthic invertebrate sampling locations, with the exception of G1 and R1, due to the coarseness of substrate. Entomogen found that "sediment grain size data was not sufficient to describe variation in taxa at the sites and that other variables may be driving the system". This statement does not include G1 and R1, since the grain size at G1 and R1 at these locations could not be analyzed by the laboratory.

As with 2018 results, the Hilsenhoff Biotic Index (HBI) scores calculated in 2019 are similar between sampling locations (Table 7-4). A two-way ANOVA indicated a statistically significant increase in Hilsenhoff HBI values between 2018 and 2019 but that HBI values between sample sites within each sampling year were not statistically different (i.e., HBI for G1 in 2019 is not statistically different from G6 in 2019). Biologica indicated that the observed increase in HBI values was due to an increase in the relative abundance of the more pollution tolerant taxa. Mean species richness increased at all sampling site in 2019 compared to 2018, with the exception of G1 (Table 7-4). A two-way ANOVA indicated a statistically significant increase in species richness between 2018 and 2019 and between sites within each year (i.e., G1 compared to G4 in 2019). Lower species richness observed at G1 is likely driven by differences in habitat (increased substrate coarseness).

Sampling	2	018	2019			
Location	Richness	HBI	Richness	HBI		
G1	3.00	6.19	3.33	8.18		
G4	2.33	6.00	11.33	9.41		
G5	2.33	6.00	6.67	9.37		
G6	1.67	4.00	4.67	9.87		

Table 7-4: Mean Species Richness and Hilsenhoff's Biotic Index (HBI) in 2018 and 2019

To assess differences in community structure among the 2019 benthic invertebrate sampling locations a cluster analysis was performed using the Bray-Curtis Similarity to evaluate variation in 2019 benthic community. This cluster analysis indicated that the invertebrate communities were not statistically distinguishable, except for the community at location G1. This observation should be interpreted with caution given: 1) chemistry and toxicity data are not available for the Red Hill Creek; 2) Substrate at G1 is larger/more course than at the other sampling stations; 3) consideration of hydrological effects on benthic communities has not been considered (i.e., differences of water level and velocity fluctuations experiences at each sampling location).

8.0 RISK CHARACTERIZATION

Risk characterization integrates the results of the exposure and effects assessments to identify potential unacceptable risks from exposure to COPCs. The first step within the risk characterization involves the evaluation of hazard quotients (HQs) on a study area-wide basis. Hazard quotients (HQs) relate the EPC with the TRV as follows:

• Hazard Quotient = Exposure Point Concentration (mg/kg or µg/L) / TRV (mg/kg or µg/L).

Hazard quotients greater than one indicate that <u>potential</u> risks are present; however, hazard quotients above 1.0 do <u>not</u> necessarily indicate that risks are likely or certain.

For sediment the HQs were calculated on an individual sample basis for sessile aquatic organisms (aquatic plants and invertebrates). HQs for aquatic plants and invertebrates were also calculated on a site-wide basis using EPCs (95% UCLM) representative of the entire study area. HQs for fish were calculated using 95% UCLM concentrations. The HQs based on the 95% UCLMs provide "a conservative estimate of risk, particularly for a small site with relatively few environmental sampling points" (Golder, 2006).

For surface water, the HQs were calculated using the maximum COPC concentrations. The HQs above are discussed below in Section 8.1.

SLR also implemented a WOE approach using a subset of samples that involved integrating the results for the following three key LOEs: sample specific HQs, benthic invertebrate toxicity testing and BICS analysis. The additional LOEs and WOE are presented in Section 8.2.

Risk Characterization uncertainties are discussed in Section 9.4.

8.1 Sediment HQ

8.1.1 Aquatic Plants and Benthic Invertebrates

SLR calculated HQs based on each sample to evaluate the risks to aquatic plants and benthic invertebrates. The sample-specific HQs also provide information on the spatial distribution of HQs. Sample-specific HQs are provided in Table 4 after the text.

Sample-specific HQs greater than 1.0 for aquatic plants, benthic invertebrates and fish assessed at the community level (non-listed species) are summarized in Table 8-1. These HQs indicates that, for the COPCs for which TRVs were available, PAHs contribute the most to the potential risks. In order to evaluate the relative degree of PAHs contamination of the sediment samples and to make comparisons among locations, a mean HQ quotient (mean HQ-Q) was also calculated for PAHs. The mean HQ-Q was calculated according to the general guidance for calculating mean concentration quotients (e.g. PEC-Qs) and SedQC-Q (ENV, non-dated). The mean HQ-Q for PAHs was calculated by summing the individual PAH HQs obtained with reliable TRV (PEC or PEL) and dividing this number by the number of individual PAHs included in the sum (n=11). The HQ-Qs are presented in Table 8-1. Since PAHs were identified as potential risk-drivers, the HQ-Qs were used to attribute risk categories to the individual samples. Risk categories and criteria used are presented in Table 8-2. HQs greater than 1.0 are furthers discussed after the tables.

ROCs	Location	Date	acenaphthylene	acenaphthene	anthracene	benz(a)anthracene	benzo(k)fluoranthene	benzo(a)pyrene	chrysene	dibenz(a,h)anthracene	fluoranthene	fluorene	methylnaphthalene, 2-	naphthalene	phenanthrene	pyrene	PAHs (sum of total)	PAHS HQ-Q	Cadmium	Copper	Lead	Zinc	Risk Categories
	G-1 Comp	9/18/2018		9.3	1.2	2.8		1.7	2.5	2.7	4.1	1.6	1.5	1.7	8.1	4.4	1.9	3.8					High
	C-1 West	9/18/2018		16.8	5.6	6.3	1.6	4.1	5.5	5.9	11.0	3.3			14.1	12.4	4.3	7.7					High
	C-2 West	9/18/2018		2.9		1.7		1.2	1.7	1.6	2.4				3.1	2.7	1.0	1.7					Moderate
Aquatia	C-3 West	10/2/2019		3.0					1.2	1.2	1.4				2.1	1.5	0.6	1.3					Moderate
plants and	C-3 West	9/18/2018									1.2					1.4	0.5	0.6		1.1		1.2	Low
benthic	C-3 Centre	9/18/2018		3.0							1.7				2.8	1.8	0.7	1.3					Moderate
Invertebrates	C-4 West	10/1/2019								1.3						1.1	0.3	0.6				1.2	Low
	C-4 West	9/19/2018		2.8		1.6			1.6	1.5	2.0				2.8	2.3	0.9	1.7	1.2				Moderate
	C-4 Centre	9/19/2018														1.1	0.4	0.5					Low
	C-5 East	9/19/2018	1.4			1.9		1.2	1.4	1.9	1.3					1.9	0.7	1.0			1.6		Moderate*
Fish and amphibians	Study Are	ea-Wide		3.8		1.7		1.2	1.7	1.8	3.1				3.8	3.3	1.2	2.1					Moderate

Table 8-1:Summary of Sediment Samples with HQs > 1.0

*A moderate risk ranking was provided because three HQs were close to 2.0 (1.9), seven individual PAHs had HQs>1.0 and lead HQ >1.0

This table only present HQs>1.0. Sample-specific HQs are provided in Table 4 after the text.

Table 8-2: Risk Categories and Associated Criteria Used to Rank Sediment Samples Presented in Table 8-1 Based on Analytical Chemistry

Chemistry Risk Categories	Criteria
Low	Mean HQ-Q for PAHs < 1 and all HQ < 2;
Moderate	Mean HQ-Q for PAHs > 1 and at least one HQ \ge 2 but < 5
High	Mean HQ-Q for PAHs > 1 and at least one HQ \ge 5

For metals, HQs greater than 1.0 were obtained for cadmium, copper, lead and zinc, each in one sample only. These HQs were of low magnitude (1.1 to 1.6). An HQ of 1.2 was obtained for cadmium for sample C-4 West collected in September 2018. Note that SLR re-sampled location C-3 West and C-4 West in October 2019 and found that the HQs for copper and zinc were below 1.0 in this sample. Study area-wide HQs for metals were less than 1.0. indicating negligible risk based on the community level. Based on the above observations, metals in surface sediment are not considered to be risk drivers in the study area for non-SAR species.

The HQs obtained for nutrients (for which TRVs were available) were less than 1.0, indicating that direct risks from nutrients exposure were negligible.

HQs greater than 1.0 were obtained for one or more individual PAHs at several locations including: G-1 Comp, C-1 West, C-2 West, C-3 West and Centre, C-4 West and Centre, and C-5 East (Table 8-1). The HQs summarized in Table 8-1 indicate that potential risks are present in the study area for aquatic plants and benthic invertebrates exposed to PAHs in sediment. Generally, the magnitude of HQs and number of individual PAHs with HQs above 1.0 are highest at the upstream locations. HQs greater than 4 were only obtained at G-1 Comp and G-1 West in September 2018.

The individual PAH HQs presented in Table 8-1 were obtained by dividing individual PAH concentrations by the corresponding TRV. The resulting HQs show that the sediment samples have generally more than one PAH with an HQ greater than 1.0, and that the magnitudes of the HQs vary among individual PAHs and sampling locations. In addition, Table 8-1 shows that an HQ for total PAHs may be less than 1.0, while in the same sample several individual PAHs have HQs greater than 1.0. The PAHs HQ-Qs indicate that, based on chemistry only, location G-1 Comp and C-1 West (in 2018) contributed the most to the potential risks.

8.1.2 Fish and Amphibians

Study-area wide HQs greater than 1.0 for fish and amphibians were obtained for exposure to PAHs only (Table 8-1; Study Area wide HQs). These HQs indicates that there is a potential risk for fish and amphibians exposed to PAHs in sediment.

8.1.3 Invertebrates Species at risk

As indicated in Section 5.2.3, one SAR mussel species, Lilliput *(Toxolasma parvum),* has been observed in Cootes Paradise and Princes Point near the study area. For this reason, potential risks were conservatively assessed for SAR invertebrates based on lower-level TRVs. The resulting HQs are provided in Table 5 after the text. HQs above 1.0 were found at all sampling locations for most individual PAHs, metals and nutrients and indicated that risks to SAR invertebrates from exposure to sediment were likely.

8.2 Surface Water HQs

SLR calculated HQs based on the maximum concentration to evaluate the risk to aquatic plants, invertebrates, amphibians and fish. For invertebrates, HQs were calculated using TRVs protective of both the community as a whole and individual species, to account for the potential presence of SAR. HQs were also calculated on an individual sample-basis for COPC for which potential risks were identified on a study area wide basis. HQs for all final COPCs are provided in Table 6 following the text.

8.2.1 Invertebrates

The HQs for invertebrates (benthic and zooplankton) exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for invertebrates on a community level were calculated for aluminum and nitrite (as N). HQs were above 1 for aluminum, nitrite (as N) and iron when calculated on an individual basis.

CORC	EPC	Τ (μ	RV g/L)	H((EPC /	ຊ TRV)
COPC	(µg/L)	Community (Non-listed)	Individual (Listed)	Community (Non- listed)	Individual (Listed)
Aluminum	598	320	100	1.9	6.0
Iron (total)	1340	1740	300	0.8	4.5
nitrite (as N)	280	60	60	4.7	4.7

 Table 8-3:
 Invertebrate Hazard Quotients (HQ) for Surface Water

Bold HQ >1

On a sample-specific basis, six of seven samples had HQs above 1 for invertebrates exposed to iron (total) when calculated on an individual (SAR) level. All HQs were below 1 for invertebrates (community-level). HQs for nitrite (as N) were above 1.0 at all sample locations on both a community and individual level.

Four of seven samples had HQs above 1 for aluminum (total) for invertebrates (community level), while all sample locations had HQs > 1 when calculated on an individual (SAR) level. However, all HQs were below 1 when calculated using dissolved aluminum concentrations.

8.2.2 Aquatic Plants

The HQs for aquatic plants exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for aquatic plants were calculated for aluminum and nitrite (as N).

COPC	ЕРС (µg/L)	TRV (μg/L)	HQ (EPC / TRV)
Aluminum	598	460	1.3
Iron (total)	1340	1740	0.8
nitrite (as N)	280	60	4.7

Table 8-4: Aquatic Plant Hazard Quotients (HQ) for Surface Water

Bold HQ >1

On a sample-specific basis, HQs greater than 1.0 were calculated for nitrite (as N) at all seven sample locations. HQs greater than 1.0 were also calculated for total aluminum (2 of 7 locations), however all HQs were below 1.0 when calculated using dissolved aluminum concentrations. HQs for iron (total) were below 1.0 for aquatic plants at all sample locations.

8.2.3 Fish

The HQs for fish exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for fish were calculated for aluminum, iron and nitrite (as N).

COPC	ЕРС (µg/L)	TRV (μg/L)	HQ (EPC / TRV)
Aluminum	598	200	3
Iron (total)	1340	300	4.5
nitrite (as N)	280	60	4.7

Table 8-5:	Fish Hazard Quotients	(HQ) for Surface water
------------	-----------------------	------------------------

Bold HQ >1

On a sample-specific basis, six of seven samples had HQs above 1 for fish exposed to iron (total) in surface water. HQs > 1 were also calculated at 6 of 7 samples for aluminum (total), however all HQs were below 1 when calculated using dissolved aluminum concentrations. HQs were also below 1 for fish exposed to nitrite (as N) for all surface water samples.

8.2.4 Amphibians

The HQs for amphibians exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for fish were calculated for aluminum and nitrite (as N).

COPC	ЕРС (µg/L)	TRV (μg/L)	HQ (EPC / TRV)
Aluminum	598	320	1.9
Iron (total)	1340	1740	0.8
nitrite (as N)	280	60	4.7

Table 8-6: Amphibian Hazard Quotients (HQ) for Surface water

Bold HQ >1

On a sample-specific basis, all seven samples had HQs above 1 for amphibians exposed to nitrite (as N) in surface water. HQs > 1 were also calculated at 4 of 7 samples for aluminum (total), however all HQs were below 1 when calculated using dissolved aluminum concentrations. HQs were also below 1 for amphibians exposed to iron (total) in all surface water samples.

8.2.5 Interpretation of Surface Water Results

Potential risks were identified for invertebrates (non-listed), aquatic plants and amphibians due to aluminum (total) and nitrite (as N) concentrations in surface water. Potential risks were also identified for fish and invertebrate SAR (if present) due to exposure to all final COPCs (aluminum, iron and nitrite (as N)).

HQs for aluminum in surface water were above 1 for total aluminum concentrations only. When using dissolved aluminum concentrations, calculated HQs were below or equal to 1 for all receptor groups. It is noted that most of the bio-reactive aluminum is likely to be in the dissolved fraction, and the dissolved aluminum concentration excludes particulate aluminum which is less likely to be biologically reactive (BC ENV 2001). Based on the HQs for dissolved aluminum, risks to aquatic receptors are considered negligible.

Although aluminum, iron (total) and nitrite were identified as final COPCs in surface water, with the exception of nitrite these parameters were not identified as COPCs in sediment. No final sediment COPCs were identified as final COPCs in surface water, indicating that sediment is likely acting as a contaminant sink rather than a source. As noted in Section 5.4.1, most of the stream flow directly results from storm water input (HC 2008), therefore surface water concentrations are likely to vary significantly between high and low-flow events. In addition, as noted in Section 6.1.3, Chow-Fraser (1996) documented historically high nutrient conditions in the creek (circa 1996) and linked the high nutrients levels in Chedoke Creek to the CSOs prior to the discharge event.

Although potential risks to select receptors were identified due to exposure to surface water, based on the COPCs present compared to those in sediment, the historical water quality conditions in Chedoke Creek and the variability in surface water concentrations, surface water is unlikely to be the risk-driver for aquatic life within the study area.

HQs were not calculated for phosphorus as no TRVs were available. Although phosphorus concentrations in surface water within the study area exceed the benchmark for excessive algal growth of 30 μ g/L, surface water phosphorus levels are expected to be highly variable, and no algae blooms were observed within Chedoke Creek during the site visits.

8.3 Lines of Evidence (LOEs) for Select 2019 Sediment Samples

As indicated in Section 4.0, SLR collected several lines of evidences (LOEs) including, chemistry, toxicity and benthic invertebrate community structure data to assess potential risks to benthic invertebrates from sediment contamination.

Concentrations of contaminants in sediment may exceed the applicable guidelines; however, contaminant concentrations are not necessarily strongly correlated with bioavailability and toxicity. Because relationships between concentrations of contaminants in sediment and their bioavailability are poorly understood, determining effects of contaminants in sediment on aquatic organisms often requires a combination of approaches, including controlled toxicity tests and measures of effects on benthic communities inhabiting sediments (Ingersoll et al., 1997).

While individual measurement tools for assessing sediment contamination each have an inherent level of uncertainty associated with their application, the uncertainty associated with an overall risk assessment of sediment contamination is reduced by integrating these tools. The use of sediment chemistry, sediment toxicity, and benthic community data together establishes a weight of evidence linking contaminants in sediment to adverse biological effects (EC and MOE, 2008). The integration of multiple LOEs using a weight of evidence approach has the potential to substantially reduce uncertainty associated with risk assessment of contaminated sediments and will improve management decisions.

8.3.1 Approach

Additional assessment was conducted on a sub-set of locations in 2019 to obtain information from multiple LOEs for integration into a WOE analysis. The rationale for sample selection for the toxicity testing and BICS analysis LOEs is summarized below:

- Samples with a range of COPC concentrations were selected to represent the range detected across the study area; and
- Sediment samples were collected from areas noted to have the "worst-case" COPC concentrations based on previous sediment sampling events.

The locations that comprised the multiple LOEs assessment are presented below in Table 8-7.

Table 8-7:	Summary of 2019 Sediment Samples with Additional Lines of Evidence
------------	--

	Lines of Evidence					
Location	Chemistry	Toxicity	BICS			
C-1 West	\checkmark		\checkmark			
G1*	-	-	\checkmark			
G4	\checkmark	\checkmark	\checkmark			
C-3 West	\checkmark	\checkmark	\checkmark			
C-3 Centre / G5	\checkmark		\checkmark			
C-4 West	\checkmark		\checkmark			
C-5 East / G6	\checkmark		\checkmark			
R1 (Red Hill)	-	-	\checkmark			

*substrate at G1 and R1 are comparable and consist of cobble/gravel which did not allow for chemistry or toxicity analysis

Toxicity tests were used as a line of evidence to evaluate sediment quality at AEC 5, consistent with the Canada-Ontario Decision-Making Framework for assessment of contaminated sediment (EC and MOE, 2008) and Federal Contaminated Sites Action Plan (FCSAP) Guidance (EC, 2012). These documents recommend toxicity testing when bulk chemistry indicates that adverse effects may occur such as when one or more sediment COPCs exceed the applicable guidelines and/or background concentrations.

BICS analysis considers site-specific information integrating the fact that the potential effects may be due to elevated chemistry but also to other biological and physical stressors (e.g., particle size, competition/predation).

The results of each of the LOEs are discussed independently below and integrated in a weight of evidence (WOE).

8.3.2 Chemistry Line of Evidence

The 2019 sampling program targeted the locations with highest PAHs concentrations. However, the 2019 results had lower PAHs concentrations than those obtained in 2018. Only two samples, C-3 West and C-4 West had HQs greater than 1.0 for individual PAHs (Table 4, after the text). The categories and criteria used to describe the risks potentially associated with the 2019 samples are presented in Table 8-2. The following risk categories were obtained for the 2019 sediment samples using these criteria.

Location	Risk Category
C-1 West	Low – HQ-Q for PAHs was 0.6 and no HQs > 2
G1	Low – HQ-Q for PAHs was 0.6 and no HQs > 2
G4	Low – HQ-Q for PAHs was 0.6 and no HQs > 2
C-3 West	Moderate – HQ-Q for PAHs was 1.3 and 2 HQs \ge 2 but < 5 (2.1 and 3.0)
C-3 Centre / G5	Low – HQ-Q for PAHs was 0.6 and no HQs > 2
C-4 West	Low – HQ-Q for PAHs was 0.6 and no HQs > 2
C-5 East / G6	Low – HQ-Q for PAHs was 0.6 and no HQs > 2

Table 8-8: 2019 Sediment Samples Risk Categories

8.3.3 Toxicity Test Line of Evidence

The toxicity test LOE identifies risk categories based on the survival and growth results for the freshwater midge (*C. dilutus*) and the freshwater amphipod (*H. azteca*), as described in Section 7.2.

According to the framework provided by EC and MOE (2008), "sediments with less than a 20% difference between controls and test/reference sediments are not considered to be toxic, even if the difference is statistically significant". For this reason, the toxicity test results were further assessed using the typical approach in a sediment quality triad to interpret the magnitude of the response (McDonald 2003, EC and MOE, 2008). The toxicity tests results were categorized into one of three risk categories based on the adverse effect (toxic response) elicited, as shown below in Table 8-9.

Risk Categories	Criteria
Low	A reduction of less than 20% in all of the test endpoints is considered indicative of a negligible biological effect (e.g., more than 80% survival).
Moderate	A reduction greater than 20% but less than 50% in one or more of the test endpoints is considered indicative of a moderate biological effect (e.g., less than 80% survival but greater than 50% survival).
High	A reduction greater than 50% in one or more of the test endpoints is considered indicative of a severe biological effect (e.g., less than 50% survival).

Table 8-9: Risk Categories and Criteria for Toxicity LOE

HQ = hazard quotient

The resulting risk categories and a summary of the results used to assign the categories to each sample are presented in the table below.

Sample	Risk Category (based on the magnitude of toxicity response relative to lab control)
C-1 West	Moderate no reduction in <i>C. dilutus</i> survival or growth; 8% decrease in <i>H. azteca</i> survival, 29% decrease in <i>H. azteca</i> growth
G1	-
G4	High - no reduction in <i>C. dilutus</i> survival or growth; 35% decrease in <i>H. azteca</i> survival, 64% decrease in <i>H. azteca</i> growth
C-3 West	High - no reduction in <i>C. dilutus</i> survival or growth; 51% decrease in <i>H. azteca</i> survival, 79% decrease in <i>H. azteca</i> growth
C-3 Centre / G5	Moderate no reduction <i>C. dilutus</i> survival or growth; 12% decrease in <i>H. azteca</i> survival, 43% decrease in <i>H. azteca</i> growth
C-4 West	High - no reduction in <i>C. dilutus</i> survival or growth; 98% decrease in <i>H. azteca</i> survival, 57% decrease in <i>H. azteca</i> growth
C-5 East / G6	High - no reduction in <i>C. dilutus</i> survival or growth; 39% decrease in <i>H. azteca</i> survival, 71% decrease in <i>H. azteca</i> growth

Table 8-10: Risk Categories for the Toxicity Testing LOE

There were no differences (significant or greater than 20%) in *C. dilutus* survival and growth between any of the sample locations and the negative laboratory control. A low risk ranking is obtained for all samples based on the *C. dilutus* toxicity test. The moderate and high risks rankings are based on the *H. hazteca* toxicity test.

A review of the chemistry results was completed to identify the potential risk-drivers. The review focuses on the *H. azteca* survival endpoint. The sample with the greatest reduction in mean percent survival (98%) for *H. azteca* were C-4 West followed by C-5 East/G6 and C-3 West. A comparison of the chemistry results to the TRV indicated that 2 PAHs and zinc were above the TRVs in C4-West and that 6 PAHs were above the TRVs in C-3 West. PAHs and metals in all other samples were below the TRVs (Table 8-11). BV noted that a strong hydrocarbon odour was noticed in all replicates of sample C-4 West at the end of the test. The results indicated that PAHs likely contributed to the adverse effects seen in C-4 West and C-3 West. *H. azteca* difference in sensitivity to PAH mixtures in sediment appears to be two-fold compared to chironomids (Verrhiest et al. 2001). While TKN and phosphorus were below the sediment TRV, the highest level of TKN and phosphorus were obtained in C-4 West and C-3 West. In addition, the highest level of total ammonia in sediment and in the overlying water at the test initiation were obtained in C-4 West and C-5 East. Total ammonia decreased during the 14-day toxicity test, which indicates that it is linked to the study area and not an artifact of the tests. Total ammonia likely

contributed to the observed adverse effects as *H. azteca* is more sensitive to ammonia than *C. dilutus*.

C-4 West, C-3 West and C-5 East/G6 also had the highest porewater BOD. The toxicity test procedure included aeration of the samples and dissolved oxygen, measured every second days, ranged from 8.2 mg/L to 8.6 mg/L. Environment Canada (2017) indicated that *H. azteca* can be exposed to low levels of oxygen for an extended period of time, with reported 96-h and 30-d LC50s less than 0.3 mg O_2/L . For this reason, in controlled laboratory conditions, dissolved oxygen levels are not considered to have contributed to the observed toxicity.

Sample	PAHs	Metals	Nutrients
C-5 East / G6	<trv< td=""><td><trv< td=""><td><trv< td=""></trv<></td></trv<></td></trv<>	<trv< td=""><td><trv< td=""></trv<></td></trv<>	<trv< td=""></trv<>
C-4 West	2 PAHs > TRV	Zinc >TRV	<trv< td=""></trv<>
C-3 West	6 PAHs > TRV	<trv< td=""><td><trv< td=""></trv<></td></trv<>	<trv< td=""></trv<>
C-3 Centre / G5	<trv< td=""><td><trv< td=""><td><trv< td=""></trv<></td></trv<></td></trv<>	<trv< td=""><td><trv< td=""></trv<></td></trv<>	<trv< td=""></trv<>
G-4	<trv< td=""><td><trv< td=""><td><trv< td=""></trv<></td></trv<></td></trv<>	<trv< td=""><td><trv< td=""></trv<></td></trv<>	<trv< td=""></trv<>
C-1 West	<trv< td=""><td><trv< td=""><td><trv< td=""></trv<></td></trv<></td></trv<>	<trv< td=""><td><trv< td=""></trv<></td></trv<>	<trv< td=""></trv<>

 Table 8-11: COPCs above TRV in Samples Submitted for Toxicity Tests

8.3.4 BICS Line of Evidence

The sediment samples were submitted for BICS analysis as described in Section 7.3. A reference location with a comparable substrate was not found during the 2019 field sampling program. For this reason, an evaluation of potential risks based on comparison to a reference site with soft sediment could not be completed.

The benthic community in the study area is dominated by taxa that are tolerant to environmental stress and urbanization. The cluster analysis completed to assess differences in community structure among the 2019 benthic invertebrate sampling locations indicated that the invertebrate communities were not statistically distinguishable, except for the community at location G1 which had a lower number of species and total specimens count. Based on these results, there was little support for classifying degrees of impairment among locations (except for G1). Therefore, a very poor impairment rating (based on the HBI) was assigned to all locations based on the presence of pollution stress-tolerant taxa in 2019.

8.3.5 Weight of Evidence

The final step within the benthic community assessment was to integrate the three LOEs (results of the chemistry, toxicity and BICS) into an overall weight of evidence (WOE) on a sample by sample basis. Each location was assigned a final risk ranking based on the integrated risk category results for the three LOEs.

The final WOE risk rankings were assigned as follows:

- **Negligible Risk Ranking** risk category of low in the chemistry and toxicity LOEs; BICS does not show impairment.
- Low Risk Ranking risk category is low in at least 2 of the 3 LOEs. None of the LOEs have a risk category of high; BICS shows minimal impairment (HBI very good to good).

- **Moderate Risk Ranking** risk category of low or moderate in at least 2 of 3 LOEs. Only one LOE with a high LOE risk category if combined with at least one low LOE risk category.
- **High Risk Ranking** risk category of high in 2 of 3 LOEs, or one high combined with two moderate LOE risk categories. Shows a severe level of effects (reduction greater than 50% in survival in one or more toxicological endpoints).

BICS data is usually considered as the strongest LOE and can be assigned more weight compared with the other LOEs; for example, EC and OMOE (2008) recommend that remediation decisions be based on biology (i.e., BICS results). However, there is a moderate level of uncertainty related to the results of the BICS analysis as an adequate reference could not be found for comparison. Therefore, equal weighting was assigned to both the toxicity and BICS LOEs, rather than weighting one over the other. In addition, the results of the toxicity tests and BICS were aligned in that there was no toxicity observed in the chironomid toxicity test and chironomids were observed to be the dominant species in the study area.

The LOE risk classifications assigned to the seven sediment locations are summarized in Table 8-12. Uncertainties related to the LOEs are discussed in Section 9.0.

		Risk Ca	tegories		WOE Risk Ranking
Location	Chemistry LOE	Toxicity LOE <i>C. dilutus</i>	Toxicity LOE <i>H. azteca</i>	BICS LOE	
C-1 West	Low	Low	Moderate	Impaired – HBI very poor	Moderate
G1	-	-	-	Impaired – HBI very poor	High (only one LOE high uncertainty)
G4	Low	Low	High (growth end point only)	Impaired – HBI very poor	High
C-3 West	Moderate	Low	High	Impaired – HBI very poor	High
C-3 Centre / G5	Low	Low	Moderate	Impaired – HBI very poor	Moderate
C-4 West	Low	Low	High	Impaired – HBI very poor	High
C-5 East / G6	Low	Low	High	Impaired – HBI very poor	High

 Table 8-12:
 WOE Risk Rankings for Sediment Samples

9.0 UNCERTAINTY ANALYSIS

There are four broad types of uncertainty which parallel each of the main stages of a risk assessment, and their inherent assumptions. These types of uncertainty are listed below and briefly discussed in the context of the ERA in the remainder of this section.

- Problem formulation uncertainties
- Exposure assessment uncertainties
- Toxicity/effects assessment uncertainties
- Risk characterization uncertainties

9.1 **Problem Formulation Uncertainties**

9.1.1 Data Collection and Evaluation Uncertainties

Quantitative components within risk assessments are only as accurate as the accuracy of chemical characterization of media in both space and time. Data representative of current conditions to which receptors may be exposed have been considered in this risk assessment.

Risk assessments rely on the accuracy of the parameter characterization and analysis performed at a site. The data used in this report was collected by several agencies over the period of 2018 to 2019 and data used to analyze trends dated back to 2003. All of the data considered in the risk assessment is believed to be of good quality. The chemical analyses for the 2018 and 2019 data were performed by BV and the City of Hamilton laboratory. Both laboratories are accredited by the Canadian Association for Laboratory Accreditation. Laboratory Quality Assurance Quality Control (QA/QC) samples including blanks, duplicates, and matrix spikes are routinely run with analytical samples, and laboratory data meets all quality objectives prior to being released. SLR also has a standardized corporate QA/QC program which includes following SLR's standard operating procedures and standard industry practices, performing quality checks on historical data.

No PAHs were detected in surface water during the surface water sampling program, however the laboratory detection limits were above the PWQOs or CCME WQGs for select PAH parameters (anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, perylene, phenanthrene and pyrene).

With the exception of phenanthrene, all of the PAH parameters with detection limits above criteria are high molecular weight (HMW) PAHs with low solubility. PAHs released into water bodies will strongly adsorb to sediments and suspended matter, and HMW PAHs tend to be less soluble than LMW PAHs, therefore HMW PAHs are unlikely to be present in surface water. Phenanthrene is a LMW PAH, and therefore has the potential to be in surface water. However, although the detection limit for phenanthrene is above the PWQO, it is below the CCME WQG, therefore uncertainty associated with phenanthrene concentrations in surface water is low.

Based on the comprehensive QA/QC protocols performed on the data by the laboratory and by SLR, the analytical data is considered to be of good quality and suitable for use in the ERA. Consequently, it is considered unlikely that the uncertainties associated with the laboratory analytical data may have significantly underestimated media concentrations so as to impact the identification of COPCs in the study area.

Though every effort was made to include a local sediment reference location in a comparable urban creek, i.e., Red Hill Creek, due to the nature of the substrate (i.e., cobble) no reference sediments suitable for chemical or toxicological analyses were identified.

9.1.2 COPC Screening Uncertainties

The COPC screening process is designed to be conservative to avoid inadvertently omitting substances which may adversely affect ecological receptor populations during the screening analysis. The conservative nature of the screening process is predicated on using the maximum concentrations from each dataset and using low level type screening values (e.g., PWGO or PSQG LELs).

9.1.2.1 Depth-Specific COPC Screening

As noted in Section 4.3.1, COPC screening was completed for the shallow sediment (0-0.15 m) dataset to assess risks where the majority of ecological life may be exposed (MOE 2008). Following MECP guidance, deeper sediment (i.e., greater than 0.15 m) has also been considered to determine whether significant depth-specific differences were present, and to evaluate uncertainties should surficial sediment be removed and deeper sediment exposed. The deep (>0.15 m) sediment dataset was provided in Appendix D, and the results of the COPC screening for the deep dataset is provided in Appendix H. A summary of the COPCs for the deep sediment dataset is provided in the table below. For comparison, the shallow COPC screening results are also provided.

COPC Group	Sediment (0-0.15) (See Section 5.4.2.1)	Sediment (>0.15)
Metals	Arsenic, cadmium, chromium, copper, lead, manganese, mercury and zinc	Arsenic, cadmium, chromium (III+VI), copper, lead and zinc
PAHs	Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs	Acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs
Nutrients	Total Kjeldahl nitrogen (TKN) and phosphorus	Total Kjeldahl nitrogen (TKN) and phosphorus

Table 9-1: Depth-Specific Sediment COPC Summary

As shown in Table 9-1, all shallow sediment COPCs were also identified as COPCs in the deep dataset (0.15+) with the exception of manganese, mercury and acenaphthylene. There is uncertainty associated with the concentrations of manganese and mercury in deep sediment, since these parameters were not analysed as part of the 2018 program. Acenaphthylene was not selected as a COPC since it was not detected in the deep sediment. Although the detection limit exceeded the screening benchmark (ISQG), uncertainty with the selection of this parameter as a COPC is low, since it is also assessed as part of total PAHs.

9.1.2.2 Uncertain COPCs

For sediment and surface water, a parameter was retained as a COPC if the maximum concentration exceeded the applicable screening benchmark described in Section 2.0. If no benchmark was available for a parameter, it was retained as an uncertain COPC. Uncertain COPCs retained in sediment and surface water are summarized in the table below.

COPC Group	Uncertain COPC	Receptor Group (Exposure Pathway)	Uncertainty Level (Low/Medium/High)
		Sediment	
	Aluminum		Low; naturally occurring in aluminosilicate silts and clays, which are common in southern Ontario.
Metals	Antimony	Aquatic Life (Direct Contact)	Low; 95%UCLM for antimony of 0.93 mg/kg is below the Table 1 background concentration for soil of 1 mg/kg (MOE 2011a).
	Silver		No aquatic TRVs available for sediment
PAHs	1- methylnaphthalene	Aquatic Life (Direct Contact)	Low; 2-methylnaphthalene assessed. No guidelines or toxicity values specific to 1-methylnaphthalene are available.
Nutrients	Ammonia and ammonium (as N) ammonia as N nitrogen (total)	Aquatic Life (Direct Contact)	Low; algae blooms not observed during site visits. Nutrients generally elevated in the watershed.
Bacteria	Fecal Coliforms	Aquatic Life (Direct Contact)	Low; <i>E. coli</i> is the most suitable and specific indicator of fecal contamination (MOE 1994).
		Surface Water	
Metals	Iron (total), manganese	Wildlife (Ingestion of Drinking Water)	Low; below available human health drinking water guidelines ¹⁵
PAHs	None	None	-
Nutrients	Kjeldahl nitrogen total silicon	Aquatic Life (Direct Contact) Wildlife (Ingestion of Drinking Water)	Low; algae blooms not observed during site visits. Nutrients generally elevated in the watershed. Other nutrients considered as COPCs in surface water based on available screening benchmark.
Bacteria	-	-	Low; addressed as sediment COPCs, main concern is human health

Table 9-2 Uncertain COPC Summary

9.1.3 Receptor Identification Uncertainties

Aquatic plants were assessed at the community level. There are no documented aquatic plants at risk in the study area. The level of uncertainty associated with considering this receptor at the community level is considered to be low.

Aquatic invertebrates were assessed at the community level and at the individual level. There are no documented aquatic invertebrates at risk in the study area; however, one SAR mussel species

 $^{^{15}}$ Ontario human health drinking water values for iron and manganese are based on aesthetic objectives (, therefore the Health Canada maximum allowable concentration (MAC) was selected for manganese (120 μ g/L). No MAC was available for iron, therefore BC Contaminated Sites Regulation drinking water value for iron (6500 μ g/L) was selected.

has been documented in Cootes Paradise near the outlet of Chedoke Creek. Based on the lack of survey sites within Chedoke itself, this SAR species has been retained for further assessment. The level of uncertainty associated with considering aquatic invertebrates at the community and individual levels is low.

Aquatic-dependent wildlife receptors were selected by identifying the bird and mammal species potentially using the study area for all or parts of their life cycles. Field surveys were not conducted specifically to determine the occurrence of potential wildlife species thus SLR wildlife observations were incidental in nature and may have missed seasonal presence of some organisms. Information on aquatic-dependent wildlife receptors was gathered from specialised databases and past consultant reports, and a comprehensive list of species potentially present in the study area was developed. The level of uncertainty associated with the selection of receptors of concern is considered to be low.

9.1.4 Exposure Pathway Uncertainties

Only pathways considered to be complete and potentially significant were included for quantification in the ERA. Identification of a complete exposure pathway is based on a rigorous process. Pathways are considered complete if one or more constituents are present in a medium under consideration, and if a route of entry (i.e., direct contact) is present. The decision regarding whether a pathway is significant is based on several factors, including expected magnitude of exposure (e.g., contaminant concentration, frequency and duration of exposure, etc.), likelihood of exposure (e.g., based on site physical features, presence or absence of habitat), properties of a parameter in a given medium, and availability of methods to quantify exposure.

9.2 Exposure Assessment Uncertainties

9.2.1 Estimated Exposure Concentrations

Use of the selected EPCs (95% UCLM for sediment, maximum for surface water) is conservative and will tend to overestimate exposure. EPCs are not distributed evenly throughout the site. Therefore, sediment EPCs are expected to overestimate exposure to aquatic ecological receptors on a study area-wide basis.

Although there is uncertainty associated with a lack of seasonal data for surface water, the use of maximum concentrations is likely to result in an over estimation of risk within the study area.

9.2.1.1 Depth-Specific EPCs

To assess the differences between sediment EPCs for the shallow and deep dataset, 95 UCLMs were calculated for both datasets and compared. For PAHs, 13 of the 17 PAH parameters analysed in both datasets were lower in the deep dataset than the shallow dataset, including total PAHs, which was 27% lower in the deep dataset (26.4 mg/kg in shallow, 19.3 mg/kg in deep). The 95% UCLMs for the deep dataset were above the shallow dataset for acenaphthene, fluorene, 2-methylnaphthalene and naphthalene. Based on the 95%UCLM concentration for total PAHs in the shallow dataset vs. the deep dataset, higher risks to aquatic receptors due to PAH exposure are expected to result from exposure to shallow sediment, therefore uncertainty is expected to be low.

95% UCLMs for 7 of the 16 metals parameters analysed in both datasets were higher in the deep dataset than the shallow dataset (antimony, arsenic, barium, cadmium, chromium (total), lead and

silver). Of these parameters, arsenic, cadmium, chromium (total) and lead were retained as final COPCs in shallow sediment, while antimony and silver were identified as uncertain COPCs. There is some uncertainty with the selection of EPCs for arsenic, cadmium, chromium (total) and lead as the 95%UCLM concentrations for the deep sediment dataset would have resulted in higher HQs for these parameters. However, since the shallow dataset represents the area where most sediment-dwelling organisms live, uncertainty under current conditions is considered low. For antimony uncertainty is low as the 95%UCLM for antimony is only marginally above the Table 1 Background Concentration for Soil (1.2 mg/kg vs. the Table 1 background concentration of 1 mg/kg). Uncertainty due to depth-specific differences in barium is also considered low as the 95%UCLM concentration for barium of 205 mg/kg in the deep dataset is below the Table 1 background concentration (210 mg/kg). The 95% UCLMs for the deep dataset were below the shallow dataset for beryllium, boron, copper, molybdenum, nickel, thallium, uranium, vanadium and zinc.

For nutrients, both the TKN and phosphorus 95% UCLM concentrations were higher in the deep sediment dataset than the shallow, however the concentrations were comparable to the historical ranges of TKN (120 to 1250 mg/kg) and TP (1000 to 1140 mg/kg) in sediment described in Section 6.1.3. Depth-specific uncertainty related to nutrients is considered low.

9.3 Effects Assessment Uncertainties

Toxicity information for many parameters is often limited. Consequently, there are varying degrees of uncertainty associated with the toxicity values used to determine risk estimates. These uncertainties may result in overestimates or underestimates of risk. PEL-type TRVs were selected for sediment for non-listed species and lower-level SQGs were selected for SAR invertebrates (based on the potential presence of the Lilliput mussel).

TRVs for aquatic plants, fish and amphibians in sediment were not available from the sources of information reviewed.

The PEC and PEL are developed based toxicity tests with benthic invertebrates as it is assumed that benthic invertebrates are generally the organisms most exposed to the sediment and the most sensitive of the aquatic life receptors. Based on this assumption, the uncertainty associated with applying TRVs for benthic invertebrates to evaluate the potential risk to aquatic life is considered to be low.

A TRV could not be identified for silver in sediment. Silver was retained as a COPC based on the maximum concentration (3.3. mg/kg) exceeding the ON Sediment Table 1 Background concentration of 0.5 mg/kg in eight out of the twenty-two sediment samples. The ERA indicated that metals were not the risk drivers in the study area. The level of uncertainty associated with the lack of a TRV for silver is expected to be low.

For surface water, LOAELs and NOAELs were selected from reputable agencies for listed and non-listed species, respectively. The use of PEL- type TRVs for non-listed species and LOAELs or NOAELs for listed species was considered a conservative approach since these values have been based on standardized approaches used by regulatory agencies using carefully scrutinized toxicity datasets. The use of these values as TRVs is not expected to lead to underestimates of risk.

Iron Precipitate

Toxicity values for iron were selected based on reviewed toxicological studies, rather than physical effects due to precipitation and creation of iron floc. The PWQO derivation document for iron (MOE 1979) indicated that while there is considerable variation in acceptable concentrations of iron, there is general agreement that the hydroxide precipitate interferes with respiration through the chorion in fish eggs and impairs gill function of gill-breathing organisms by occlusion of the lamellae. The PWQO for total iron was set at 300 μ g/L to prevent the formation of ferric hydroxide precipitate or "floc". Evidence of significant iron precipitate within the study area was not observed by SLR during the sit visits, therefore a toxicology based TRV was considered more appropriate for assessment of iron effects to aquatic life. Should signs of iron precipitate be observed in the future, further assessment may be required.

9.3.1 Toxicity Testing and BICS Analysis

Additional quantitative assessment was completed to assess risks to benthic invertebrates exposed to COPCs in sediment. Chronic sediment toxicity tests were completed using 10 and 14-day survival and growth tests for the freshwater midge, *C. dilutus* and freshwater amphipod, *H. azteca,* respectively. Testing evaluated significant differences between laboratory controls and impacted samples for either survival or growth endpoints. A total of six impacted samples in the study area were tested. The health histories of the test organisms used in the exposures were acceptable as organism mortality did not exceed 10% during shipping. The tests met all validity criteria outlined in the applicable reference methods. The level of uncertainty associated with the toxicity testing LOE is moderate. A relatively high number of sediment samples were submitted for toxicity testing based on the size of the study area; however, the sediment samples did not necessarily capture the elevated chemistry associated with the highest HQs. There is a high level of ecological relevance associated with this LOE as it assesses potential impacts using biologically relevant organisms under controlled laboratory conditions.

The level of uncertainty associated with the BICS LOE is high. The data suggest that there is an altered community structure due to past and ongoing point sources and nonpoint sources of pollution and urbanization, and an adequate reference location could not be identified. However, there is a high level of ecological relevance associated with this LOE as it directly measures site-specific benthic community impacts.

Measurement errors can also influence the results of the BICS analysis, for example, misidentification of benthic invertebrate species can affect the calculations of the metrics that are used to classify sediment samples as impaired or not impaired. Since 100% of each sample was identified (i.e. no sub sampling), measurement errors related to the BICS analyses are unlikely to influence the results of the risk evaluation.

9.4 Risk Characterization Uncertainties

A combination of tools was used in this risk assessment to qualitatively and quantitatively characterize risks to aquatic receptors. The derivation of a hazard quotient using a conservative TRV to assess risk is a quantitative estimate designed to result in overestimation of risks. Risk estimates attempt to address the variability in exposure point concentrations, or variability in toxicity amongst individuals, by using conservative estimates for these factors. In doing so, the deterministic approach generally overestimates risk, due to compounding/magnification of conservative decisions and assumptions a risk assessor will make in each step or value used in

the risk assessment. In addition, the uses of multiple LOEs to characterize overall risk to the benthic invertebrates lowers the uncertainty.

10.0 SUMMARY AND CONCLUSIONS

The purpose of the ERA was to evaluate the potential risks to aquatic plants and invertebrates, fish, amphibians and aquatic-dependent wildlife associated with exposure to contaminants of potential concern (**COPCs**) in sediment and surface water in the study area. The ERA was conducted in response to the sewage discharge.

Sediment (22 samples) and surface water (8 samples) samples collected in 2018 and 2019 represent the water and sediment quality within the study area. The sediment samples used to assess risk in the ERA are located within the top 0 to 0.15 metres of sediment, which is most commonly inhabited by aquatic organisms.

The conceptual site model (CSM) developed in this ERA identified potential pathways by which aquatic life within the study area may be exposed to contaminants in sediment and surface water (termed "complete exposure pathways"). Those exposure pathways include the following:

- Aquatic life such as aquatic plants and algae, invertebrates, fish and amphibians may have direct contact with (i.e. ingest or absorb through skin contact) metals (arsenic, cadmium, chromium, copper, lead manganese, mercury and zinc), PAHs (acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs) and nutrients (TKN and total phosphorus) in sediment; and
- Aquatic life such as aquatic plants and algae, invertebrates, fish and amphibians may have direct contact with (i.e. ingest or absorb through skin contact) metals (aluminum and iron) and nutrients (nitrite and total phosphorus) in surface water.

Mammals and birds are not expected to have significant contact with contaminants in sediment and surface water within the study area. Species in these groups are unlikely to spend significant time within the study area due to the lack of food-sources and habitat within the study area and the presence of more suitable habitat in nearby Cootes Paradise Marsh. In addition, based on the results of the ERA, contaminants in sediment and surface water within the study area are not likely to significantly accumulate in the food chain, and are therefore unlikely to pose a risk to higher trophic level wildlife (i.e. carnivorous birds, mammals and reptiles).

The ERA assessed risks by calculating risk estimates known as hazard quotients, (or "HQs") and comparing to MECP recommended risk target levels. Risk estimates were calculated for both mobile wildlife (i.e. amphibians, reptile and fish) and less mobile communities (i.e. aquatic plants and invertebrates) by assessing exposure on a study wide, and on individual sample location basis. Potential risks to aquatic life due to direct contact with contaminants in surface water were calculated conservatively using the maximum measured concentration within the study area. Where a potential species at risk (SAR) was identified, more conservative values were used to calculate the risk estimate.

In summary, the risk estimate (i.e. HQ) evaluation identified the following:

• For the majority of aquatic life (i.e. non-species at risk), risks due to direct contact with metals in sediment and surface water were low to negligible.

- Risks were also negligible for non-SAR aquatic life and amphibians due to direct contact with nutrients in sediment, however toxicity information was limited for some species groups, so there is some uncertainty in the risk estimates for these receptors. Potential risks were identified for these aquatic life and amphibians for nitrite in surface water.
- Potential risks were identified for aquatic life and amphibians for direct contact with PAHs in sediment on a study-area basis. HQs greater than the risk target level were calculated for one or more individual PAHs at several locations including: G-1 Comp, C-1 West, C-2 West, C-3 West and Centre, C-4 West and Centre, and C-5 East. Generally, the magnitude of HQs and number of individual PAHs with HQs above 1.0 are highest at the upstream locations.
- One SAR mussel species, Lilliput *(Toxolasma parvum),* has been observed in Cootes Paradise Marsh and Princess Point near the study area. For this reason, potential risks were assessed more conservatively for SAR invertebrates using lower toxicity values protective of individuals rather than the overall community. HQs above the target level of 1.0 were found at all sampling locations for metals and/or PAHs in sediment and nutrients in surface water, indicating likely risks to SAR invertebrates from exposure to sediment and surface water.

The aquatic vegetation in the study area was qualitatively evaluated by SLR biologists during the 2019 field program. The aquatic plant life that was observed was consistent with what would be expected, considering the context of the study area (i.e., based on the physical features and water flow patterns of Chedoke Creek) and the surrounding urban landscape.

A weight of evidence (WOE) assessment was completed on a subset of sediment samples (seven in total) to further evaluate risks to benthic invertebrates. Based on the WOE results, there is a moderate to high potential for risks to benthic invertebrates inhabiting sediments in the study area. However, the benthic community observed in the study area is consistent with that observed in streams in similar urban watersheds (Coles et al, 2012). Urban development is often associated with a loss of sensitive species and an increasing percentage of pollution tolerant species due to a high percentage of impervious cover (i.e. concrete, asphalt, roof tops etc.) (Cole et al 2012).

The results of the ERA indicate that the contaminants in the study area sediment, as well as the sediment oxygen demand resulting from the degradation of natural organic detritus (plants, organisms etc.) and/or organic waste, likely limits the benthic invertebrate community makeup to stress tolerant organisms. Review of the contaminant distribution indicates that elevated levels of PAHs, certain metals, nutrients and bacteria have been an ongoing issue in Chedoke Creek sediment and/or surface water prior to and after the 2014-2018 discharge event, including in areas upstream of the Main/King CSO.

11.0 RECOMMENDATIONS

As indicated in the Introduction section this ERA was prepared in response to Director's Order Number 1-MRRCX. Item 1 of the Order required a written report to include: 'an evaluation of the environmental impact to the creek from sewage discharged by the City between January 28, 2014 and July 18, 2018, an identification and evaluation of sewage remaining in the creek, identification of any anticipated on-going environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek.'

The findings of this ERA and Wood (2019) indicated that some of the COPCs within the study area sediment are likely associated with the 2014-2018 Main/King CSO discharge event. However, both this ERA and the Wood Report (2019) indicated that the COPCs, as well as sediment depositions within the study area, have many different point and nonpoint sources. In addition, the various CSO and stormwater outfalls in the Chedoke Creek sub-watershed have discharged sewage and stormwater prior to, during and subsequent to the 2014-2018 Main/King CSO discharge. Wood completed an analysis of sediment in the study area to support the design of remediation options and reported that "*the sediment characteristics from the prior discharge events are likely to be similar to, and indistinguishable from, the 2014-2018 Main/King CSO discharge event*" (Wood 2019). SLR agrees with this statement. In addition, the findings of the ERA indicate that elevated concentrations of COPCs have been a persistent and ongoing issue in Chedoke Creek sediment and/or surface water prior to and after the 2014-2018 discharge event, including in areas upstream of the Main/King CSO.

Remediation options discussed in the Wood Report (2019) targeted solids and TKN loading from the discharge. Wood (2019) indicated that approximately 90% of the total phosphorus mass load appeared to have already been solubilized or transported downstream immediately following taking corrective actions at the Main/King CSO tank overflow gate. Subsequent sediment sampling has shown that TKN in surface sediment was below the PSQG LEL in all sediment samples obtained in 2019. For the above reasons, it is not possible to target remediation to COPCs and sediments solely associated with the 2014-2018 Main/King CSO discharge.

Although effects may be related in part to storm water and urban runoff and sewage, based on the degraded conditions generally observed in the study area, and the fact that fecal bacteria are still found in sediment, remediation may be beneficial, nonetheless. The proposed remediation action plan (RAP) provided by Wood (2019) evaluated the following options:

- Physical Capping
- Chemical Inactivation
- Direct Removal
- No-Action Alternative

The above proposed remediation options and no-action alternative are described in Wood (2019) and briefly summarized and evaluated below using additional information not yet available when Wood (2019) was prepared.

Physical Capping

"Physical capping is accomplished by applying a cover of clean material on top of the contaminated sediment to effectively eliminate or reduce biogeochemical and physical interaction with the overlying water column" (Wood 2019).

Physical capping was not recommended by Wood (2019) based on the minimal water depth and high flows within the study area, which would limit the effectiveness of this method. In addition, the surface water sampling program completed in 2019 indicated that the metals and PAHs present in elevated concentrations in the sediment were not COPCs in surface water. Based on the findings of the ERA, physical capping is **not recommended**.

Chemical Inactivation

"Chemical inactivation of sediment is utilized worldwide to reduce the release of phosphorus from sediments to the water column via processes such as diffusion and resuspension" (Wood 2019).

Chemical inactivation only addresses phosphorus and 90 percent of the phosphorus load is no longer in the study area. The ERA indicates other sediment COPCs such as PAHs and certain metals likely are primary contributors to the degraded sediment quality observed within the study area. Chemical inactivation would not address these COPCs. Therefore, chemical inactivation is **not recommended**.

Direct Removal

Wood (2019) recommended physical removal of the organic sediment within the study area as it would "directly address the three primary sources of potential impairment including nutrient contamination, bacteriological contamination, and habitat loss". Hydraulic dredging was the recommended method as it provides "an efficient means to remove the target sediments down to a specific elevation without the need to disturb areas outside of the necessary dredge footprint". A conceptual dredge design is provided in Wood (2019).

While Wood (2019) identified the three primary sources of potential impairment as 'nutrient contamination, bacteriological contamination, and habitat loss', SLR would identify additional persistent COPCs such as PAHs, and certain metals. Hydraulic dredging would likely address the fecal coliform remaining in the surface sediment (<0.15 m). Except for one location (C3-West), fecal coliforms were not detected in deeper sediment in 2018. However, hydraulic dredging may not address nutrient contamination. Sediment results in 2019 indicated that TKN was below the LEL. In addition, most of the total phosphorus load is no longer in the study area and total phosphorus concentrations in sediment in Chedoke Bay were comparable to historical concentrations. Thus, removal of key parameters associated with sewage discharge by dredging may not be warranted as these parameters have not persisted subsequent to the Main/King CSO discharge event. However, hydraulic dredging may address other COPC such as PAHs and certain metals (e.g., copper) that are likely contributing to the adverse effects. In addition, dredged areas would be subject to re-contamination resulting in temporary benefits of sediment removal. For these reasons, advantages and disadvantages associated with dredging are shown in Table 11-1.

Advantages	Disadvantages
 Improved sediment quality after removal of COPCs The ongoing presence of fecal bacteria that are still found in sediment Opportunity to enhance riparian and aquatic habitat in dredged areas (although habitat enhancement could occur even without dredging) 	 Disruption of aquatic habitat in dredged areas including removal of benthic organisms and aquatic plants Sediment removal may cause potential harm to a species at risk mussel Short-term benefit given likelihood of recontamination of sediments given persistent presence of COPCs in Chedoke Creek sediments, unless management of input water quality occurs Temporary benefit may be shortened further if natural re-colonization of dredged area is delayed given the likely paucity of benthic invertebrate populations in the upstream concrete channel reaches to provide individuals to drift and re-populate lower reaches of the Creek Low dissolved oxygen and continued inputs from upstream urban runoff may limit re-colonization by sensitive species Nutrient contamination typically associated with sewage discharge have reduced to the extent that TKN concentration is below LEL and most of the total phosphorus load is no longer in the study area. Furthermore, total phosphorus concentrations in sediment in Chedoke Bay were comparable to historical concentrations, thus the rationale to address potential effects of the CSO discharge are largely abated.

Table 11-1: Some Effects Associated with Sediment Removal by Dredge in Chedoke Creek.

Given the strength of the disadvantages associated with direct sediment removal (dredging), and that nutrients appear comparable to historical concentrations, this remedial activity is **not recommended** at this time.

No-Action Alternative

The ERA has shown that PAHs, certain metals, nutrients and bacteria in surface water and/or sediment have been an ongoing concern (above PSQG LELs or PWQOs) in Chedoke Creek and/or Chedoke Bay and that the benthic invertebrate community makeup is limited to stress tolerant organisms. In addition, toxicity tests completed in controlled laboratory conditions indicated that the sediment elicited adverse effects in the amphipod *H. azteca*. Finally, while fecal coliform concentrations have decreased since 2018, fecal coliforms are still detectable in surface sediment. Fecal bacteria in sediment can form a reservoir of viable organism that can enter the water column when the sediment is stirred (Mallin et al. 2007). However, these observed effects are associated with numerous upstream sources other than the Main/King CSO discharge.

As reported above, most of the total phosphorus load is no longer in the study area and total phosphorus concentrations in sediment in Chedoke Bay were comparable to historical

concentrations in 2019. In addition, sediment samples show fecal coliform levels had decreased in October 2019 compared to September 2018 and TKN in surface sediment was below the PSQG LEL in all sediment samples obtained in 2019. These findings suggest no persistent, elevated levels of nutrients in Chedoke Creek downstream from the King/Main CSO.

The Director's Order required "an identification and evaluation of sewage remaining in the creek, anticipation of any ongoing environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek."

Options to remediate and monitor the creek were contingent on the assessment of impact. Given that post-discharge levels of contaminants appear consistent with pre-discharge levels, no ongoing impacts to the creek as a result of the sewage spill persist. Monitoring the environmental condition of the creek as it relates to ongoing operations for the Main/King CSO is occurring. Thus, remediation would appear unnecessary to address effects from the sewage discharge that occurred from 2014 to 2018, and the '**no action**' alternative is recommended.

12.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR Consulting (Canada) Ltd. (SLR) for the City of Hamilton referred to as the "Client". It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted unless payment for the work has been made in full and express written permission has been obtained from SLR.

This report has been prepared for specific application to this site and conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion based on limited investigations including visual observation of the study area, environmental investigation at discrete locations and depths, and laboratory analysis of specific parameters. The results cannot be extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations which were not investigated directly, or parameters and materials that were not addressed. Substances other than those addressed by the investigation may exist within the study area; and substances addressed by the investigation may exist in areas of the creek not investigated in concentrations that differ from those reported. SLR does not warranty information from third party sources used in the development of investigations and subsequent reporting.

Nothing in this report is intended to constitute or provide a legal opinion. SLR expresses no warranty to the accuracy of laboratory methodologies and analytical results. SLR expresses no warranty with respect to the toxicity data presented in various references or the validity of toxicity studies on which it was based. Scientific models employed in the evaluations were selected based on accepted scientific methodologies and practices in common use at the time and are subject to the uncertainties on which they are based.

SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations or policies established by federal, provincial or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions and recommendations in this report may be necessary.

The Client may submit this report to the Ministry of Environment Conservation and Parks and/or related Ontario environmental regulatory authorities or persons for review and comment purposes. These agencies may rely on the information contained in this report regarding the study area, as described in this report. These agencies may copy the report as required to fulfil regulatory obligations.

Report Author's:

Kathryn Matheson Risk Assessor

Celine Totman Senior Environmental Scientist

Reviewed by:

Sam Reimer Technical Director – Risk Assessment

ord Wichert

Gord Wichert Technical Director - Ecology

13.0 REFERENCES

- ATSDR (Agency for Toxic Substances and Disease Registry). 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). US Department of Health and Human Services, Public Health Service. August 1995.
- Bleeker, E.A.J., and Verbruggen, E.M.J. 2009. Bioaccumulation of Polycyclic Aromatic Hydrocarbons in Aquatic Organisms.
- Brinkhurst, R.O. and S.R. Gelder. 1991. Annelida: Oligchaeta and Branchiobdella. In Ecology and classification of North America freshwater invertebrates. J.H. Thorp and A.P. Covich (eds.) Academic Press Inc. San Diego, p. 401 433.
- Bowlby, J.N., K. McCormack, and M.G. Heaton. 2009. Hamilton Harbour and Watershed Fisheries Management Plan. Ontario Ministry of Natural Resources and Royal Botanical Gardens.
- Bowman, J.E., and T. Theijsmeijer. 2014. 2013 Marsh Sediment Quality Assessment. RBG Report No. 2014-14. Royal Botanical Gardens. Hamilton, Ontario.
- Butcher. G.A. 1988. Water Quality Criteria for Aluminum. Technical Appendix. BC Ministry of Environment and Parks. Water Quality Unit. Resource Quality Section. Water Management Branch.
- Dove A., S. Painter and J. Kraft. 2003. Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of the Bay of Quinte). A Screening-Level Survey. Environment Canada, Ecosystem Health Division, Ontario Region Environmental Conservation Branch.
- Canadian Council of Ministers of the Environment (CCME) 1997. Canadian Council of Ministers of Environment. A Framework for Ecological Risk Assessment: Technical Appendices. March 1997.
- CCME 2000. Canadian Tissue Residue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota: Methylmercury. Canadian Environmental Quality Guidelines Canadian Council of Ministers of the Environment.
- CCME 2001. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Arsenic. Canadian Environmental Quality Guidelines Canadian Council of Ministers of the Environment.
- CCME 2008. Canadian Water Quality Guidelines, Canadian Council of Ministers of the Environment. November 2008.
- CCME 2009. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Boron. Canadian Environmental Quality Guidelines Canadian Council of Ministers of the Environment.
- CCME 2016. Guidance Manual for Developing Nutrient Guidelines for Rivers and Streams.
- CCREM. 1987. Canadian Council of Resource and Environment Ministers. Canadian water quality guidelines. Environment Canada (1987).

- Chow-Fraser P. Crosbie B., Bryant D and McCarry B. 1996. Potential Contribution of Nutrients and Polycyclic Aromatic Hydrocarbons from the Creeks of Cootes Paradise Marsh. Water Qual. Res. 1. Canada, 1996. Volume 31, No. **3**, 485-503.
- CSAP. 2015. Bioaccumulation Research Project. Prepared by SLR Consulting (Canada) Ltd. August 2015.
- Coles, J.F., McMahon, Gerard, Bell, A.H., Brown, L.R., Fitzpatrick, F.A., Scudder Eikenberry, B.C., Woodside, M.D., Cuffney, T.F., Bryant, W.L., Cappiella, Karen, Fraley-McNeal, Lisa, and Stack, W.P., 2012, Effects of urban development on stream ecosystems in nine metropolitan study areas across the United States: U.S. Geological Survey Circular 1373, 138 p. Available online at http://pubs.usgs.gov/circ/1373/
- COSEWIC. 2007a. COSEWIC assessment and status report on the Eastern Pondmussel Ligumia nasuta in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii+34pp.
- COSEWIC. 2007b. COSEWIC assessment and update status report on the northern brook lamprey lchthyomyzon fossor (Great Lakes – Upper St. Lawrence populations and Saskatchewan – Nelson population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi+30 pp.
- COSEWIC. 2013. COSEWIC assessment and status report on the Lilliput Toxolasma parvum in Canada. Committee on the Status of Endangered.
- COSEWIC. 2016. COSEWIC assessment and status report on the Mapleleaf Quadrula quadrula, Great Lakes - Upper St. Lawrence population and Saskatchewan - Nelson Rivers population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 86 pp.
- Cootes Paradise Water Quality Group. 2012. Cootes Paradise Marsh: Water Quality Review and Phosphorus Analysis. Hamilton Harbour Remedial Action Plan
- DFO. 2019. Department of Fisheries and Oceans, 2019. Aquatic Species at Risk Mapping Date modified: 2019-08-23, Accessed On-line January 3, 2020. https://www.dfo-mpo.gc.ca.
- Dong-Kyun, K., T. Peller, Z. Gozum, T. Theysmeye, T. Long, D. Boyd, S. Watson, Y. R. Rao, and George B. Arhonditsis. 2016. Modelling phosphorus dynamics in Cootes Paradise Marsh: Uncertainty assessment and implications for eutrophication management. Aquatic Ecosystem Health & Management, 19:4, 368-381.
- Dove A., S. Painter and J. Kraft. 2003. Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of the Bay of Quinte). A Screening-Level Survey. Ecosystem Health Division, Ontario Region Environmental Conservation Branch Environment Canada.
- Eakins, R. J. 2019. Ontario Freshwater Fishes Life History Database. Version 4.88. Online database. (http://www.ontariofishes.ca), accessed 03 January 2020.
- eBIRD Canada, 2019. Online Dundas Marsh/Cootes Paradise (general location), Accessed at https://ebird.org/canada/hotspot.
- Environment Canada 1979. Water Quality Sourcebook, A Guide to Water Quality Parameters, Inland Waters Directorate, Water Quality Branch, Ottawa, Canada.

- ENV. 2019. "Contaminated Sites Regulation", BC Reg. 375/96, effective April 1, 1997 (including amendments up to BC Reg. 13/2019, October 1, 2019).
- Environment Canada (EC). 2012. Federal Contaminated Sites Action Plan (FCSAP) Ecological Risk Assessment Guidance. March 2012.
- Government of Ontario, 2019. Government of Ontario, 2019. O. Reg. 230/08: Species at Risk in Ontario List - Under Endangered Species Act, 2007, S.O. 2007, c. 6 - Accessed On-line January 3 2020. Current to E-Laws currency date December 8, 2019.
- Gower, AM. and Buckland, PJ. 1978. Water quality and the occurrence of *Chironomus riparius* Meigen (Diptera: Chironomidae) in a stream receiving sewage effluent. Freshwater Biology. 8(2):153 – 164.
- HCA 2008. Hamilton Conservation Authority (HCA) 2008. Chedoke Creek Subwatershed Stewardship Action Plan.
- HCA 2018. Chedoke Creek Watershed Fact Sheet, 2018. http://conservationhamilton.ca/wp-content/uploads/sites/5/2018/04/Chedoke-Creek-Factsheet-2018.pdf.
- Hamilton Harbour Remedial Action Plan Office. 2017. Hamilton Harbour Remedial Action Plan Monitoring Catalogue 2017 Season.
- Hamilton Harbour Remedial Action Plan Office. 2018. Contaminant Loadings and Concentrations to Hamilton Harbour: 2008-2016 Update.
- Health Canada, 2010c. Federal Contaminated Site Risk Assessment in Canada, Part V: Guidance on Human Health Detailed Quantitative Risk Assessment for Chemicals (DQRA_{CHEM}).
- Hylland, K. 2006. Polycyclic aromatic hydrocarbon ecotoxicology in marine ecosystems. Journal of Toxicology and Environmental Health, Part A. 69 (1–2): 109–123.
- Ingersoll C.G., P. S. Haverland, E. L. Brunson, T. J. Canfield, F. J. Dwyer, C.Henke, N. E. Kemble, D. R. Mount, and R. G. Fox. 1996. Calculation and evaluation of sediment effect concentrations for the amphipod *Hyalella azteca* and the midge *Chironomus riparius*. National Biological Service Final Report for the U.S. Environmental Protection Agency Great Lakes.
- Lee, H.T., W.D. Bakowsky, J. Riley, J. Bowles, M. Puddister, P. Uhlig and S. McMurray, 1998. Ecological Land Classification for Southern Ontario: First Approximation and Its Application. Ontario Ministry of Natural Resources, Southcentral Science Section, Science Development and Transfer Branch. SCSS Field Guide FG-02. North Bay, Ontario. 225 pp.
- Lenat, DR., Smock, LA., and Penrose, DL. 1980. Use of Benthic Macroinvertebrates as Indicators of Environmental Quality. In *Biological Monitoring for Environmental Effects*. By Douglas Wolf. LexingtonBooks, Toronto, Canada.
- Linton, T.K., M.A.W. Pacheco D.O. McIntyre W.H. Clement and J. Goodrich-Mahoney. 2007. Development of bioassessment-based benchmarks for iron. *Environ. Toxicol. Chem.* 26(6): 1291-1298. In: Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron. Overview Report.

- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Journal of Environmental Management 19(1):81-97.
- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- Macdonald, D.D and C.G. Ingersoll. 2003. A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater, Estuarine, and Marine Ecosystems in British Columbia. Prepared for British Columbia Ministry of Water, Land and Air Protection Pollution Prevention and Remediation Branch and addressed to Mike Mcfarlane. November 2003.
- Mallin A.M., Lawrence B. Cahoon, Byron R. Toothman, Douglas C. Parsons, Matthew R. McIver, Michelle L. Ortwine, Renee N. Harrington. 2007 Impacts of a raw sewage spill on water and sediment quality in an urbanized estuary. Marine Pollution Bulletin 54 (2007) 81–88.
- MOE 1979. Rationale for the Establishment of the Provincial Water Quality Objectives. September 1979. Ministry of the Environment.
- MOE 1988. Scientific Criteria Document for Development of Provincial Water Quality Objectives and Guidelines. Aluminum. September 1988. Ministry of the Environment.
- MOE 1992. Ontario's Water Quality Objective Development Process. March 1992. Ministry of the Environment.
- MOE 2008. Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario.
- MOE 2011a. Soil, ground water and sediment standards for use under Part XV.1 of the Environmental Protection Act.
- MOE 2011b. Rationale for the Development of the Soil and Groundwater Standards for Use at Contaminated Sites in Ontario. Ministry of the Environment Standards Development Branch. April 15, 2011.
- Morris et al., 2015. Freshwater Mussel Sampling in Cootes Paradise, Lake Ontario, with emphasis on Eastern Pondmussel (*Ligumia nasuta*). Report to the Mollusc Specialist Subcommittee of the Committee on the Status of Endangered Wildlife in Canada.
- Ministry of Environment Conservation and Parks (MECP) 2017. Procedures for the Use of Risk Assessment under Part XV.1 of the Environmental Protection Act. Published August 18, 2017, Updated May 15, 2019.
- Oliveira, V., Martins, R. and Alves, R. 2010. Evaluation of water quality of an urban stream in southeastern Brazil using Chironomidae larvae (Insecta: Diptera). Neotropical Entomology. 39(6):873-878.
- Persaud D. R. Jaagumagi and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy.
- Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron.

- Radassao, F., Barr, L., and Peirce, M. 2019. 2018 Environmental Review of Hendrie Valley. RBG Report No. 2019-6. Royal Botanical Gardens. Burlington, ON.
- Schwetz, N. 2014. Hamilton Conservation Authority. Nature Counts. Hamilton Natural Areas Inventory Project, 3rd Edition. Site Summaries, Species Checklists. 753 pp + 287 pp.
- Oldham, M., Bakowsky, W. and Sutherland, D. 1995. Floristic quality assessment for southern Ontario. Natural Heritage Information Centre, Ontario Ministry of Natural Resources, Peterborough, Ontario.
- SNC Lavalin, 2010. City of Hamilton B-Line Light Rapid Transit Draft Environmental Project Report, Appendix B.1 Natural Heritage Features.
- SNC Lavalin. 2017. City of Hamilton and Metrolinx Hamilton Light Rail Transit (LRT) Environmental Project Report (EPR) Addendum. Appendix C: Technical Supporting Document. Appendix C3: Ecology Report.
- Texas Commission on Environmental Quality (TCEQ). 2014. Conducting Ecological Risk Assessments at Remediation Sites in Texas. Draft January 2014. Available on-line at
- Theijsmeijer T., J. Bowman, A. Court & S. Richer. 2016. Wetlands Conservation Plan 2016-2021. Natural Lands Department. Internal Report No. 2016-1. Royal Botanical Gardens. Hamilton, Ontario.
- USEPA. 2015. ProUCL, Statistical Software for Environmental Applications.
- Vander Hout J., D. Brouwer, and E. Berkelaar. 2015. Water Quality Monitoring of the Chedoke Creek Subwatershed, Subwatersheds of Cootes Paradise, and the Red Hill Watershed.
- Vincent, K. 2017. 2017 Environmental Condition of Cootes Paradise South Shore. RBG Report No. 2018-12. Royal Botanical Gardens. Burlington, ON.
- Wedemeyer, G.A. and W.T. Yasatake. 1978. Prevention and treatment of nitrite toxicity in juvenile steelhead trout (*Salmo gairdneri*). J. Fish. Res. Board Can. 35: 822-827. (Cited in MOE 1979).
- Wyshynski, S.A. and T.L. Pulfer. 2015. Recovery Strategy for the Golden Eagle (Aquila chrysaetos) in Ontario. Ontario Recovery Strategy Series. Prepared for the Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario. vi + 43 pp.

KM/JW/SR/at/ijk

N:\Markham\Projects\City of Hamilton\209.40666_final_ERA_021220.docx

Appendix "A" to Report PW19008(g)/LS19004(f) Pape 93 of 104 of 486

TABLES

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

SLR Project No.: 209.40666 January 2020

					TA	BLE 1. CONT	TAMINAN	ITS OF POTEN	TIAL CONC	ERN (COPC) S	SCREENING F	OR AQUATIC LIFE	- SEDIMENT (0-0.15	mbss)			
						SEDIMENT	r CHARA	CTERIZATION							EC	OLOGICAL HEALTH SCREEN	NG
				Maximum Co	ncentration			Second Highes	t Concentratic	u	95% UCLM	ProUCL	Backg	round	Screening E	3 en chmarks	
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	By/Bu	Method applied	Table 1 Background Standards for Soll	MOE 2008, 2011 ^a	ON PSQG LEL	CCME SedQG Freshwater (ISQG)	COP C?
Metals									S	allow Depth (0 to	o 0.15 mbss)						
Aluminum	6 (+0)	6 (+0)	13,200	C-4 West	0-0.15	10/1/2019	12200	C-3 West	0-0.15	10/2/2019	11987	95% BCA Bootstrap					Uncertain
Antimory	22 (+0)	7 (+0)	1.54	C-4 West	0-0.15	10/1/2019	1.3	C-5 East	0-0.15	9/19/2018	0.932	95% KM (BCA)	1.0				Uncertain
Arsenic	22 (+0)	22 (+0)	12	C-5 East	0-0.15	9/19/2018	5.76	C-4 West	0-0.15	10/1/2019	5.517	95% BCA Bootstrap		4.0	9	5.9	Yes; maximum > LEL
Barium	22 (+0)	22 (+0)	210	C-5 East	0-0.15	9/19/2018	141	C-4 West	0-0.15	9/19/2018	117.9	95% BCA Bootstrap	210.0				
Beryllum	22 (+0)	22 (+0)	0.67	C-4 West	0-0.15	10/1/2019	9.6	C-3 West	0-0.15	10/2/2019	0.477	95% BCA Bootstrap	2.5				No; maximum < Table 1 background
Boron	22 (+0)	15 (+0)	23.5	C-1 West	0-0.15	10/2/2019	23.4	C-4 West	0-0.15	10/1/2019	19	95% BCA Bootstrap	36.0	,			
Cadmium	22 (+0)	22 (+0)	8.5	C-5 East	0-0.15	9/19/2018	6.1	C-4 West	0-0.15	9/19/2018	2.427	95% BCA Bootstrap		1.0	0.6	0.6	Yes; maximum > LEL
Chromium (III+VI)	22 (+0)	22 (+0)	41	C-4 West	0-0.15	9/19/2018	37	C-5 East	0-0.15	9/19/2018	27.52	95% BCA Bootstrap		31.0	28	37.3	Yes; maximum > LEL
Copper	22 (+0)	15 (+0)	170	C-3 West	0-0.15	9/18/2018	145	C-4 West	0-0.15	9/18/2018	91.01	95% BCA Bootstrap		25.0	16	35.7	Yes; maximum > LEL
Iron	9 (+0)	6 (+0)	25,600	C-4 West	0-0.15	10/1/2019	24,800	C-3 West	0-0.15	10/2/2019	23967	95% BCA Bootstrap		30,000	20,000		No; maximum < background
Lead	22 (+0)	15 (+0)	145	C-5 East	0-0.15	9/19/2018	87	C-3 West	0-0.15	9/18/2018	57.90	95% BCA Bootstrap		23.0	31	35	Yes; maximum > LEL
Manganese	9 (+0)	6 (+0)	623	G-5 Comp	0-0.15	10/2/2019	594	C-4 West	0-0.15	10/1/2019	589	95% BCA Bootstrap		400.0	460		Yes; maximum > LEL
Mercury	9 (+0)	9 (+0)	0.255	C-3 West	0-0.15	10/2/2019	0.197	C-4 West	0-0.15	10/1/2019	0.187	95% BCA Bootstrap	,	0.1	0.2	0.17	Yes; maximum > LEL
Molybdenum	22 (+0)	22 (+0)	2.4	C-3 West	0-0.15	9/18/2018	2:34	C-4 West	0-0.15	10/1/2019	1.407	95% BCA Bootstrap	2.0				No; maximum < Table 1 background
Nickel	22 (+0)	15 (+0)	36	C-5 East	0-0.15	9/19/2018	32	C-4 West	0-0.15	9/19/2018	24.34	95% BCA Bootstrap		31.0	16		No; maximum within 20% of background
Selenium	22 (+0)	5 (+0)	-	C-3 West	0-0.15	9/18/2018	-	C-5 East	0-0.15	9/19/2018	NC	,	1.2				No; maximum < Table 1 background
Silver	22 (+0)	22 (+0)	3.3	C-4 West	0-0.15	9/19/2018	8	C-5 East	0-0.15	9/19/2018	1.126	95% BCA Bootstrap		0.5			Uncertain, maximum > background
Sodium	9 (+0)	6 (+0)	447	C-4 West	0-0.15	10/1/2019	363	C-1 West	0-0.15	10/2/2019	360.7	95% BCA Bootstrap	,				Uncertain
Thallium	22 (+0)	22 (+0)	0.263	C-4 West	0-0.15	10/1/2019	0.255	C-3 West	0-0.15	10/2/2019	0.177	95% BCA Bootstrap	1.0				No; maximum < Table 1 background
Tin	6 (+0)	6 (+0)	6.31	G-4 Comp	0-0.15	10/2/2019	5.05	C-4 West	0-0.15	10/1/2019	4.822	95% BCA Bootstrap					Uncertain
Titanium	9 (+0)	6 (+0)	150	C-4 West	0-0.15	10/1/2019	139	C-3 West	0-0.15	10/2/2019	137.3	95% BCA Bootstrap					Uncertain

Appendix "A" to Report PW19008(g)/LS19004(f) Pape 94 Page 105 of 486

Page 1 of 3

SLR

City of Hamilton Ecological Risk Assessment – Chedoke Creek

SLR Project No.: 209.40666 January 2020

					TAŁ	3LE 1. CONT	AMINAN	TS OF POTENI	IAL CONCE	RN (COPC) S	SCREENING F	OR AQUATIC LIFE	- SEDIMENT (0-0.15	mbss)			
						SEDIMENT	CHARAC	TERIZATION							ECC	DLOGICAL HEALTH SCREEN	NG
				Maximum C	oncentration			Second Highest	Concentration	Ę	95% UCLM	ProUCL	Backg	puno	Screening B	enchmarks	
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	By/Bu	Method applied	Table 1 Background Standards for Soil	MOE 2008, 2011 ^a	ON PSQG LEL	CCME SedQG Freshwater (ISQG)	COPC?
anium	22 (+0)	22 (+0)	0.886	C-4 West	0-0.15	10/1/2019	0.88	C-3 West	0-0.15	9/18/2018	0.687	95% BCA Bootstrap	1.9				No; maximum < Table 1 background
anadium	22 (+0)	15 (+0)	28.7	C-4 West	0-0.15	10/1/2019	24.9	C-3 West	0-0.15	10/2/2019	21.05	95% BCA Bootstrap	86.0				No; maximum < Table 1 background
22	22 (+0)	15 (+0)	532	C-4 West	0-0.15	10/1/2019	505	C-3 West	0-0.15	9/18/2018	349.3	95% BCA Bootstrap	,	65.0	120	123	Yes; maximum > LEL
AHS enaphthylene	22 (+0)	8 (+0)	0.18	C-5 East	0-0.15	9/19/2018	0.11	C-4 West	0-0.15	9/19/2018	0.0423	95% KM (BCA)				0.00587	Yes; maximum > ISQG
snaphthene	22 (+0)	11 (+0)	1.49	C-1 West	0-0.15	9/18/2018	0.83	G-1 Comp	0-0.1	9/18/2018	0.341	95% KM (BCA)	,	,		0.00671	Yes; maximum > ISQG
ithracene	22 (+0)	16 (+0)	4.69	C-1 West	0-0.15	9/18/2018	0.99	G-1 Comp	0-0.1	9/18/2018	0.867	95% KM (BCA)	,		0.22	0.0469	Yes; maximum > LEL
+nz(a)anthracene	22 (+0)	22 (+0)	6.6	C-1 West	0-0.15	9/18/2018	2.96	G-1 Comp	0-0.1	9/18/2018	1.83	95% BCA Bootstrap			0.32	0.0317	Yes; maximum > LEL
anzo[b]fluoranthene	22 (+0)	22 (+0)	8.37	C-1 West	0-0.15	9/18/2018	3.59	G-1 Comp	0-0.1	9/18/2018	2.517	95% BCA Bootstrap	0.3				No; assessed as total PAHs ^b
anzo(b+j)fluor anthene	6 (+0)	6 (+0)	1.4	C-3 West	0-0.15	10/2/2019	1.3	C-4 West	0-0.15	10/1/2019	1.267	95% BCA Bootstrap					No; assessed as total PAHs ^b
nzo(g,h,i)perylene	22 (+0)	22 (+0)	4.36	C-1 West	0-0.15	9/18/2018	1.45	G-1 Comp	0-0.1	9/18/2018	1.236	95% BCA Bootstrap			0.17		Yes; maximum > LEL
nzo(k)fluoranthene	22 (+0)	17 (+0)	2.29	C-1 West	0-0.15	9/18/2018	1.37	G-1 Comp	0-0.1	9/18/2018	0.71	95% KM (BCA)			0.24		Yes; maximum > LEL
inzo(a)pyrene	22 (+0)	22 (+0)	6.01	C-1 West	0-0.15	9/18/2018	2.4	G-1 Comp	0-0.1	9/18/2018	1.712	95% BCA Bootstrap	-		0.37	0.0319	Yes; maximum > LEL
rysene	22 (+0)	22 (+0)	7.15	C-1 West	0-0.15	9/18/2018	3.24	G-1 Comp	0-0.1	9/18/2018	2.155	95% BCA Bootstrap	-		0.34	0.0571	Yes; maximum > LEL
berz(a,h)anthracene	22 (+0)	13 (+0)	0.79	C-1 West	0-0.15	9/18/2018	0.37	G-1 Comp	0-0.1	9/18/2018	0.242	95% KM (BCA)			0.06	0.00622	Yes; maximum > LEL
uoranthene	22 (+0)	22 (+0)	24.5	C-1 West	0-0.15	9/18/2018	9.08	G-1 Comp	0-0.1	9/18/2018	6.834	95% BCA Bootstrap			0.75	0.111	Yes; maximum > LEL
uorene	22 (+0)	13 (+0)	1.76	C-1 West	0-0.15	9/18/2018	0.84	G-1 Comp	0-0.1	9/18/2018	0.395	95% KM (BCA)			0.19	0.0212	Yes; maximum > LEL
Jeno(1,2,3-cd)pyrene	22 (+0)	22 (+0)	3.45	C-1 West	0-0.15	9/18/2018	1.34	G-1 Comp	0-0.1	9/18/2018	0.997	95% BCA Bootstrap			0.2		Yes; maximum > LEL
ethylnaphthalene, 1-	16 (+0)	2 (+0)	0.2	G-1 Comp	0-0.1	9/18/2018	0.15	C-4 West	0-0.15	9/19/2018	NC		0.05				No; assessed as total PAHs ^b
ethylnaphthalene, 2-	22 (+0)	(0+) 6	0.3	C-4 West	0-0.15	9/19/2018	0.3	G-1 Comp	0-0.1	9/18/2018	0.0877	95% KM (BCA)				0.0202	Yes; maximum > ISQG
aphthalene	22 (+0)	11 (+0)	0.98	G-1 Comp	0-0.1	9/18/2018	0.24	C-3 Centre	0-0.15	9/18/2018	0.191	95% KM (BCA)				0.0346	Yes; maximum > ISQG
renanthrene	22 (+0)	22 (+0)	16.5	C-1 West	0-0.15	9/18/2018	9.53	G-1 Comp	0-0.1	9/18/2018	4.336	95% BCA Bootstrap			0.56	0.0419	Yes; maximum > LEL
rrene	22 (+0)	22 (+0)	18.9	C-1 West	0-0.15	9/18/2018	6.75	G-1 Comp	0-0.1	9/18/2018	4.973	95% BCA Bootstrap			0.49	0.053	Yes; maximum > LEL
AHs (sum of total)	6 (+0)	6 (+0)	13	C-3 West	0-0.15	10/2/2019	7.8	C-4 West	0-0.15	10/1/2019	26.41	95% BCA Bootstrap			4		Yes; maximum > LEL

Appendix "A" to Report PW19008(g)/LS19004(f) Page 95 of 406 of 486

City of Hamilton Ecological Risk Assessment – Chedoke Creek

SLR Project No.: 209.40666 January 2020

					2									lenni			
						SEDIMENT	T CHARAC	TERIZATION							EC	OLOGICAL HEALTH SCREEN	NG
				Maximum Co	ncentration			Second Highes	t Concentratio	e	95% UCLM	ProUCL	Backgr	punc	Screening B	enchmarks	
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	By/Bu	Method applied	Table 1 Background Standards for Soll	MOE 2008, 2011 ^a	ON PSGG LEL	CCME SedOG Freshwater (ISQG)	COPC?
lutrients																	
mmonia and ammonium (as N)	16 (+0)	(+0)	400	C-3 West	0-0.15	9/18/2018	300	C-4 West	0-0.15	9/19/2018	NC	,	,				Uncertain
mmonia as N	6 (+0)	6 (+0)	190	C-4 West	0-0.15	10/1/2019	130	G-6 Comp	0-0.15	10/1/2019	122.7	95% BCA Bootstrap					Uncertain
jeklahl nitrogen total	22 (+0)	22 (+0)	1,900	C-3 West	0-0.15	9/18/2018	1,600	C-4 West	0-0.15	9/19/2018	841.8	95% BCA Bootstrap			550		Yes; maximum > LEL
itrogen (total)	9 (+0)	3 (+0)	4,000	C-4 West	0-0.15	10/1/2019	3,000	C-3 West	0-0.15	10/2/2019	NC			,			Uncertain
rganic phosphorus	6 (+0)	5 (+0)	4.6	C-4 West	0-0.15	10/1/2019	3.1	C-3 West	0-0.15	10/2/2019	3.25	95% KM (BCA)					No; assessed as total phosphorus ^c
hosphorus total	22 (+0)	22 (+0)	1,622	C-3 West	0-0.15	9/18/2018	1,560	C-4 West	0-0.15	10/1/2019	1020	95% BCA Bootstrap			600		Yes; maximum > LEL
ecal Coliforms	17 (+0)	16 (+0)	45,000	C-3 West	0-0.15	9/18/2018	43,000	C-3 Centre	0-0.15	9/18/2018	25529	95% KM (BCA)					Uncertain
							۱										

- SEDIMENT (0-0.15 mbss) TABLE 1. CONTAMINANTS OF

Notes: mg/kg-miligram per klogram migs - meters biolow andment surface miss - meters biolow andment surface BC CSR - British Columnia Conterninated Site f CCPC - Contaminant of Potential Concern inated Site F

oncentration

conc. - concentra Dup - Duplicate

where a selected max.- mammum Value conference Lint of the Mean Value and/or confragence, as portrollal guideline is available. Value secked for any confragence and any configuration of the configuration Value secked for any configuration of the grant lates are sub-lower preferencing and a sub-guidence and and the manufacture control guidence and any and to the properties includes both organic and incigantic phosphones.

i,n'p)oz

ene, pyrene

Mediances: Mediances: Description: Descri

ediment

City of Hamilton Ecological Risk Assessment – Chedoke Creek ARI F 2 CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR AQUATIC LIFE - SURFACE WATER

SLR Project No.: 209.40666 January 2020

							ABLE 2. CUNI	AMINANISO	- POTENTIAL CONCERN (C	OPC) SUREENING FOR A		AIEK				
		SURFAC	E WATER CHA	ARACTERIZATION								ECOLOGICAL HEALTH SCR	EENING			
			Ma	ximum Concentratic	ц	Se	cond Highest Conci	entration			Screening Benchmarks					
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	Con c.	Sample ID	Sample Date	Con c.	Sample ID	Sample Date	Opwao	CCME FWAL (long term)	APVs	BC AWF	BC WQG	Preliminary COPC?	Final COPC?	
etals (µg/L)																
uminium	7 (+1)	7 (+1)	598	C-5 East - G6	9/30/2019	489	C-4 West	9/30/2019	75					Yes; maximum > PWQO	Yes; maximum > PWQO	
arium	7 (+1)	7 (+1)	49.5	C-5 East - G6	9/30/2019	49.2	C-4 West	9/30/2019			2,300			Uncertain	No; maximum < APV	
arium (fiitered)	7 (+1)	7 (+1)	48.6	C-4 West	9/30/2019	47.2	C-5 East - G6	9/30/2019			2,300			Uncortain	No; maximum < APV	
oron (total)	7 (+1)	7 (+1)	206	C-4 West	9/30/2019	197	C-3 Centre - G5	9/30/2019	200	1500	3550			Yes; maximum > PWQO	No; maximum < APV	
oron (filtered)	7 (+1)	7 (+1)	211	C-3 Centre - G5	9/30/2019	209	C-4 West	9/30/2019	200	1500	3550			Yes; maximum > PWQO	No; maximum < APV	
rromium (III+VI) total	7 (+1)	7 (+1)	-	C-5 East - G6	9/30/2019	0.8	C-4 West	9/30/2019			64			Uncertain	No; maximum < APV	
hromium (III+VI) Filtered	7 (+1)	2 (+0)	0.1	C-3 West	9/30/2019	0.1	G-1 Comp	9/30/2019			64			Uncertain	No; maximum < APV	
on (total)	7 (+1)	7 (+1)	1180	C-5 East - G6	9/30/2019	066	C-4 West	9/30/2019	300	300			1,000	Yes; maximum > PWQO	Yes; maximum < BC WQG	
anganese	7 (+1)	7 (+1)	98.9	C-5 East - G6	9/30/2019	88.2	C-4 West	9/30/2019		3204				No; maximum < Draft CCME Guideline	No; maximum < BC WQG	
anganese (filtered)	7 (+1)	7 (+1)	76.2	C-5 East - G6	9/30/2019	63	C-4 West	9/30/2019		320."				No; maximum < Draft CCME Guideline	No; maximum < BC WQG	
odium	7 (+1)	7 (+1)	87,900	G-4 Comp	9/30/2019	84,200	C-3 West	9/30/2019			180,000			Uncertain	No; maximum < APV	
odium (filtered)	7 (+1)	7 (+1)	93,400	G-4 Comp	9/30/2019	69,800	C-3 West	9/30/2019			180,000			Uncertain	No; maximum < APV	
anium	7 (+1)	7 (+1)	11.2	C-5 East - G6	9/30/2019	9.2	C-4 West	9/30/2019				1,000		Uncertain	No; maximum < BC AWF	
anium (filtered)	7 (+1)	6 (+1)	0.3	C-1 West	9/30/2019	0.2	C-3 Centre - G5	9/30/2019				1,000		Uncertain	No; maximum < BC AWF	
24	7 (+1)	7 (+1)	22	C-1 West (Field Duplicate)	9/30/2019	21	C-3 West	9/30/2019	20	7	68			Yes; maximum > PWQO	No; maximum < APV	
utrients (mg/L) Mobil admonstrated	7 (1.4)	7 (144)	4	C E East De	0/20/2010	;	6 d Wood	01301304.0						1 Inconstation	L Inconstrain	
										4						
trate (as N)	7 (+1)	7 (+1)	2.07	G-4 Comp	9/30/2019	1.95	C-1 West	9/30/2019		13 0				No; maximum < interim guideline		
trite (as N)	7 (+1)	7 (+1)	0.28	G-4 Comp	9/30/2019	0.22	C-1 West	9/30/2019		0.06				Yes; maximum > CCME	Yes; maximum > CCME	
trate and nitrite (as N)	7 (+1)	7 (+1)	2.35	G-4 Comp	9/30/2019	2.17	C-1 West	9/30/2019				400		Uncertain	No; maximum < BC AWF	
thophosphate (PO4-P)	7 (+1)	7 (+1)	0.44	C-1 West	9/30/2019	0.44	G-1 Comp	9/30/2019						Uncertain	No; assessed as total phosphorus°	ra
iosphorus total	7 (+1)	7 (+1)	0.45	C-1 West	9/30/2019	0.428	G-1 Comp	9/30/2019	0.01		,			Yes: maximum > PWOO	Yes: maximum > PWOO	ye

Appendix "A" to Report PW19008(g)/LS19004(f) Pape 97 Page 108 of 486

Page 1 of 2

SLR
TABLE 2. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR AQUATIC LIFE - SURFACE WATER

SLR Project No.: 209.40666 January 2020

		SURFA	CE WATER CHA	ARACTERIZATION								ECOLOGICAL HEALTH SCR	EENING		
			Ma	tximum Concentratio	-	Secon	d Highest Concentr	ation			Screening Benchmarks				
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	Con c.	Sample ID	Sample Date	Con c.	Sample ID 5	Sample Date	ODMA	CCME FWAL (long term)	APVs	BC AWF	BC WQG	Preliminary COPC?	Final COPC?
phosphorus (Filtered)	7 (+1)	7 (+1)	0.42	G-1 Comp	9/30/2019	0.41	C-1 West Field Duplicate)	9/30/2019	0.01					Yes; maximum > PWQO	Yes; maximum > PWQO
Silicon	7 (+1)	7 (+1)	3.71	C-5 East - G6	9/30/2019	3.62	C-3 West	9/30/2019						Uncertain	Uncertain
Silicon (filtered)	7 (+1)	7 (+1)	2.8	C-3 West	9/30/2019	2.79	G-4 Comp	9/30/2019						Uncertain	Uncertain
E.coli	7 (+1)	7 (+1)	4,100	C-1 West	9/30/2019	2800	G-1 Comp	9/30/2019						Uncertain	Uncertain

mg/L - m

ligram per litre

- W K

fraft CCME guideline (Merim CCME guideline Value selected for son BOLD

References: ON PW/OO:Ontario Provincial Water Quality Objectives, July 1994 COME WOG Freshwater Aquate Life (long term):COME Water Qual

vater (Long-term)

Page 2 of 2

SLR Project No.: 209.40666 January 2020

					IABLE 3.	IT INDO	INAN IS OF FOI		CENN (COLO)			ED			
		SEL	DIMENT CHARA	ACTERIZATION											
			W	faximum Concentration	ис	Sec	ond Highest Conce	ntration			Screening Benchmark				
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	на/г	Sample ID	Sample Date	hg/L	Sample ID	Sample Date	Red Hill Max Value	CCME WQG Agricultural (Livestock)	BC WQG Wildlife (Approved)	BC CSR LW (Approved)	BC CSR LW or WQG Wildlife (Working)	O.Reg 153/04 Standard - Potable Water (GW1 values)	60902
etals (µg/L)		_													
luminum	7 (+1)	7 (+1)	598	C-5 East - G6	9/30/2019	489	C-4 West	9/30/2019	24	5000	5000	5000		ı	No; maximum < CCME WQG
arium	7 (+1)	7 (+1)	49.5	C-5 East - G6	9/30/2019	49.2	C-4 West	9/30/2019	62.6	,	,	,		1000	No; maximum < MECP GW1
arium (filtered)	7 (+1)	7 (+1)	48.6	C-4 West	9/30/2019	47.2	C-5 East - G6	9/30/2019	62.4	,		,	,	1000	No; maximum < MECP GW1
oron (total)	7 (+1)	7 (+1)	206	C-4 West	9/30/2019	197	C-3 Centre - G5	9/30/2019	131	5000	5000	5000		5000	No; maximum < CCME WQG
oron (filtered)	7 (+1)	7 (+1)	211	C-3 Centre - G5	9/30/2019	209	C-4 West	9/30/2019	141	5000	5000	5000	,	5000	No; maximum < CCME WQG
hromium (III+VI) total	7 (+1)	7 (+1)	-	C-5 East - G6	9/30/2019	0.8	C-4 West	9/30/2019	<0.1	,	,	,	50	50	No; maximum < BC LW/Wildlife
hromium (III+VI) Filtered	7 (+1)	2 (+0)	0.1	C-3 West	9/30/2019	0.1	G-1 Comp	9/30/2019	<0.1			,	50	50	No; maximum < BC LW/Wildlife
on (total)	7 (+1)	7 (+1)	1180	C-5 East - G6	9/30/2019	066	C-4 West	9/30/2019	140		,		,	ı	Uncertain
langane se	7 (+1)	7 (+1)	98.9	C-5 East - G6	9/30/2019	88.2	C-4 West	9/30/2019	136	,					Uncertain
langanese (filtered)	7 (+1)	7 (+1)	76.2	C-5 East - G6	9/30/2019	63	C-4 West	9/30/2019	106			,		ı	Uncertain
bdium	7 (+1)	7 (+1)	87,900	G-4 Comp	9/30/2019	84,200	C-3 West	9/30/2019	121000					200,000	No; maximum < MECP GW1
odium (filtered)	7 (+1)	7 (+1)	93,400	G-4 Comp	9/30/2019	89,800	C-3 West	9/30/2019	124000					200,000	No; maximum < MECP GW1
anium	7 (+1)	7 (+1)	11.2	C-5 East - G6	9/30/2019	9.2	C-4 West	9/30/2019	-	,	,	,	100		No; maximum < BC LW/Wildlife
anium (filtered)	7 (+1)	6 (+1)	0.3	C-1 West	9/30/2019	0.2	C-3 Centre - G5	9/30/2019	0.1			,	100		No; maximum < BC LW/Wildlife
цс	7 (+1)	7 (+1)	22	C-1 West (Field Duplicate)	9/30/2019	21	C-3 West	9/30/2019	a			2000	,	5000	No; maximum < BC LW
utrients (mg/L)															
eldahl nitrogen total	7 (+1)	7 (+1)	1.5	C-5 East - G6	9/30/2019	1.4	C-4 West	9/30/2019	0.3						Uncertain
trate (as N)	7 (+1)	7 (+1)	2.07	G-4 Comp	9/30/2019	1.95	C-1 West	9/30/2019	0.33						No; maximum of nitrate+nitrite < CCME W QG
trite (as N)	7 (+1)	7 (+1)	0.28	G-4 Comp	9/30/2019	0.22	C-1 West	9/30/2019	<0.05	10	10	10	,		No; maximum < CCME WQG

Appendix "A" to Report PW19008(g)/LS19004(f) Pape 99 of 410 of 486

Page 1 of 2

SLR

TABLE 3. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR WILDLIFE - SURFACE WATER

SLR Project No.: 209.40666 January 2020

		SEDI	MENT CHARA	CTERIZATION											
			Ŵ	aximum Concentratio	=	Sec	ond Highest Concen	tration			Screening Benchmark				
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	нg/L	Sample ID	Sample Date	нg/L	Sample ID	Sample Date	Red Hill Max Value	CCME WQG Agricultural (Livestock)	BC WQG Wildlife (Approved)	BC CSR LW (Approved)	BC CSR LW or WQG Wildlife (Working)	O.Reg 153/04 Standard - Potable Water (GW1 values)	COPC?
nitrate and nitrite (as N)	7 (+1)	7 (+1)	2.35	G-4 Comp	9/30/2019	2.17	C-1 West	9/30/2019	0.33	100	100	100	,	,	No; maximum < CCME WQG
orthophosphate (PO4-P)	7 (+1)	7 (+1)	0.44	C-1 West	9/30/2019	0.44	G-1 Comp	9/30/2019	<0.05						Uncertain
phosphorus	7 (+1)	7 (+1)	0.45	C-1 West (Field Duplicate)	9/30/2019	0.428	G-1 Comp	9/3 0/2019	<0.01						Uncertain
phosphorus (Filtered)	7 (+1)	7 (+1)	0.42	G-1 Comp	9/30/2019	0.41	C-1 West (Field Duplicate)	9/30/2019	<0.01						Uncertain
Silicon	7 (+1)	7 (+1)	3.71	C-5 East - G6	9/30/2019	3.62	C-3 West	9/30/2019	3.97						Uncertain
Silicon (filtered)	7 (+1)	7 (+1)	2.8	C-3 West	9/30/2019	2.79	G-4 Comp	9/30/2019	4.41						Uncertain
E.coli	7 (+1)	7 (+1)	4,100	C-1 West	9/30/2019	2800	G-1 Comp	9/30/2019	10						Uncertain

Material Provide Standing and pret the publ - inforgame pret the public - contention and State Peoplation C ESR - Banking - Denable Water: CWV1 Component values from NOE 2011 C ESR - Banking - Potential Concern C ESR - State Contention and State Peoplation C ESR - State Contention and State People Water: CWV1 Component values from NOE 2011 C ESR - State Contention and State People Water: CWV1 Component values from NOE 2011 C ESR - State Contention and State People Water: CWV1 Component values from NOE 2011 C ESR - State Contention and State People Water: CWV1 Component values from NOE 2011 C ESR - State Contention and State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Water: CWV1 Component values from NOE 2011 C ESR - State People Value (CWS) C ESR - S

Redenorest. ON PNOC Onano Pownial Water Quality Objectives. July 1884 COME 1905 Testimeter Aquatic Lie (org. term) COME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term) MOE 2011. Reliconde for the Development of the Soit and Goundwater Standards for Lea at Containo, Ministry of the Environment Standards Development Branch. April 15, 2011.

Page 2 of 2

SLR Project No.: 209.40666 January 2020

Carbon

		_	1					Т	1				_			_	_	_				_		Т		Т	1	_										_		1	1									
lstot surordsord	μg/g	2000		069	0.3	715	0.4	860	628	0.3	837	0.4	795	0.4	0.5	737	0.4	871	0.4	756		1170	0.6	7707	0.0	80	642	0.3	1560	0.8	1260	718	0.4	861	6.0	1120	0.6	18/	978	0.5	904	0.5	1020	0.5						
kjeldahl nitrogen total	Hg/g	480.0		006	0.2	5.8	0.0	005	400	0.1	1000	0.2	99	1.0	0.0	400	0.1	35	0.0	800	0.2	35	0.0	DOCT O	+ 09	610	800	0.2	330	0.1	1600	F.0	0.1	1000	0.2	1200	0.3	0, 2	1.0 000	0.2	180	0.0	841.8	0.2						
zinc	Hg/g	450		187	0.4	214	0.5	2T2	167	0.4	244	0.5	112	237	0.7	215	0.5	272	0.6	275	9.0	427	0.9	- F	1.1	0.4	310	0.7	532	1.2	472	0.1.0	0.7	215	0.5	428	1:0	244	414 414	6.0	339	0.8	349.3	0.8						
silver	μg/g			0.13		0.083		17:0	0.1		0.19	4	0.48	0 397		0.31		0.263		0.42		0.607	4	2	70.0	2	0.3		1.18		3.3	70.0		0.58		1.3	0	55.0	"		0.342		1.126	•						
աթւշուչ	µg/g	0.486		•		0.057	0.1	'	•		•		·	0101	0.2	•		0.1	0.2	•		0.255	0.5				•		0.197	0.4	'			•		•		•			0.104	0.2	0.187	0.4						
อรอนยรินยน	/g µg/g	3 1100		۔ و	2	.5 566	3 0.5	·	, 1 m	-	4	4 (•	5 550	4 0.5	,	2	.6 623	3 0.6	- 2	4	- 588 - 588	2 0.5					9	.3 594	6 0.5	'	× .	4	•	m	و	9 9	'	- -	9 9	.1 390	5 0.4	.9 589	6 0.5						
	/g με	000		-	0	000 24	9		,	•	m			0 00	9	5	0	100 25	5 0	- 4	•	800 44	9	- 0		10		0	600 51	9	-			- 2	•	-	<u> </u>	4	2		800 46	5 0	967 57	.6 0						
cobber	3/8 HE	49 40			4.	1.6 23,	m 9	2 ^	! 0	m		m; ,		ر: در	5 4 0		4	3.1 21,	.3	4	9	5.7 24,	9. 6	2 -	1 5	4 14		4	25 25,	8	45		i ui	'2	5	6	r. 9	<u>ه</u> ،	1 . 92	وما	1.1 18,	4.0	1 23	.6						
mnimorth	Ξ	111		21 6	0.2 0	21.8 44	0.2	77 0	21 5	0.2	19	0.2	202	0.2 0	0.2	22	0.2	19.8 38	0.2 0	21 6	0.2	31.5 85	0.3 21 0	1 10		20	16	0.1	35.9 1	0.3	41	10.4	0.2	22 7	0.2	32	0.3	5 20	37 1	0.3	22.6 64	0.2 0	27.5 9	0.2 0						
muimbeo	Hg/g	4.98		0.37	0.1	1.32	0.3	0.1	0.27	0.1	0.58	0.1	0.56	0.1	0.1	0.39	0.1	.601	0.1	0.57	0.1	0.753	0.2	10.0	2.0	0.1	0.76	0.2	0.914	0.2	6.1	1.2	0.1	0.74	0.1	3.1	0.6	0.86	8.5	1.7	609.0	0.1	2.4	0.5						-
arsenic	µg/g	33		3.8	0.1	3.56	0.1	9.5 1		0.1	4.6	0.1	9.5	0.1	0.1	3.6	0.1	3.71 0	0.1	3.9	0.1	4.97	0.2	ì		5 5	3.8	0.1	5.76 0	0.2	5.5	7.1	0.1	4.3	0.1	5.7	0.2	7.5	1.0	0.4	4.29 (0.1	5.52	0.2					n the sur	II LITE Sur
D-HA9 ns9M					3.8		0.5	77		0.2		1.7		0.1	0.4		0.2		0.4		0.4		1.3	90	0.0	1.3		0.2		0.6	1	1./	0.5		0.2		0.3		7.0	1.0		0.6		2.1					i hahiihii	וונימתבת
(lstot to mus) sHA9	µg/g	22.8		42.23	1.9	6.7	0.3	4.3	5.11	0.2	22.97	1:0	2.97	0.1	0.2	4.44	0.2	5.7	0.3	8.18	0.4	13	10.06	02:0T	15.07	2.0	4.85	0.2	7.8	0.3	20.48	8 01	0.4	6.19	0.3	6.46	0.3	67.5	15.95	0.7	7.3	0.3	26.41	1.2					oHD DAHs	Idual FAirs
bλιeue	μg/g	1.52		6.75	4.4	1.4	0.9	12.4	0.85		4.06	2.7	0.47	0.3	0.7	0.76	0.5	1.2	0.8	1.48	1.0	2.3	1.5	14	9 7C	1.8	0.86		1.6	1.1	3.48	1.67	1.1	1.13		1.16	0.8	0.92	0.0	1.9	1.5	1.0	4.973	3.3					r of indiv	
phenanthrene	µg/g	1.17		9.53	8.1	0.86	0.7	14.1	0.73	0.6	3.63	3.1	0.25	7:0	0.5	0.45	0.4	0.68	0.6	0.94	0.8	2.5	2.1		P.T.	2.8	0.39	0.3	0.83	0.7	3.32	1.16	1.0	0.6	0.5	0.72	0.6	0.58	c:0	0.8	0.89	0.8	4.336	3.7					admiin ee	E IIUIIA
ənəleritiqen	нg/g	0.561		0.98	1.7	0.014	0.0	T'//>	<0.1		0.22	0.4	<0.1	0.014	0.0	<0.1		0.0089	0.0	< 0.1		0.13	0.2	T'0-	100	0.4	< 0.1		0.023	0.0	0.14	1.07	1.02	<0.1		<0.1		T.0>	0.15		0.029	0.1	0.191	0.3					mher hv th	יי אח ושמש
-S ,ənəleritiqeniyritəm	μg/g	0.201		0.3	1.5	0.012	0.1	T .U>	<0.1		<0.1	, c	<0.1	0.014	0.1	<0.1		0.0096	0.0	<0.1		0.067	0.3	1.02	5	0.5	<0.1		0.034	0.2	0.3	1.5	10	<0.1		<0.1		<0.1	<0.1		0.027	0.1	0.0877	0.4					or this nu	lg uus uu
ənəາγq(bɔ-ɛ,Σ,ᡗ)onəbni	Hg/g	6.4		1.34	0.2	0.45	0.1	3.45 0.5	0.19	0.0	0.9	0.1	0.11	0.0	0.1	0.18	0.0	0.36	0.1	0.32	0.1	0.54	0.1	t -	T:0	10	0.2	0.0	0.63	0.1	0.65	0.1	0.1	0.27	0.0	0.27	0.0	47 O	0.88	0.1	0.54	0.1	0.997	0.2					ipini dividir	מחושיים
fluorene	μg/g	0.536		0.84	1.6	0.063	0.1	3.3	<0.1		0.29	0.5	<0.1	2000	0.1	< 0.1		0.048	0.1	<0.1		0.31	0.6	1.02	90.0	0.5	<0.1		0.074	0.1	0.47	9.0	0.2	< 0.1		<0.1	3	1.0>	10	0.2	0.087	0.2	0.395	0.7					C or PEI)	כי טו דבנין
fluoranthene	µg/g	2.223		90.6	4.1	1.9	0.9	110	1.11	0.5	5.25	2.4	0.59	0.3	0.7	0.96	0.4	1.6	0.7	1.91	6.0	3.2	1.4	0r.7	717	1.7	1.1	0.5	2.2	1.0	4.5	2.10	101	1.41	9.0	1.44	0.6	1	66.0	1.3	7	0.9	6.834	3.1					TRV (PF	
an95entfns(d,s)zn9dib	HB/B	0.135		0.37	2.7	0.12	6:0	6 9 S	< 0.1		0.22	1.6	<0.1	1	0.8	< 0.1		0.1	0.7	< 0.1		0.16	1.2	CT-0	0.1 C	60	<0.1		0.17	1.3	0.2	1:	10,	< 0.1		<0.1		<0.1	0.26	1.9	0.13	1.0	0.242	1.8					utth reliably	אורנו בווסיייי
cµıλɛsus	µg/g	1.29		3.24	2.5	0.86	0.7	CT-/	0.45	0.3	2.13	1.7	0.26	0.2	0.6	0.42	0.3	0.75	0.6	0.84	0.7	1.5	1.2	10	P. 7	10	0.5	0.4	1.3	1.0	2.01	1.6	0.7	0.66	0.5	0.68	0.5	0.4/	1.76	1.4	1.1	0.9	2.155	1.7					ht ained v	Dramer
penzo(a)pyrene	μg/g	1.45		2.4	1.7	0.69	0.5	41 4	0.36	0.2	1.71	1.2	0.18	0.1	0.4	0.33	0.2	0.58	0.4	0.68	0.5	0.94	0.6	90	0.0	0.7	0.39	0.3	0.69	0.5	1.5	1:0	0.5	0.48	0.3	0.5	0.3	6.0	1.69	1.2	0.75	0.5	1.712	1.2					USOH HVG	י געדו האי
benzo(k)fluoranthene	Hg/g	1.45		1.37	0.9	0.31	0.2	1.6	<0.2		66.0	0.7	<0.2	10.05	0.2	<0.2		0.23	0.2	0.29	0.2	0.41	0.3	70.0	1 CY C	0.4	<0.2		0.47	0.3	0.7	0.0	0.2	0.23	0.2	0.25	0.2	<0.2	0.72	0.5	0.34	0.2	5 0.71	0.5					linidual	Invinue
ənəlyıəq(i,1,8)oznəd	μg/g	6.4		1.45	0.2	0.46	0.1	4.30	0.22	0.0	66.0	0.2	ET 0	0.0	0.1	0.2	0:0	0.38	0.1	0.38	0.1	0.57	0.1	5		- C	0.23	0.0	0.74	0.1	0.77	1.0	0.1	0.37	0.1	0.38	0.1	0.31	0.0	0.2	0.63	0.1	1.236	0.2					ing the in	in nin R
anasantina(a)snad	μg/8	1.05		2.96	2.8	0.6	0.6	0.0	0.38	0.4	1.79	1.7	0.18	0.18	0.18	0.34	0.18	0.54	0.18	0.68	0.18		1.0			12	0.38	0.4	0.71	0.7	1.69	1.6	0.7	0.44	0.4	0.46	0.4	0.42	1 99	1.9	0.61	0.18	1.83	1.7			+h.o TDV		hw summ	ny summe
anthracene	HB/B	0.845		0.99	1.2	0.13	0.2	4.69	0.12	0.1	0.43	0.5	<0.1	ő	0.1	<0.1		0.12	0.1	0.16	0.2	0.43	0.5	10	1.0	0.3	<0.1		0.1	0.1	0.69	0.8	0.2	<0.1		<0.1		-0.1 V	0.28	0.3	0.12	0.1	0.867	1.0	ation		ho EDC hu	k	ralculated	calculation
ənədîdqenəse	Hg/B	0.0889		0.83	9.3	0.049	0.6	16.8	<0.1		0.26	2.9	<0.1	000	0.3	< 0.1		0.038	0.4	< 0.1		0.27	3.0	102	76.0	3.0	<0.1		0.045	0.5	0.25	7 .1	107	<0.1		<0.1		1.0>	<0.1		0.084	0.9	0.341	3.8	nt concentr	ents	ence value	otential ris	- DAHs was	PAID Was
ənəlytthylene	μ <u>8</u> /8	0.128		<0.1		0.011	0.1	T'0>	< 0.1		<0.1		<0.1	0.012	0.1	< 0.1		0.012	0.1	<0.1		0.016	0.1	1.02	107	1.02	<0.1		0.021	0.2	0.11	0.9	10	< 0.1		<0.1		1.0>	0.18	1.4	0.02	0.2	0.0423	0.3	osure poir	card quoti	icity refer	indicate r	HO-O for	
nodis) Dirganic Carbon	µg/g			·		26,000		•	•		•		·	21 000	000/70			20,000		•		39,000							47,000		•					•					39,000				EPC - Exp	HQs - Ha:	TRV - Tox	HOs >1.0	The mea	
HQS – NO SAR			Time	Concentrations	HQs	Conce ntrations	HQs	LONCENTRATIONS	Concentrations	HQs	Concentrations	HQs	Concentrations	HQS	HOS	Concentrations	HQs	EPC	HQs	EPC	HQs	EPC	HQs	HO	- Co	HOS	EPC	HQs	EPC	HQs	EPC	HQS	HQs	EPC	HQs	EPC	HQs	EPC	EPC	HQs	EPC	HQs	EPC	HQs						
IENT EPCS AND			ode Sampled Date	9/18/2018	9/18/2018	10/2/2019	10/2/2019	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	10/2/2019	9/18/2018	9/18/2018	10/2/2019	10/2/2019	9/19/2018	9/19/2018	10/2/2019	10/2/2019	0107/01/2	01/0/01/0 01/07/01/0	9/18/2018	9/18/2018	9/18/2018	10/1/2019	10/1/2019	9/19/2018	9/19/2018 0/10/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	8/10/51/6	9/19/2018	10/1/2019	10/1/2019	95% UCLM	95% UCLM						
TABLE 4: SEDIN		DEI or SEI)	ng Zone Location Co	G-1 Comp	G-1 Comp	C-1 West	C-1 West	C-1 West	G-2 Comp	G-2 Comp	C-2 West	C-2 West	G-3 Comp	G-3 Comp	G-4 Comp	G-4 Comp	G-4 Comp	G-5 Comp	G-5 Comp	G-5 Comp	G-5 Comp	C-3 West	C-3 West	C-3 West	C-3 Centro	C-3 Centre	C-3 East	C-3 East	C-4 West	C-4 West	C-4 West	C-4 West	C-4 Centre	C-4 East	C-4 East	C-5 West	C-5 West	C-5 Centre	C-5 East	C-5 East	G-6 Comp	G-6 Comp								
		TRV (DEC	Monitori	6-1	G-1	6.1	55	5 5	6-2	G-2	C-2	5.5		5-5	6-4	G-4	6-4	G-5	G-5	G-5	6-5	r;	33	5 3	3 3	3	5	6.9 .9	C-4	C-4	C-4	5 5	5 5	C-4	6-4	C.5	5.5	<u>ب</u>	5 5	6.5	G-6	G-6								

Appendix "A" to Report PW19008(g)/LS19004(f) $\overset{Page 101}{Page 101} \circ f_{4} 0 f_{2} of 486$

SLR

Carbon

(listot to mus) sHA9	
byrene	ľ
phenanthrene	
ənəledirden	
-S ,ənəlertinqeniyritəm	
ənəryq(bɔ-ɛ,Հ,ᡗ)onəbni	
fluorene	
ananthene	
ənəɔɛʌdវnɕ(d,ɕ)znədib	
əuəsAıyı	
benzo(a)pyrene	
ənərtneroult(x)oznəd	
benzo(g,h,i)perylene	
anaserntras(a)znad	
ansbracene	
ənəntriqenəse	
acenaphthylene	
Total Organic Carbon	
TABLE 5: SEDIMENT EPCS AND HQS – SAR	

PAHs

SLR Project No.: 209.40666 January 2020

phosphorus total	β/βμ	600		690	1.2	715	1.2	598	0.1	1.0	837	1.4	795	5.1 002	1.7	737	1.2	871	1.5	756	OF 11	0.11	1622	2.7	660	1.1	642	1.1	1560	2.6	2.1	718	1.2	861	1120	1.9	781	1.3	978	1.6	904	1.5	1020	1.7			
kjeldahl nitrogen total	β/βή	550		006	1.6	5.8	0.0	200	5.0V	0.7	1000	1.8	600	47	10	400	0.7	35	0.1	800	1.5	C C C	1900	3.5	600	1.1	800	1.5	330	0.6	2.9	600	1.1	1000	1200	2.2	200	6.0	006	1.6	180	0.3	841.8	1.5			
zinc	д/g	121		187	1.5	214	1.8	215	167	1.4	244	2.0	311	0.2	2.7	215	1.8	272	2.2	275	8.7	121	5.05	2	202	Γ	310	2.6	532	4.4	3.9	298	2.5	215	478	3.5	244	2.0	414	3.4	339	2.8	349.3	2.9			
silver	β/βμ	Ī		0.13		0.083		0.11	5	;	0.19		0.48	0.387	0000	0.31		0.263		0.42	0,00	0.001	9	2	0.37		0.3	Ī	1.18	;	0.0	0.27		0.58	1 2	2	0.53		m		0.342		1.126				
աթւշուծ	B/8⊓	0.18				0.057	0.3	·		T	ŀ			0 104	0.6			0.1	0.6	·	1	CC7.0	ŧ.,					1	0.197	1.1	·					ſ					0.104	0.6	0.187	1.0			
əsəueBuew	β/βή	460		•		566	1.2	·	1	T	ŀ			2 ED	1.2	•		623	1.4	•	6	oon c t	<u>.</u> .		ŀ			1	594	1:3	·	ŀ				t	•	T			390	0.8	589	1.3			
beəl	B/Bri	35.8		16	0.4	24.5	0.7	8	9; F	4.0	8	0.9	22	30.6 20.6	1.1	22	0.6	29.6	0.8	42	1.3	1 1 1	5.1	2.4	28	0.8	59	1.6	51.3	1.4	2.0	32	6.0	38	e e	1.6	49	1.4	145	4.1	46.1	1.3	57.9	1.6			
iron	µg/g	30000				23,000	0.8							22,600	0.8			21,100	0.7		000 4 6	0.00	8						25,600	6.0											18,800	0.6	23967	0.8			
cobber	β/8ή	31.6		63	2.0	44.6	1.4	8	20	1.6	51	1.6	81	0.2	2.1	8	1.8	38.1	1.2	2	2.0	1.00	170	5.4	12	2.2	99	1.9	125	4.0	4.6	42	1.3	22	5.2	3.1	99	2.1	136	4.3	64.1	2.0	6	2.9			
muimorda		43.3		21	0.5	21.8	0.5	5	5	0.5	19	0.4	2	25.7	0.6	5	0.5	19.8	0.5	5	0.5		3 5	0.7	26	0.6	16	0.4	35.9	8.0	14	19	0.4	22	5 6	50	2	0.5	37	0.9	22.6	0.5	27.5	9.0			.um
muimbeo	нg/g	0.99		0.37	0.4	1.32	1.3	0.41	0 27	0.3	0.58	0.6	0.56	0.623	0.6	0.39	0.4	0.601	0.6	0.57	0.6	00/10	0.81	0.8	0.39	0.4	0.76	0.8	0.914	6.9	6.2	0.56	0.6	0.74		3.1	0.86	6.0	8.5	8.6	0.609	0.6	2.4	2.5		-	a in the
arsenic	нg/g	9.79		3.8	0.4	3.56	0.4	3.6	7 7	, 6.0	4.6	0.5	6.8	4 13	10	3.6	0.4	3.71	0.4	3.9	0.4	2 u c	0.0 7 4	0.5	3.5	0.4	3.8	0.4	5.76	9.0	c.c 9.0	4.1	0.4	4.9	t 1-	9.0	3.7	6.0	12	1.2	4.29	0.4	5.52	9.0			Included
(lstot to mus) sHA9	нg/g	4		42.23	10.6	6.7	1.7	69.86	5.11 5.11	1.3	22.97	5.7	2.97	1.0	1.3	4.44	1.1	5.7	1.4	8.18	2.0		3.3 10 96	2.7	15.97	4.0	4.85	1.2	7.8	2.0	5.1	8.91	2.2	6.19	979	1.6	5.29	1.3	15.95	4.0	7.3	1.8	26.41	6.6			auai PAHS I
byrene	B/8⊣	0.49		6.75	13.8	1.4	2.9	18.9	38.6	20.0	4.06	8.3	0.47	2	2.2	0.76	1.6	1.2	2.4	1.48	3.0	C:7	2 00 C	4.3	2.75	5.6	0.86		1.6	3.3	04.c	1.62	3.3	1.13	116	2.4	0.92	1.9	2.94	6.0	1.5	3.1	4.973	10.1		1000	
phenanthrene	β/8ή	0.56		9.53	17.0	0.86	1.5	16.5	C.22	1.3	3.63	6.5	0.25	9.6	1.1	0.45	0.8	0.68	1.2	0.94	1.7	C 7	113	2.0	3.23	5.8	0.39	0.7	0.83	1.5	5.92	1.16	2.1	0.6	172	1.3	0.58	1.0	0.93	1.7	0.89	1.6	4.336	7.7			e number (
ənəleritiden	β/8ή	0.176		0.98	5.6	0.014	0.1	<0.1	107	102	0.22	1.3	<0.1	0.014	0.1	<0.1		0.0089	0.1	<0.1	4	CT-0	-0 1 1	107	0.24	1.4	<0.1		0.023	0.1	+T-0	<0.1		<0.1	<01	1.02	<0.1		0.15		0.029	0.2	0.191	1.1			moer oy tn
-2 ,ənəlertinqeniyrtəm	β/8ή	0.02		0.3	15.0	0.012	0.6	<0.1	107	TION	<0.1		<0.1	0.014	0.7	<0.1		0.0096	0.5	<0.1	FU0 0	100.0	3.4	10,	0.1	5.0	<0.1		0.034	1.7	15.0	<0.1		<0.1	<0.1	102	<0.1		<0.1		0.027	1.4	0.0877	4.4			ng this nu
indeno(1,2,3-cd)pyrene	β/8ή	0.2		1.34	6.7	0.45	2.3	3.45	1/.3 0.10	1.0	0.9	4.5	0.11	0.0	2.0	0.18	0.9	0.36	1.8	0.32	1.6	t. c	2.1	2.7	0.46	2.3	0.2	1.0	0.63	3.2	60.0 8.8	0.35	1.8	0.27	4-T	1.4	0.25	1.3	0.88	4.4	0.54	2.7	0.997	5.0			ana aiviali
fluorene	B/₿Ħ	0.19		0.84	4.4	0.063	0.3	1.76	y.y	102	0.29	1.5	<0.1	0.047	0.0	6.1		0.048	0.3	<0.1	10.0	10.0	1.0	1.2	0.26	1.4	<0.1		0.074	0.4	2.5	0.11	9.0	€0.1	1 02	1.02	<0.1		0.1	0.5	0.087	0.5	0.395	2.1		14	C OF PELJ
fluoranthene	β/gμ	0.75		9.08	12.1	1.9	2.5	24.5	32.7	1.5	5.25	7.0	0.59	2 2	2.0	0.96	1.3	1.6	2.1	1.91	2.5	7.0	2.56	3.4	3.7	4.9	1.1	1.5	2.2	2.9	0 ⁴	2.12	2.8	1.41	2'T	1.9	1.15	1.5	2.99	4.0	7	2.7	6.834	9.1			e IKV (PE
ənəcərtfna(d,a)znədib	β/8r	0.06		0.37	6.2	0.12	2.0	0.79	13.2	102	0.22	3.7	<0.1	1	1.8	<0.1		0.1	1.7	<0.1	1	0T-0	0.13	2.2	0.12	2.0	<0.1		0.17	5 .8	3.3 3.3	<0.1		<0.1	<01	107	<0.1		0.26	4.3	0.13	2.2	0.242	4.0		1997 - 1997 1997 - 1997	/ILIN FEIIADI
сµւλгеие	β/8r	0.34		3.24	9.5	0.86	2.5	7.15	21.0	13	2.13	6.3	0.26	0.70	2.3	0.42	1.2	0.75	2.2	0.84	2.5		4.4	3.6	1.34	3.9	0.5	1.5	13	89 F	5.9	0.89	2.6	0.66	6.1	2.0	0.47	1.4	1.76	5.2	11	3.2	2.155	6.3			tained w
peuzo(s)pyrene	β/8r	0.37		2.4	6.5	0.69	1.9	6.01	19:Z	1.0	1.71	4.6	0.18	0.57	1.5	0.33	0.9	0.58	1.6	0.68	1.8	т. С	10.0	2.5	1.05	2.8	0.39	1.1	0.69	1.9	4.1	0.69	1.9	0.48	21	1.4	0.39	1.1	1.69	4.6	0.75	2.0	1.712	4.6			
benzo(k)fluoranthene	B/8⊓	0.24		1.37	5.7	0.31	1.3	2.29	5.2	402	66.0	4.1	<0.2	30.0	10	<0.2		0.23	1.0	0.29	1.2	147	052	2.2	0.63	2.6	<0.2		0.47	5.0	2.9	0.3	1.3	0.23	0.15	10	<0.2		0.72	3.0	0.34	1.4	0.71	3.0			Inigual PA
benzo(g,h,i)perylene	µg∕g	0.17		1.45	8.5	0.46	2.7	4.36	0.22	1.3	0.99	5.8	0.13	0.43	2.5	0.2	1.2	0.38	2.2	0.38	2.2	100	3.4	3.2	0.44	2.6	0.23	1.4	0.74	4.4	4.5	0.41	2.4	0.37	0.28	2.2	0.31	1.8	0.98	5.8	0.63	3.7	1.236	7.3			ng the Ind
benz(a)anthracene	µg/g	0.32		2.96	9.3	9.0	1.9	6.6	20.5	1.2	1.79	5.6	0.18	0.45	0.18	0.34	0.18	0.54	0.18	0.68	0.18	1.7	4.5	2.5	1.1	3.4	0.38	1.2	0.71	2.2	5.3	0.71	2.2	4.0	1.1	1.4	0.42	1.3	1.99	6.2	0.61	0.18	1.83	5.7	le TRV		y summi
anthracene	β/8ή	0.220		0.99	4.5	0.13	0.6	4.69	21.3	0.5	0.43	2.0	<0.1	0.08	0.4	< 0.1		0.12	0.5	0.16	0.7	C+:0	0.12	0.5	0.28	1.3	<0.1		0.1	0.5	3.1	0.15	0.7	<0.1	<01	102	< 0.1		0.28	1.3	0.12	0.5	0.867	3.9	tion e EPC by th		alculated o
ənəhthqenəse	µg∕g	0.0060		0.83	138.3	0.049	8.2	1.49	248.3	TION	0.26	43.3	<0.1	0.03	5.0	<0.1		0.038	6.3	<0.1	EC 0	15.0 AE 0	45.U	10	0.27	45.0	<0.1		0.045	7.5	41.7	<0.1		<0.1	<01	102	<0.1		<0.1		0.084	14.0	0.341	56.8	concentrat ts ce value dividing th	ential risk	AHS Was G
ənəlyhthqenəce	hg/g	0.01		<0.1		0.011	1.1	<0.1	107	1102	<0.1		<0.1	0.013	1.3	<0.1		0.012	1.2	<0.1	1010	9 1	1.0	1.0	<0.1		<0.1		0.021	2.1	11.0	<0.1		<0.1	<0.1	1.02	<0.1		0.18	18.0	0.02	2.0	0.0423	4.2	sure point rd quotien ity referen tained bv	Idicate pol	101 J-J-
nodıs) SinsgıO İstoT	β/8ή	Ī	1			26,000				Ī				31 000	000/70	•		20,000		·	000.00	000/60							47,000	T				•							39,000	T			EPC - Expo HQs - Haza TRV - Toxic HQs are ot	HOs >1.0 i	ine mean
ŞAR				ncentrations	s	ncentrations	S	rentrations	Sociations	S S S S S S S S S S S S S S S S S S S	ncentrations	s	Icentrations	Societations	2000	ncentrations	s	ncentrations	S	ncentrations	S		Societations	S	ncentrations	s	ncentrations	S	ncentrations	S	ILETILI ALIUTS	ncentrations	s	Icentrations	a neutrations	S S S S S S S S S S S S S S S S S S S	rentrations	s	ncentrations	S	ncentrations	S	ncentrations	s			
S AND HQS – S			ed_Date_Time	.018 Cor	018 HQ	019 Cor	019 HQ	018 Cor	018 UT8	018 HO	018 Cor	018 HQ	018 Cor	010	019 HO	018 Cor	018 HQ	019 Cor	019 HQ	018 Cor	018 HQ	010	018	018 HQ	018 Cor	018 HQ	018 Cor	018 HQ	019 Cor	019 HQ	018 HO	018 Cor	018 HQ	018 Cor	010	018 HO	018 Cor	018 HQ	018 Cor	018 HQ	019 Cor	019 HQ	CLM	Ř			
SEDIMENT EPC			Code Sampl.	9/18/2	9/18/2	10/2/2	10/2/2	2/18/2	2/81/0	9/18/2	9/18/2	9/18/2	9/18/2	C/C/U1	10/2/2	9/18/2	9/18/2	10/2/2	10/2/2	2/19/2	2/19/2	C/C/UI	-/7/10/18//3	9/18/2	e 9/18/2	e 9/18/2	9/18/2	9/18/2	10/1/2	10/1/2	9/19/2	e 9/19/2	e 9/19/2	2/13/2	·/61/6	7/67/6	e 9/19/2	s 9/19/2	9/19/2	5/19/2	10/1/2	10/1/2	95% U	a Wide			
TABLE 5: \$		I. LEL or ISOG)	ring Zone Location	G-1 Comp	G-1 Comp	C-1 West	C-1 West	C-1 West	C-T Mest	G-2 Comp	C-2 West	C-2 West	G-3 Comp	G-4 Comp	G-4 Comp	G-4 Comp	G-4 Comp	G-5 Comp	G-5 Comp	G-5 Comp	G-5 Comp	C-2 Mact	C-3 West	C-3 West	C-3 Centre	C-3 Centry	C-3 East	C-3 East	C-4 West	C-4 West	C-4 West	C-4 Centry	C-4 Centr	C-4 East	C-4 Edst	C-5 West	C-5 Centre	C-5 Centre	C-5 East	C-5 East	G-6 Com	G-6 Comp		Study Are			
		TRV (TE	Monito	6-1	5	3	3	3	3 12	125	3	5		5 7	4	4	64	6-5	5-	5-	55	3 2	3 3	33	3	3	r.		3	3	33	4	4	4	5 5	5	55	5	5.	5	99	9					

Appendix "A" to Report PW19008(g)/LS19004(f) Page 102 of 4193 of 486

SLR Project No.: 209.40666 January 2020

HAZARD QUOTIENTS

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	snsidingmA					3.7	3.7	1.8	2.2	1.5	1.2	3.3	4.7	NC	ž
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4si3					0.04	0.04	0.02	0.03	0.02	0.01	0.04	0.06	NC	S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	stnel9 oitenpA			Å		3.7	3.7	1.8	2.2	1.5	1.2	3.3	4.7	S	S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benthic (Community)					3.7	3.7	1.8	2.2	1.5	1.2	3.3	4.7	S	Ŋ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ЯA2) sirlns8					3.7	3.7	1.8	2.2	1.5	1.2	3.3	4.7	NC	Ŋ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(N ss) nitrite (as N)	Hg/L		60		220	220	110	130	90	70	200	280	<50	<50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	snsidingmA					0.12	0.24	0.51	0.51	0.57	0.68	0.13	0.36	0.08	0.07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4si3					0.67	1.42	2.94	2.97	3.3	3.93	0.76	2.09	0.47	0.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	stnelq siteupA			Å		0.1	0.2	0.5	0.5	0.6	0.7	0.1	0.4	0.1	0.1
Mathematical Sector	Benthic (Community)					0.12	0.24	0.51	0.51	0.57	0.68	0.13	0.36	0.08	0.07
Mathematical Section Mathemati	(AA2) sirthis					0.67	1.42	2.94	2.97	3.3	3.93	0.76	2.09	0.47	0.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	iron	hg/L	300	300		202	426	883	890	066	1180	227	628	140	119
High Report Number 137 ⁴ /10 ⁴ Amphibians Amphibians Amphibians 330748 137 ⁴ /10 ⁴ amthic (SAR) amthic (SAR) amthic (SAR) 330748 146 10 23 amthic (SAR) amthic (SAR) 330748 146 10 23 33 amthic (SAR) amthic (SAR) 330748 146 10 23 33 amthic (SAR) amthic (SAR) 330748 146 10 23 33 33 amthic (SAR) amthic (SAR) 330748 146 10 23 13 01 001 001 001 330748 45 146 10 23 13 01 001	snsidirlqmA					0.0	0.0	0.01	0.01	0.01	Ŋ	0.04	10.0	S	Ŷ
Multiplication Multiplication Multiplication 330748 348 132 133	4si3					0.07	0.07	0.02	0.02	0.01	S	0.07	0.02 0	S	¥
Multi Report Number 1307/48 1316/11 Beenthic (SARR) Beenthic (SARR) 1307/48 136 131 131 131 131 131 1307/48 146 10 131 <t< th=""><th>stnelq oitenpA</th><th></th><th></th><th>Å</th><th></th><th>0.03</th><th>0.03</th><th>0.01</th><th>0.01</th><th>0.00</th><th>ÿ</th><th>0.03</th><th>0.01</th><th>ÿ</th><th>ÿ</th></t<>	stnelq oitenpA			Å		0.03	0.03	0.01	0.01	0.00	ÿ	0.03	0.01	ÿ	ÿ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benthic (Community)					0.04	0.04	0.01	0.01	0.01	ÿ	0.04	0.01	S	ž
Hart Report Number 137 ⁴ (2,000) Amphibians 149 ⁴ (2,000) Amphibians 130748 137 ⁴ (1,00) 130748 146 10 2.44 10 131 ⁴ (1,00) 131 ⁴ (1,00) 130748 146 10 2.44 10 2.44 131 330748 463 463 10 2.44 10 131 330748 463 463 10 2.44 10 131 330748 463 463 10 2.44 10 131 330748 463 463 10 2.44 10 13 330748 463 463 10 2.44 10 13 330748 463 463 463 10 2.44 13 330748 594 10 10 2.44 13 13 330748 403 10 10 2.44 13	(AA2) oirline8					0.1	0.1	0.03	0.04	0.02	¥	0.13	0.04	ğ	ž
Image: Section (Community) Mathematical (SAR) Benthic (SAR) Amphibians 19773 19773 Benthic (Community) Benthic (SAR) 330748 13773 Benthic (SAR) Benthic (SAR) 330748 13773 Benthic (SAR) Benthic (SAR) 330748 145 145 145 330748 445 146 10 243 330748 445 146 10 243 153 330748 446 146 10 243 153 330748 59 143 10 243 153 330748 59 14 10 243 153 330748 50 10 10 243 153 330748 30 50 13 243 153 134 330748 30 10 10 243 153 134 330748 30 10 10 10 10 10 1	(Filtered) munimula	hg/L	15 ⁸² 75 ⁸²	5 100		13	14	3	4	2	<2	13	4	<2	<2
Here Here <th>snsidingmA</th> <th></th> <th>Γ</th> <th></th> <th></th> <th>0.45</th> <th>0.93</th> <th>1.5</th> <th>1.5</th> <th>1.5</th> <th>1.9</th> <th>0.5</th> <th>1.0</th> <th>0.08</th> <th>0.04</th>	snsidingmA		Γ			0.45	0.93	1.5	1.5	1.5	1.9	0.5	1.0	0.08	0.04
Mathematical and service (community) Mathematical and service (community) Mathematical and service (community) S1(100) S1(100) S1(100) Mathematical and service (community) S1(100) S1(100) S1(100) S1(100) 330748 445 146 146 100 S1(100) S1(100) 330748 453 145 145 146 100 S1(100)	4si3					0.73	1.5	2.34	2.34	2.45	2.99	0.8	1.54	0.12	0.06
Ling Ling Benthic (Community) 130748 145 146 146 330748 145 145 146 330748 145 145 146 330748 249 259 035 330748 449 146 146 330748 249 259 035 330748 469 469 246 146 330748 249 259 035 130 330748 307 349 249 146 146 330748 307 349 249 146 146 330748 349 459 249 146 146 330748 307 349 24 146 146 330748 307 349 349 146 146 330748 307 349 349 146 146 330748 349 349 349 146 146 <t< th=""><th>stnsl9 oftenpA</th><th></th><th></th><th>дH</th><th></th><th>0.3</th><th>0.7</th><th>1.0</th><th>1.0</th><th>1.1</th><th>1.3</th><th>0.3</th><th>0.7</th><th>0.052</th><th>0.03</th></t<>	stnsl9 oftenpA			дH		0.3	0.7	1.0	1.0	1.1	1.3	0.3	0.7	0.052	0.03
Навидии <	Benthic (Community)					0.45	0.93	1.46	1.46	1.53	1.87	0.5	0.96	0.24	0.12
Image: constraint of the second sec	(AA2) sinthic					1.45	2.99	4.67	4.68	4.89	5.98	1.6	3.07	0.24	0.12
Lab. Report. Number 1320748 33	munimule	hg/L	15 ⁸² 75 ⁸²	5 100		145	299	467	468	489	598	160	307	24	12
					Lab_Report_Number	330748	330748	330748	330748	330748	330748	330748	330748	330748	330748

(N s6) etitin	μg/L		60		220	220	110	130	90	70	200	280	<50	<50
snsidirlqmA					0.12	0.24	0.51	0.51	0.57	0.68	0.13	0.36	0.08	0.07
4si3					0.67	1.42	2.94	2.97	3.3	3.93	0.76	2.09	0.47	0.4
stnel9 oiteupA			Ã		0.1	0.2	0.5	0.5	0.6	0.7	0.1	0.4	0.1	0.1
iummo2) sidtnə8					0.12	0.24	0.51	0.51	0.57	0.68	0.13	0.36	0.08	0.07
(AA2) sirthic					0.67	1.42	2.94	2.97	3.3	3.93	0.76	2.09	0.47	0.4
iron	µg/L	300	300		202	426	883	890	066	1180	227	628	140	119
snsidirlqmA					0.0	0.0	0.01	0.01	0.01	S	0.04	0.01	NC	NC
4si3					0.07	0.07	0.02	0.02	0.01	ÿ	0.07	0.02	NC	NC
stnel9 oiteupA			ĝ		0.03	0.03	0.01	0.01	0.00	ÿ	0.03	0.01	NC	NC
iummo2) sidtnə8					0.04	0.04	0.01	0.01	0.01	ÿ	0.04	0.01	S	S
(AA2) sirthn98					0.1	0.1	0.03	0.04	0.02	ÿ	0.13	0.04	S	NC
nətli7) munimule	μg/L	15 ⁸² 75 ⁸²	5 100		13	14	m	4	2	2	13	4	<2	<2
snsidirlqmA	Η				0.45	0.93	1.5	1.5	1.5	1.9	0.5	1.0	3.08	40.C
4si3	Η				0.73 (1.5	2.34	2.34	2.45	2.99	0.8	1.54	0.12 (0.06
stnel9 oiteupA			ĝ		0.3	0.7	1.0	1.0	1.1	1.3	0.3	0.7	.052	0.03
ummo2) sidtnə8	H				.45	.93	.46	.46	.53	.87	0.5	96	.24 0	.12
(яA2) sidtn98					L.45 0	2.99 0	4.67 1	1.68 1	1.89 1	5.98 1	1.6	3.07 0	0.24 0	0.12 0
munimule	μg/L	15 ⁸² 75 ⁸²	5 100		145	299	467	468	489 4	598	160	307	24 (12
				en_Interval Sampled_Date_Time Sample_Type Field_ID SampleCode Lab_Report_Nun	9/30/2019 [Normal C-1 West C-1 West - 30 Sep 19 330748	9/30/2019 [Field_D [C-1 West Duplicate [C-1 West Duplicate30 Sep 19] 330748	9/30/2019 Normal C-3 Centre - G5 C-3 Centre - G530 Sep 19 [330748	9/30/2019 [Normal C-3 West C-3 West - 30 Sep 19 330748	9/30/2019 Normal C-4 West C-4 West - 30 Sep 19 330748	9/30/2019 Normal C-5 East - G6 C-5 East - G6 - 30 Sep 19 330748	[9/30/2019 [Normal [G-1 Comp30 Sep 19 [330748	9/30/2019 Normal G-4 Comp G-4 Comp 30 2ep 19 [330748	9/30/2019 Normal R-1 R-130 Sep 19 [330748	9/30/2019 Normal R-2 R-230 Sep 19 [330748
				Nell_Screen										

ON PWOO CCME WOG Freshwater Aquatic Life (long term) Monitoring. Zone Alternative Name Location Code Monitoring. Zone Alternative Name Location Code

limits Reference R.1 Reference R.2 NC - marcellariade. Concentration below laboratory detection lim Exv skd becription IN WORDOnario Powincial Water Quality Objectives, July 1994

C-1 West C-3 Centre C-3 West C-4 West C-5 East G-1 Comp G-4 Comp

A002 A003 B003 C001

CCME WQG Freshwater Aquatic Life iong term);CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term) CCME WQG Freshwater Aquatic Life (short term);CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Short-term)

Env Stds Comments #1.Dependent upon temperature, cold water biota, and warm water biota. Most conservative value listed.

#2:Interim PWQO #3:Interim PWQO. The PWQO is 100 ug/L.

#4:Criteria varies with hardness. #5:Criteria is for dissolved mercury.

City of Hamilton Ecological Risk Assessment – Chedoke Creek

TABLE 6: SURFACE WATER HQs

SLR

Appendix "A" to Report PW19008(g)/LS19004(f) Page 104 of 416 of 486

DRAWINGS

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

Cadfile name: S_209-40666-00000-A3.dwg

Cadfile name: S_209-40666-00000-A3.dwg

Appendix "A" to Report PW19008(g)/LS19004(f) Page 108 of 1409 of 486

APPENDIX A Previous Environmental Investigations Sampling Locations

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

CHEDOKE CREEK SUBWATERSHED

Appendix "A" to Report PW19008(g)/LS19004(f) Page 100 f 486

CH-2

Appendix "A" to Report PW19008(g)/LS19004(f) $PagPage^{1110} of 1422 of 486$

-19-

Appendix "A" to Report PW19008(g)/LS19004(f) Page 114 of 426 of 486

APPENDIX B Laboratory Analytical Report

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

Appendix "A" to Report PW19008(g)/LS19004(f) Page 115 of 128 of 486

Your P.O. #: PENDING Your Project #: 209.40666.00000 Your C.O.C. #: g141143

Attention: Celine Totman

SLR CONSULTING (CANADA) LTD #200 - 1620 WEST 8TH AVENUE VANCOUVER, BC Canada V6J 1V4

> Report Date: 2019/11/15 Report #: R2811669 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B985653 Received: 2019/10/03, 16:09

Sample Matrix: Sediment # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Coliforms (MTF) in Soil (4)	9	N/A	2019/10/17	COR1 SOP-00019	Health Can MFHPB-19
Ecotox Report Attachment	7	2019/11/15	2019/11/15		
Escherichia Coli (MTF) in Soil (4)	9	N/A	2019/10/17	COR1 SOP-00019	Health Can MFHPB-19
Fecal Coliforms (MTF) in Solid (4)	9	N/A	2019/10/17	COR1 SOP-00019	Health Can MFHPB-19
Elements by ICPMS (total)	6	2019/10/09	2019/10/09	BBY7SOP-00004 / BBY7SOP-00001	EPA 6020b R2 m
Elements by ICPMS (total)	2	2019/10/09	2019/10/10	BBY7SOP-00004 / BBY7SOP-00001	EPA 6020b R2 m
Elements by ICPMS (total)	1	2019/10/10	2019/10/10	BBY7SOP-00004 / BBY7SOP-00001	EPA 6020b R2 m
Moisture	9	2019/10/08	2019/10/09	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Ammonia-N (Available) (1)	9	2019/10/11	2019/10/11	AB SOP-00027 / AB SOP-00007	SM 23 4500 NH3 A G m
PAH in Soil by GC/MS Lowlevel	9	2019/10/08	2019/10/10	BBY8SOP-00022	BCMOE BCLM Jul2017m
Total PAH and B(a)P Calculation (5)	9	N/A	2019/10/11	BBY WI-00033	Auto Calc
Phosphorus (Available by ICP) (1)	9	2019/10/12	2019/10/12	CAL SOP-00152 / AB SOP- 00042	EPA 6010d R5 m
pH (2:1 DI Water Extract)	9	2019/10/09	2019/10/09	BBY6SOP-00028	BCMOE BCLM Mar2005 m
Total Carbon, Nitrogen & Sulphur in Soil (1)	9	N/A	2019/10/17	CAL SOP-00243	LECO 203-821-498 m
Texture by Hydrometer, incl Gravel (Wet)	9	N/A	2019/10/10	BBY6SOP-00051	Carter 2nd ed 55.3
Total Kjeldahl Nitrogen (Available) (2)	9	2019/10/11	2019/10/17	AB SOP-00027 / AB SOP- 00008	EPA 351.1 R 1978 m
Total Organic Carbon Soil Subcontract (3)	9	2019/10/15	2019/10/15		
Sample Matrix: Water # Samples Received: 9					
Analyses	Out	Date	Date	Labourtow, Mathad	
Analyses	Quantity		Analyzed		

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Biochemical Oxygen Demand	9	2019/10/10	2019/10/15	BBY6SOP-00045	SM 23 5210 B m
Sulphide (as H2S)	9	N/A	2019/10/16	BBY WI-00033	Auto Calc
Total Sulphide (1)	9	N/A	2019/10/15	AB SOP-00080	SM 23 4500 S2-A D Fm

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used

Your P.O. #: PENDING Your Project #: 209.40666.00000 Your C.O.C. #: g141143

Attention: Celine Totman

SLR CONSULTING (CANADA) LTD #200 - 1620 WEST 8TH AVENUE VANCOUVER, BC Canada V6J 1V4

> Report Date: 2019/11/15 Report #: R2811669 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B985653 Received: 2019/10/03. 16:09

by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by BV Labs Calgary Environmental

(2) This test was performed by BV Labs Edmonton Environmental

(3) This test was performed by BV Labs Ontario (from Winnipeg)

(4) The matrix is non-food and is outside of the scope of the method. Sample(s) analyzed have not been subjected to Bureau Veritas Laboratories' standard validation process for the submitted matrix and is not an accredited method.

(5) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include (B.C. Reg. 116/2018, Schedule 3.4): Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

Bureau Veritas Laboratories 15 Nov 2019 17:49:29

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Safiann Maiter, Key Account Specialist Email: Safiann.Maiter@bvlabs.com Phone# (604)639-2616

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF SEDIMENT

BV Labs ID		WQ6244			WQ6245		WQ6246		
Sampling Data		2019/10/01			2019/10/01		2019/10/01		
Sampling Date		09:20			10:55		13:35		
COC Number		g141143			g141143		g141143		
	UNITS	BOAT LAUNCH	RDL	QC Batch	C6 EAST / G7	RDL	C5 EAST / G6	RDL	QC Batch
Misc. Inorganics									
Available (KCl) Total Kjeldahl Nitrogen	mg/kg	55 (1)	12	9630371	120	5.0	180 (1)	10	9630371
Ecotox									
No Parameter	N/A				ATTACHED	N/A	ATTACHED	N/A	9673836
Nutrients	-	-	-						
Available (KCl) Ammonia (N)	mg/kg	23	2.0	9623846	100	2.0	130	2.0	9623846
Available (NH4F) Phosphorus (P)	mg/kg	1.6	1.0	9625759	1.8	1.0	1.7	1.0	9625759
Physical Properties	-		-						
% sand by hydrometer	%	22	2.0	9620237	36	2.0	28	2.0	9620237
% silt by hydrometer	%	66	2.0	9620237	57	2.0	56	2.0	9620237
Clay Content	%	12	2.0	9620237	7.3	2.0	16	2.0	9620237
Gravel	%	<2.0	2.0	9620237	<2.0	2.0	<2.0	2.0	9620237
Internal Sublet Analysis									
Subcontract Parameter	N/A	ATTACHED	N/A	9627061	ATTACHED	N/A	ATTACHED	N/A	9627061
RDL = Reportable Detection Limit N/A = Not Applicable	-								

(1) Detection limits raised due to high moisture content, samples contain => 50% moisture.

RESULTS OF CHEMICAL ANALYSES OF SEDIMENT

BV Labs ID		WQ6247			WQ6248			WQ6249		
Sampling Date		2019/10/01			2019/10/01			2019/10/02		
		11:45			09:30			11:45		
COC Number		g141143			g141143			g141143		
	UNITS	C4 WEST	RDL	QC Batch	BLIND DUPLICATE	RDL	QC Batch	C3 WEST	RDL	QC Batch
Misc. Inorganics										
Available (KCl) Total Kjeldahl Nitrogen	mg/kg	330 (1)	11	9630371	55 (1)	12	9630371	95	5.0	9630371
Ecotox			<u>.</u>							
No Parameter	N/A	ATTACHED	N/A	9673836				ATTACHED	N/A	9673836
Nutrients			<u>.</u>							
Available (KCl) Ammonia (N)	mg/kg	190	2.0	9623846	32	2.0	9623846	26	2.0	9623846
Available (NH4F) Phosphorus (P)	mg/kg	4.6	1.0	9625759	1.8	1.0	9625759	3.1	1.0	9625759
Physical Properties	•			·						
% sand by hydrometer	%	32	2.0	9620237	32	2.0	9620237	39	2.0	9620237
% silt by hydrometer	%	61	2.0	9620237	59	2.0	9620237	53	2.0	9620237
Clay Content	%	7.3	2.0	9620237	9.4	2.0	9620237	8.0	2.0	9620237
Gravel	%	<2.0	2.0	9620237	<2.0	2.0	9620237	<2.0	2.0	9620237
Internal Sublet Analysis										
Subcontract Parameter	N/A	ATTACHED	N/A	9627061	ATTACHED	N/A	9627061	ATTACHED	N/A	9627061
RDL = Reportable Detection Limit										
N/A = Not Applicable										
(1) Detection limits raised due to high m	noisture	content, samples	s conta	ain => 50%	moisture.					

RESULTS OF CHEMICAL ANALYSES OF SEDIMENT

BV Labs ID		WQ6250	WQ6251	WQ6252		
Sampling Date		2019/10/02	2019/10/02	2019/10/02		
		10:18	12:50	16:20		
COC Number		g141143	g141143	g141143		
	UNITS	C3 CENTRE / G5	G4	C1 WEST	RDL	QC Batch
Misc. Inorganics						
Available (KCl) Total Kjeldahl Nitrogen	mg/kg	35	47	5.8	5.0	9630371
Ecotox				·		
No Parameter	N/A	ATTACHED	ATTACHED	ATTACHED	N/A	9673836
Nutrients				·		
Available (KCl) Ammonia (N)	mg/kg	13	27	3.6	2.0	9623846
Available (NH4F) Phosphorus (P)	mg/kg	1.1	2.4	<1.0	1.0	9625759
Physical Properties						
% sand by hydrometer	%	83	49	69	2.0	9620237
% silt by hydrometer	%	11	45	27	2.0	9620237
Clay Content	%	4.3	5.9	4.0	2.0	9620237
Gravel	%	<2.0	<2.0	<2.0	2.0	9620237
Internal Sublet Analysis						
Subcontract Parameter	N/A	ATTACHED	ATTACHED	ATTACHED	N/A	9627061
RDL = Reportable Detection Limit						
N/A = Not Applicable						

PHYSICAL TESTING (SEDIMENT)

BV Labs ID		WQ6244	WQ6245	WQ6246	WQ6247	WQ6248	WQ6249		
Sampling Date		2019/10/01 09:20	2019/10/01 10:55	2019/10/01 13:35	2019/10/01 11:45	2019/10/01 09:30	2019/10/02 11:45		
COC Number		g141143	g141143	g141143	g141143	g141143	g141143		
			C6 EAST /	C5 EAST /					
	UNITS	BOAT LAUNCH	G7	G6	C4 WEST	BLIND DUPLICATE	C3 WEST	RDL	QC Batch
Physical Properties	UNITS	BOAT LAUNCH	G7	G6	C4 WEST	BLIND DUPLICATE	C3 WEST	RDL	QC Batch
Physical Properties Moisture	UNITS	58	G7	G6	C4 WEST	58	C3 WEST 47	RDL 0.30	QC Batch 9619855

BV Labs ID		WQ6250	WQ6251	WQ6252		
Sampling Data		2019/10/02	2019/10/02	2019/10/02		
		10:18	12:50	16:20		
COC Number		g141143	g141143	g141143		
	UNITS	C3 CENTRE / G5	G4	C1 WEST	RDL	QC Batch
Physical Properties						
Moisture	%	23	42	26	0.30	9619855
			•			

MICROBIOLOGY (SEDIMENT)

BV Labs ID		WQ6244	WQ6245	WQ6246	WQ6247	WQ6248	WQ6249		
Sampling Date		2019/10/01 09:20	2019/10/01 10:55	2019/10/01 13:35	2019/10/01 11:45	2019/10/01 09:30	2019/10/02 11:45		
COC Number		g141143	g141143	g141143	g141143	g141143	g141143		
	UNITS	BOAT LAUNCH	C6 EAST / G7	C5 EAST / G6	C4 WEST	BLIND DUPLICATE	C3 WEST	RDL	QC Batch
Microbiological Param.									
E. coli	MPN/100g	790	170	5400	2800	130	5400	20	9632009
Fecal Coliforms	MPN/100g	790	170	5400	2800	130	5400	20	9632015
Total Coliforms	MPN/100g	9500	7900	13000	92000	230	92000	20	9632007
RDL = Reportable Detection	Limit	·	•	•	•	•	•		-

BV Labs ID		WQ6250	WQ6251	WQ6252		
Sampling Date		2019/10/02 10:18	2019/10/02 12:50	2019/10/02 16:20		
COC Number		g141143	g141143	g141143		
	UNITS	C3 CENTRE / G5	G4	C1 WEST	RDL	QC Batch
Microbiological Param.						
E. coli	MPN/100g	5400	2400	3500	20	9632009
Fecal Coliforms	MPN/100g	5400	2400	3500	20	9632015
Total Coliforms	MPN/100g	92000	160000	160000	20	9632007

MISCELLANEOUS (SEDIMENT)

BV Labs ID		WQ6244	WQ6245	WQ6246	WQ6247	WQ6248	WQ6249		
Sampling Data		2019/10/01	2019/10/01	2019/10/01	2019/10/01	2019/10/01	2019/10/02		
		09:20	10:55	13:35	11:45	09:30	11:45		
COC Number		g141143	g141143	g141143	g141143	g141143	g141143		
			C6 EAST /	C5 EAST /					
	UNITS	BOAT LAUNCH	G7	G6	C4 WEST	BLIND DUPLICATE	C3 WEST	RDL	QC Batch
Misc. Inorganics	UNITS	BOAT LAUNCH	G7	G6	C4 WEST	BLIND DUPLICATE	C3 WEST	RDL	QC Batch
Misc. Inorganics Total Nitrogen	UNITS %	0.3	G7	G6	C4 WEST	0.4	C3 WEST	RDL 0.2	QC Batch 9631184

BV Labs ID		WQ6250	WQ6251	WQ6252		
Compling Data		2019/10/02	2019/10/02	2019/10/02		
Sampling Date		10:18	12:50	16:20		
COC Number		g141143	g141143	g141143		
	UNITS	C3 CENTRE / G5	G4	C1 WEST	RDL	QC Batch
Misc. Inorganics			•			
Misc. Inorganics Total Nitrogen	%	<0.2	<0.2	<0.2	0.2	9631184

9622914

0.0018 9626992

2.0

Anions Total Sulphide

Demand Parameters

Biochemical Oxygen Demand

RDL = Reportable Detection Limit

mg/L

mg/L

<2.0

0.027

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

RESULTS OF CHEMICAL ANALYSES OF WATER

	BV Labs ID			WR1662		WR1	663	WR166	4	WR1	L665			
	Sampling Date			2019/10/01 09:20		2019/1 09:	10/01 20	2019/10/ 09:20	01	2019/ 09	10/01 :20			
	COC Number			g141143		g141	143	g14114	3	g142	L143			
			UNITS	BOAT LAUNCH-	PW	C6 EA G7-F	ST / PW	C5 EAST G6-PW	/	C4 WE	ST-PW	RDL	QC Bat	ch:
	Calculated Paramete	ers												
	Sulphide (as H2S)		mg/L	0.043		0.1	1	0.10		0.	22	0.0019	96217	85
	Demand Parameters	;	•	•		•		•				•	•	
	Biochemical Oxygen	Demand	mg/L	<2.0		6.4	4	17	17 3		1	2.0	96229	14
	Anions													
	Total Sulphide		mg/L	0.040		0.1	.0	0.094		0.	21	0.0018	96269	92
	RDL = Reportable De	tection Li	mit	-				-				•		
Labs	ID			WR1666	V	VR1667	W	/R1668	WF	R1669	WR	1670		
nplir	g Date		2	019/10/01 09:20	2019/10/01 09:20		2019/10/01 09:20		2019 0	9/10/01 9:20	2019, 09	/10/01 9:20		
C Nu	mber			g141143	g	141143	g	141143	g141143		g14	1143		
		UNITS	BLIND	DUPLICATE-PW	C3	WEST-PW	C3 (CENTRE / 65-PW	G4	I-PW	C1 WE	EST-PW	RDL	Q
cula	ted Parameters													
ohid	e (as H2S)	mg/L	′L 0.029			0.069		0.027	0.	.089	0.	028	0.0019	96

9.5

0.065

6.4

0.025

14

0.084

8.5

0.027

CSR/CCME METALS IN SOIL WITH HG (SEDIMENT)

BV Labs ID		WQ6244	WQ6245		WQ6246	WQ6247		
Sampling Date		2019/10/01	2019/10/01		2019/10/01	2019/10/01		
	_	09:20	10:55		13:35	11:45		
COC Number		g141143	g141143		g141143	g141143		
	UNITS	BOAT LAUNCH	C6 EAST / G7	QC Batch	C5 EAST / G6	C4 WEST	RDL	QC Batch
Physical Properties								
Soluble (2:1) pH	рН	7.84	7.93	9620788	8.10	8.14	N/A	9620516
Total Metals by ICPMS		•		•				•
Total Aluminum (Al)	mg/kg	14400	12300	9622706	9030	13200	100	9620498
Total Antimony (Sb)	mg/kg	0.95	1.13	9622706	0.92	1.54	0.10	9620498
Total Arsenic (As)	mg/kg	5.25	4.72	9622706	4.29	5.76	0.20	9620498
Total Barium (Ba)	mg/kg	125	121	9622706	77.8	123	0.10	9620498
Total Beryllium (Be)	mg/kg	0.65	0.60	9622706	0.44	0.67	0.20	9620498
Total Bismuth (Bi)	mg/kg	1.10	1.29	9622706	0.75	2.16	0.10	9620498
Total Boron (B)	mg/kg	19.9	24.7	9622706	14.9	23.4	1.0	9620498
Total Cadmium (Cd)	mg/kg	3.69	0.959	9622706	0.609	0.914	0.050	9620498
Total Calcium (Ca)	mg/kg	84800	64500	9622706	41500	61800	100	9620498
Total Chromium (Cr)	mg/kg	42.2	34.0	9622706	22.6	35.9	0.50	9620498
Total Cobalt (Co)	mg/kg	11.7	9.60	9622706	6.91	10.1	0.10	9620498
Total Copper (Cu)	mg/kg	116	99.8	9622706	64.1	125	0.50	9620498
Total Iron (Fe)	mg/kg	27500	24600	9622706	18800	25600	100	9620498
Total Lead (Pb)	mg/kg	73.9	50.9	9622706	46.1	51.3	0.10	9620498
Total Lithium (Li)	mg/kg	27.7	23.5	9622706	19.4	28.1	0.50	9620498
Total Magnesium (Mg)	mg/kg	16500	20500	9622706	13500	24000	100	9620498
Total Manganese (Mn)	mg/kg	589	537	9622706	390	594	0.20	9620498
Total Mercury (Hg)	mg/kg	0.278	0.174	9622706	0.104	0.197	0.050	9620498
Total Molybdenum (Mo)	mg/kg	1.87	1.67	9622706	1.05	2.34	0.10	9620498
Total Nickel (Ni)	mg/kg	29.4	24.7	9622706	18.0	26.6	0.50	9620498
Total Phosphorus (P)	mg/kg	1030	1140	9622706	904	1560	10	9620498
Total Potassium (K)	mg/kg	2490	2610	9622706	1620	2430	100	9620498
Total Selenium (Se)	mg/kg	0.57	<0.50	9622706	<0.50	0.74	0.50	9620498
Total Silver (Ag)	mg/kg	1.21	0.715	9622706	0.342	1.18	0.050	9620498
Total Sodium (Na)	mg/kg	334	319	9622706	321	447	100	9620498
Total Strontium (Sr)	mg/kg	311	175	9622706	108	151	0.10	9620498
Total Thallium (TI)	mg/kg	0.297	0.242	9622706	0.180	0.263	0.050	9620498
Total Tin (Sn)	mg/kg	7.11	4.25	9622706	2.96	5.05	0.10	9620498
RDL = Reportable Detection	Limit							
N/A - Not Applicable								

N/A = Not Applicable

BV Labs ID		WQ6244	WQ6245		WQ6246	WQ6247		
Sampling Data		2019/10/01	2019/10/01		2019/10/01	2019/10/01		
Sampling Date		09:20	10:55		13:35	11:45		
COC Number		g141143	g141143		g141143	g141143		
		DOATIAUNCU	C6 EAST /	OC Datab	C5 EAST /	CANEGT		OC Datab
	UNITS	BOAT LAUNCH	G7	QC Batch	G6	C4 WEST	RDL	QC Batch
Total Titanium (Ti)	mg/kg	148	143	9622706	101	150	1.0	9620498
Total Tungsten (W)	mg/kg	<0.50	<0.50	9622706	<0.50	<0.50	0.50	9620498
Total Uranium (U)	mg/kg	0.923	0.862	9622706	0.483	0.886	0.050	9620498
Total Vanadium (V)	mg/kg	27.8	26.8	9622706	20.1	28.7	1.0	9620498
Total Zinc (Zn)	mg/kg	571	451	9622706	339	532	1.0	9620498
Total Zirconium (Zr)	mg/kg	5.19	1.08	9622706	0.60	0.59	0.50	9620498
RDL = Reportable Detection L	imit					-		

CSR/CCME METALS IN SOIL WITH HG (SEDIMENT)

BV Labs ID		WQ6248		WQ6249		WQ6250	WQ6251		
Sampling Date		2019/10/01		2019/10/02		2019/10/02	2019/10/02		
	_	09:30		11:45		10:18	12:50		
COC Number		g141143		g141143		g141143	g141143		
	UNITS	BLIND DUPLICATE	QC Batch	C3 WEST	QC Batch	C3 CENTRE / G5	G4	RDL	QC Batch
Physical Properties									
Soluble (2:1) pH	рН	8.17	9620788	8.22	9620516	8.18	8.31	N/A	9620528
Total Metals by ICPMS		•	•	•	•		•		•
Total Aluminum (Al)	mg/kg	13800	9622706	12200	9620498	9420	10700	100	9620518
Total Antimony (Sb)	mg/kg	0.98	9622706	1.11	9620498	0.66	0.92	0.10	9620518
Total Arsenic (As)	mg/kg	4.98	9622706	4.97	9620498	3.71	4.13	0.20	9620518
Total Barium (Ba)	mg/kg	120	9622706	106	9620498	75.5	102	0.10	9620518
Total Beryllium (Be)	mg/kg	0.67	9622706	0.60	9620498	0.53	0.55	0.20	9620518
Total Bismuth (Bi)	mg/kg	1.03	9622706	1.03	9620498	0.40	0.55	0.10	9620518
Total Boron (B)	mg/kg	21.1	9622706	21.7	9620498	20.1	22.6	1.0	9620518
Total Cadmium (Cd)	mg/kg	3.57	9622706	0.753	9620498	0.601	0.623	0.050	9620518
Total Calcium (Ca)	mg/kg	73900	9622706	69600	9620498	78400	67400	100	9620518
Total Chromium (Cr)	mg/kg	40.1	9622706	31.5	9620498	19.8	25.7	0.50	9620518
Total Cobalt (Co)	mg/kg	11.2	9622706	10.3	9620498	9.07	8.77	0.10	9620518
Total Copper (Cu)	mg/kg	109	9622706	85.7	9620498	38.1	64.9	0.50	9620518
Total Iron (Fe)	mg/kg	25900	9622706	24800	9620498	21100	22600	100	9620518
Total Lead (Pb)	mg/kg	67.6	9622706	44.9	9620498	29.6	39.6	0.10	9620518
Total Lithium (Li)	mg/kg	25.3	9622706	26.9	9620498	21.7	24.6	0.50	9620518
Total Magnesium (Mg)	mg/kg	15100	9622706	23600	9620498	23700	24400	100	9620518
Total Manganese (Mn)	mg/kg	563	9622706	588	9620498	623	550	0.20	9620518
Total Mercury (Hg)	mg/kg	0.257	9622706	0.255	9620498	0.100	0.104	0.050	9620518
Total Molybdenum (Mo)	mg/kg	1.67	9622706	1.49	9620498	0.87	1.15	0.10	9620518
Total Nickel (Ni)	mg/kg	28.1	9622706	25.6	9620498	20.6	22.3	0.50	9620518
Total Phosphorus (P)	mg/kg	908	9622706	1170	9620498	871	993	10	9620518
Total Potassium (K)	mg/kg	2570	9622706	2330	9620498	2030	2280	100	9620518
Total Selenium (Se)	mg/kg	<0.50	9622706	<0.50	9620498	<0.50	<0.50	0.50	9620518
Total Silver (Ag)	mg/kg	1.10	9622706	0.607	9620498	0.263	0.387	0.050	9620518
Total Sodium (Na)	mg/kg	320	9622706	215	9620498	209	245	100	9620518
Total Strontium (Sr)	mg/kg	293	9622706	142	9620498	137	129	0.10	9620518
Total Thallium (TI)	mg/kg	0.287	9622706	0.255	9620498	0.214	0.204	0.050	9620518
Total Tin (Sn)	mg/kg	6.84	9622706	4.32	9620498	1.63	6.31	0.10	9620518
RDL = Reportable Detection	Limit								

N/A = Not Applicable

		-					÷		
BV Labs ID		WQ6248		WQ6249		WQ6250	WQ6251		
Sampling Date		2019/10/01		2019/10/02		2019/10/02	2019/10/02		
		09:30		11:45		10:18	12:50		
COC Number		g141143		g141143		g141143	g141143		
	UNITS	BLIND DUPLICATE	QC Batch	C3 WEST	QC Batch	C3 CENTRE / G5	G4	RDL	QC Batch
Total Titanium (Ti)	mg/kg	158	9622706	139	9620498	124	126	1.0	9620518
Total Tungsten (W)	mg/kg	<0.50	9622706	<0.50	9620498	<0.50	<0.50	0.50	9620518
Total Uranium (U)	mg/kg	0.840	9622706	0.766	9620498	0.798	0.680	0.050	9620518
Total Vanadium (V)	mg/kg	26.7	9622706	24.9	9620498	20.4	22.8	1.0	9620518
Total Zinc (Zn)	mg/kg	545	9622706	427	9620498	272	332	1.0	9620518
Total Zirconium (Zr)	mg/kg	5.18	9622706	0.78	9620498	1.70	0.81	0.50	9620518
RDL = Reportable Detection	Limit						-		

BV Labs ID		WQ6252				
Sampling Date		2019/10/02 16:20				
COC Number		g141143				
	UNITS	C1 WEST	RDL	QC Batch		
Physical Properties		-				
Soluble (2:1) pH	рН	8.45	N/A	9620516		
Total Metals by ICPMS	-					
Total Aluminum (Al)	mg/kg	10500	100	9620498		
Total Antimony (Sb)	mg/kg	0.53	0.10	9620498		
Total Arsenic (As)	mg/kg	3.56	0.20	9620498		
Total Barium (Ba)	mg/kg	100	0.10	9620498		
Total Beryllium (Be)	mg/kg	0.55	0.20	9620498		
Total Bismuth (Bi)	mg/kg	0.22	0.10	9620498		
Total Boron (B)	mg/kg	23.5	1.0	9620498		
Total Cadmium (Cd)	mg/kg	1.32	0.050	9620498		
Total Calcium (Ca)	mg/kg	75600	100	9620498		
Total Chromium (Cr)	mg/kg	21.8	0.50	9620498		
Total Cobalt (Co)	mg/kg	8.41	0.10	9620498		
Total Copper (Cu)	mg/kg	44.6	0.50	9620498		
Total Iron (Fe)	mg/kg	23000	100	9620498		
Total Lead (Pb)	mg/kg	24.5	0.10	9620498		
Total Lithium (Li)	mg/kg	25.3	0.50	9620498		
Total Magnesium (Mg)	mg/kg	30100	100	9620498		
Total Manganese (Mn)	mg/kg	566	0.20	9620498		
Total Mercury (Hg)	mg/kg	0.057	0.050	9620498		
Total Molybdenum (Mo)	mg/kg	1.05	0.10	9620498		
Total Nickel (Ni)	mg/kg	22.0	0.50	9620498		
Total Phosphorus (P)	mg/kg	715	10	9620498		
Total Potassium (K)	mg/kg	2390	100	9620498		
Total Selenium (Se)	mg/kg	<0.50	0.50	9620498		
Total Silver (Ag)	mg/kg	0.083	0.050	9620498		
Total Sodium (Na)	mg/kg	363	100	9620498		
Total Strontium (Sr)	mg/kg	109	0.10	9620498		
Total Thallium (Tl)	mg/kg	0.120	0.050	9620498		
Total Tin (Sn)	mg/kg	1.36	0.10	9620498		
RDL = Reportable Detection Limit N/A = Not Applicable						

BV Labs ID		WQ6252				
Sampling Date		2019/10/02 16:20				
COC Number		g141143				
	UNITS	C1 WEST	RDL	QC Batch		
Total Titanium (Ti)	mg/kg	121	1.0	9620498		
Total Tungsten (W)	mg/kg	<0.50	0.50	9620498		
Total Uranium (U)	mg/kg	0.659	0.050	9620498		
Total Vanadium (V)	mg/kg	22.1	1.0	9620498		
Total Zinc (Zn)	mg/kg	214	1.0	9620498		
Total Zirconium (Zr)	mg/kg	2.82	0.50	9620498		
RDL = Reportable Detection Limit						

CSR PAH IN SEDIMENTS BY GC-MS (SEDIMENT)

BV Labs ID		WQ6244		WQ6245		WQ6246		WQ6247		
Sampling Date		2019/10/01 09·20		2019/10/01		2019/10/01 13·35		2019/10/01		
COC Number		g141143		g141143		g141143		g141143		
	UNITS	BOAT LAUNCH	RDL	C6 EAST / G7	RDL	C5 EAST / G6	RDL	C4 WEST	RDL	QC Batch
Calculated Parameters					•		•			
Low Molecular Weight PAH`s	mg/kg	0.54	0.0022	1.1	0.0010	1.3	0.0020	1.1	0.0018	9618184
High Molecular Weight PAH`s	mg/kg	4.2	0.0022	6.9	0.0010	6.1	0.0020	6.6	0.0018	9618184
Total PAH	mg/kg	4.7	0.0022	8.0	0.0010	7.3	0.0020	7.8	0.0018	9618184
Polycyclic Aromatics										
Naphthalene	mg/kg	0.017 (1)	0.0022	0.028	0.0010	0.029 (1)	0.0020	0.023 (1)	0.0018	9621452
2-Methylnaphthalene	mg/kg	0.022 (1)	0.0022	0.025	0.0010	0.027 (1)	0.0020	0.034 (1)	0.0018	9621452
Acenaphthylene	mg/kg	0.023 (1)	0.0011	0.022	0.00050	0.020 (1)	0.0010	0.021 (1)	0.00090	9621452
Acenaphthene	mg/kg	0.030 (1)	0.0011	0.048	0.00050	0.084 (1)	0.0010	0.045 (1)	0.00090	9621452
Fluorene	mg/kg	0.040 (1)	0.0022	0.069	0.0010	0.087 (1)	0.0020	0.074 (1)	0.0018	9621452
Phenanthrene	mg/kg	0.33 (1)	0.0022	0.79	0.0010	0.89 (1)	0.0020	0.83 (1)	0.0018	9621452
Anthracene	mg/kg	0.078 (1)	0.0022	0.12	0.0010	0.12 (1)	0.0020	0.10 (1)	0.0018	9621452
Fluoranthene	mg/kg	1.3 (1)	0.0022	2.3	0.0010	2.0 (1)	0.0020	2.2 (1)	0.0018	9621452
Pyrene	mg/kg	0.99 (1)	0.0022	1.7	0.0010	1.5 (1)	0.0020	1.6 (1)	0.0018	9621452
Benzo(a)anthracene	mg/kg	0.47 (1)	0.0022	0.74	0.0010	0.61 (1)	0.0020	0.71 (1)	0.0018	9621452
Chrysene	mg/kg	0.70 (1)	0.0022	1.3	0.0010	1.1 (1)	0.0020	1.3 (1)	0.0018	9621452
Benzo(b&j)fluoranthene	mg/kg	1.1 (1)	0.0022	1.5	0.0010	1.3 (1)	0.0020	1.3 (1)	0.0018	9621452
Benzo(b)fluoranthene	mg/kg	0.74 (1)	0.0022	1.1	0.0010	0.93 (1)	0.0020	1.0 (1)	0.0018	9621452
Benzo(k)fluoranthene	mg/kg	0.34 (1)	0.0022	0.39	0.0010	0.34 (1)	0.0020	0.47 (1)	0.0018	9621452
Benzo(a)pyrene	mg/kg	0.60 (1)	0.0022	0.88	0.0010	0.75 (1)	0.0020	0.69 (1)	0.0018	9621452
Indeno(1,2,3-cd)pyrene	mg/kg	0.41 (1)	0.0044	0.55	0.0020	0.54 (1)	0.0040	0.63 (1)	0.0036	9621452
Dibenz(a,h)anthracene	mg/kg	0.12 (1)	0.0011	0.17	0.00050	0.13 (1)	0.0010	0.17 (1)	0.00090	9621452
Benzo(g,h,i)perylene	mg/kg	0.52 (1)	0.0044	0.72	0.0020	0.63 (1)	0.0040	0.74 (1)	0.0036	9621452
Surrogate Recovery (%)										
D10-ANTHRACENE (sur.)	%	83		81		83		83		9621452
D8-ACENAPHTHYLENE (sur.)	%	80		78		80		80		9621452
D8-NAPHTHALENE (sur.)	%	80		70	İ	70		69		9621452
TERPHENYL-D14 (sur.)	%	76		73	İ	78		76		9621452
RDL = Reportable Detection Lin (1) Detection limits raised due t	nit to high r	noisture content	, sample	contains => 5()% moistu	re.				

CSR PAH IN SEDIMENTS BY GC-MS (SEDIMENT)

BV Labs ID		WQ6248		WQ6249	WQ6250	WQ6251	WQ6252		
Sampling Date		2019/10/01		2019/10/02	2019/10/02	2019/10/02	2019/10/02		
COC Number		g141143		σ141143	g141143	g141143	g141143		
	UNITS	BLIND DUPLICATE	RDL	C3 WEST	C3 CENTRE / G5	G4	C1 WEST	RDL	QC Batch
Calculated Parameters	•					•			
Low Molecular Weight PAH`s	mg/kg	0.46	0.0021	3.7	0.91	0.79	1.1	0.0010	9618184
High Molecular Weight PAH's	mg/kg	3.8	0.0021	9.1	4.8	4.5	5.5	0.0010	9618184
Total PAH	mg/kg	4.3	0.0021	13	5.7	5.3	6.7	0.0010	9618184
Polycyclic Aromatics		L	1	11		1	1	1	
Naphthalene	mg/kg	0.015 (1)	0.0021	0.13	0.0089	0.014	0.014	0.0010	9621452
2-Methylnaphthalene	mg/kg	0.022 (1)	0.0021	0.067	0.0096	0.014	0.012	0.0010	9621452
Acenaphthylene	mg/kg	0.022 (1)	0.0011	0.016	0.012	0.013	0.011	0.00050	9621452
Acenaphthene	mg/kg	0.024 (1)	0.0011	0.27	0.038	0.030	0.049	0.00050	9621452
Fluorene	mg/kg	0.037 (1)	0.0021	0.31	0.048	0.047	0.063	0.0010	9621452
Phenanthrene	mg/kg	0.27 (1)	0.0021	2.5	0.68	0.60	0.86	0.0010	9621452
Anthracene	mg/kg	0.067 (1)	0.0021	0.43	0.12	0.080	0.13	0.0010	9621452
Fluoranthene	mg/kg	1.1 (1)	0.0021	3.2	1.6	1.5	1.9	0.0010	9621452
Pyrene	mg/kg	0.88 (1)	0.0021	2.3	1.2	1.1	1.4	0.0010	9621452
Benzo(a)anthracene	mg/kg	0.43 (1)	0.0021	1.1	0.54	0.45	0.60	0.0010	9621452
Chrysene	mg/kg	0.65 (1)	0.0021	1.5	0.75	0.79	0.86	0.0010	9621452
Benzo(b&j)fluoranthene	mg/kg	0.99 (1)	0.0021	1.4	0.90	0.98	1.1	0.0010	9621452
Benzo(b)fluoranthene	mg/kg	0.70 (1)	0.0021	1.0	0.63	0.69	0.74	0.0010	9621452
Benzo(k)fluoranthene	mg/kg	0.27 (1)	0.0021	0.41	0.23	0.25	0.31	0.0010	9621452
Benzo(a)pyrene	mg/kg	0.57 (1)	0.0021	0.94	0.58	0.57	0.69	0.0010	9621452
Indeno(1,2,3-cd)pyrene	mg/kg	0.38 (1)	0.0042	0.54	0.36	0.39	0.45	0.0020	9621452
Dibenz(a,h)anthracene	mg/kg	0.11 (1)	0.0011	0.16	0.10	0.11	0.12	0.00050	9621452
Benzo(g,h,i)perylene	mg/kg	0.48 (1)	0.0042	0.57	0.38	0.43	0.46	0.0020	9621452
Surrogate Recovery (%)									
D10-ANTHRACENE (sur.)	%	84		82	83	81	84		9621452
D8-ACENAPHTHYLENE (sur.)	%	80		79	80	78	81		9621452
D8-NAPHTHALENE (sur.)	%	69		66	68	67	71		9621452
TERPHENYL-D14 (sur.)	%	74		76	81	77	81		9621452
RDL = Reportable Detection Lin (1) Detection limits raised due t	RDL = Reportable Detection Limit (1) Detection limits raised due to high moisture content, sample contains => 50% moisture.								

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	8.0°C
Package 2	6.0°C
Package 3	6.0°C
Package 4	7.3°C
Package 5	6.0°C
Package 6	5.7°C
Package 7	6.0°C
Package 8	4.3°C
Package 9	5.3°C

Version #2: Report reissued to include results for Fecal Coliforms, Total Coliforms, and E. Coli on samples the following samples: BOAT LAUNCH

C6 EAST / G7 C5 EAST / G6 C4 WEST BLIND DUPLICATE C3 WEST C3 CENTRE / G5 G4 C1 WEST As per client request received 2019/10/17.

Sample WR1662 [BOAT LAUNCH-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1663 [C6 EAST / G7-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1664 [C5 EAST / G6-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1665 [C4 WEST-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1666 [BLIND DUPLICATE-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1667 [C3 WEST-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1668 [C3 CENTRE / G5-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1669 [G4-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1670 [C1 WEST-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

Date % Recov
2019/10/10 83
2019/10/10 79
2019/10/10 67
2019/10/10 80
2019/10/09
2019/10/10
2019/10/10
2019/10/10
2019/10/10
2019/10/09 N
2019/10/09 5
2019/10/09 9
2019/10/09 200
2019/10/09 9
2019/10/09 9
2019/10/09 9
2019/10/09 9
2019/10/09 NG
2019/10/09 10
2019/10/09
2019/10/09
2019/10/09
2019/10/09
2019/10/09 9
2019/10/09 N
2019/10/09 NG
2019/10/09
2019/10/09 93
2019/10/09 8
2019/10/09
2019/10/09 19

Appendix "A" to Report PW19008(g)/LS19004(f)

Bureau Veritas Laboratories Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

Appendix "A" to Report PW19008(g)/LS19004(f)

Page 21 of 29 Bureau Veritas Laboratories Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

			1	1					1				1	1	1	1				1					_	Р	age	13	60	f446	6 ,	√f⊿	186
ndard	QC Limits	70 - 130	70 - 130	70 - 130	70 - 130		70 - 130	70 - 130	70 - 130	70 - 130	70 - 130			70 - 130	70 - 130	70 - 130												a	JC		, ,	л -	100
QC Star	% Recovery	96	101	97	91		102	93	104	93	66			95	103	101																	
0	QC Limits																	20	20	50	50	50	50	50	50	50	50	50	50	50	50	50	
RPI	Value (%)																	0.34	0.26	33	33	36	10	5.8	2.4	0.25	0.55	8.3	0.43	0.31	7.0	5.2	
llank	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Method B	Value	<0.10	<0.50	<10	<100	<0.50	<0.050	<100	<0.10	<0.050	<0.10	<1.0	<0.50	<0.050	<1.0	<1.0	<0.50			<0.0010	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0020	<0.0010	<0.0010	<0.00050	<0.0010	
Blank	QC Limits	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	97 - 103	97 - 103	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	
Spiked	% Recovery	56	66	67	100	96	100	101	100	66	102	96	100	95	100	100	102	101	100	81	88	06	87	68	16	87	87	68	98	87	96	06	of 29
(Spike	QC Limits	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125	75 - 125			50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	50 - 140	Page 22
Matri	% Recovery	94	95	93	107	96	95	128 (1)	105	100	96	NC	91	94	103	95	102			74	84	85	83	96	91	86	06	67	83	92	80	NC	
	Date	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/09	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	2019/10/10	
	Parameter	Total Molybdenum (Mo)	Total Nickel (Ni)	Total Phosphorus (P)	Total Potassium (K)	Total Selenium (Se)	Total Silver (Ag)	Total Sodium (Na)	Total Strontium (Sr)	Total Thallium (Tl)	Total Tin (Sn)	Total Titanium (Ti)	Total Tungsten (W)	Total Uranium (U)	Total Vanadium (V)	Total Zinc (Zn)	Total Zirconium (Zr)	Soluble (2:1) pH	Soluble (2:1) pH	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b&j)fluoranthene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	
	QC Batch	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620518	9620528	9620788	9621452	9621452	9621452	9621452	9621452	9621452	9621452	9621452	9621452	9621452	9621452	9621452	9621452	

Appendix "A" to Report PW19008(g)/LS19004(f)

Page 22 of 29 Bureau Veritas Laboratories Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

			Matrix	Spike	Spiked	Blank	Method I	3 ank	RPC	~	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9621452	Fluorene	2019/10/10	86	50 - 140	86	50 - 140	<0.0010	mg/kg	17	50		
9621452	Indeno(1,2,3-cd)pyrene	2019/10/10	72	50 - 140	94	50 - 140	<0.0020	mg/kg	4.3	50		
9621452	Naphthalene	2019/10/10	70	50 - 140	84	50 - 140	<0.0010	mg/kg	37	50		
9621452	Phenanthrene	2019/10/10	75	50 - 140	81	50 - 140	<0.0010	mg/kg	10	50		
9621452	Pyrene	2019/10/10	NC	50 - 140	06	50 - 140	<0.0010	mg/kg	4.4	50		
9622706	Total Aluminum (Al)	2019/10/10	NC	75 - 125	106	75 - 125	<100	mg/kg	1.0	40	109	70 - 130
9622706	Total Antimony (Sb)	2019/10/10	91	75 - 125	98	75 - 125	<0.10	mg/kg	NC	30	88	70 - 130
9622706	Total Arsenic (As)	2019/10/10	93	75 - 125	96	75 - 125	<0.20	mg/kg	3.5	30	84	70 - 130
9622706	Total Barium (Ba)	2019/10/10	97	75 - 125	96	75 - 125	<0.10	mg/kg	0.53	40	102	70 - 130
9622706	Total Beryllium (Be)	2019/10/10	91	75 - 125	66	75 - 125	<0.20	mg/kg	NC	30	102	70 - 130
9622706	Total Bismuth (Bi)	2019/10/10	95	75 - 125	26	75 - 125	<0.10	mg/kg	NC	30		
9622706	Total Boron (B)	2019/10/10	91	75 - 125	98	75 - 125	<1.0	mg/kg				
9622706	Total Cadmium (Cd)	2019/10/10	97	75 - 125	100	75 - 125	<0.050	mg/kg	NC	30	95	70 - 130
9622706	Total Calcium (Ca)	2019/10/10	NC	75 - 125	100	75 - 125	<100	mg/kg	5.5	30	100	70 - 130
9622706	Total Chromium (Cr)	2019/10/10	98	75 - 125	105	75 - 125	<0.50	mg/kg	3.9	30	103	70 - 130
9622706	Total Cobalt (Co)	2019/10/10	96	75 - 125	100	75 - 125	<0.10	mg/kg	6.5	30	104	70 - 130
9622706	Total Copper (Cu)	2019/10/10	NC	75 - 125	103	75 - 125	<0.50	mg/kg	186 (1)	30	109	70 - 130
9622706	Total Iron (Fe)	2019/10/10	NC	75 - 125	104	75 - 125	<100	mg/kg	5.8	30	107	70 - 130
9622706	Total Lead (Pb)	2019/10/10	93	75 - 125	100	75 - 125	<0.10	mg/kg	156 (1)	40	115	70 - 130
9622706	Total Lithium (Li)	2019/10/10	92	75 - 125	100	75 - 125	<0.50	mg/kg	4.1	30	93	70 - 130
9622706	Total Magnesium (Mg)	2019/10/10	122	75 - 125	101	75 - 125	<100	mg/kg	9.3	30	109	70 - 130
9622706	Total Manganese (Mn)	2019/10/10	116	75 - 125	101	75 - 125	<0.20	mg/kg	3.4	30	108	70 - 130
9622706	Total Mercury (Hg)	2019/10/10	102	75 - 125	104	75 - 125	<0.050	mg/kg	NC	40	117	70 - 130
9622706	Total Molybdenum (Mo)	2019/10/10	93	75 - 125	95	75 - 125	<0.10	mg/kg	NC	40	100	70 - 130
9622706	Total Nickel (Ni)	2019/10/10	97	75 - 125	101	75 - 125	<0.50	mg/kg	12	30	111	70 - 130 D
9622706	Total Phosphorus (P)	2019/10/10	93	75 - 125	97	75 - 125	<10	mg/kg	3.7	30	100	70 - 130
9622706	Total Potassium (K)	2019/10/10	104	75 - 125	100	75 - 125	<100	mg/kg	12	40	98	70 - 13005
9622706	Total Selenium (Se)	2019/10/10	93	75 - 125	96	75 - 125	<0.50	mg/kg	NC	30		7 e [°]
9622706	Total Silver (Ag)	2019/10/10	93	75 - 125	98	75 - 125	<0.050	mg/kg	4.2	40	127	70 - 130
9622706	Total Sodium (Na)	2019/10/10	132 (1)	75 - 125	103	75 - 125	<100	mg/kg	5.3	40	105	70 - 130
9622706	Total Strontium (Sr)	2019/10/10	101	75 - 125	95	75 - 125	<0.10	mg/kg	11	40	107	70 - 130 d
				Page 23	of 29							86

Appendix "A" to Report PW19008(g)/LS19004(f)

Bureau Veritas Laboratories Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

BUREAU VERITAS	BV Labs Job #: B985653	Report Date: 2019/11/15
-------------------	------------------------	-------------------------

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

			Matrix	Spike	Spiked	Blank	Method	Blank	RPI		QC Sta	Indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9622706	Total Thallium (TI)	2019/10/10	93	75 - 125	93	75 - 125	<0.050	mg/kg	NC	30	94	70 - 130
9622706	Total Tin (Sn)	2019/10/10	35 (1)	75 - 125	100	75 - 125	<0.10	mg/kg	196 (1)	40	103	70 - 130
9622706	Total Titanium (Ti)	2019/10/10	NC	75 - 125	100	75 - 125	<1.0	mg/kg	1.4	40		
9622706	Total Tungsten (W)	2019/10/10	91	75 - 125	97	75 - 125	<0.50	mg/kg				
9622706	Total Uranium (U)	2019/10/10	103	75 - 125	102	75 - 125	<0.050	mg/kg	1.3	30	112	70 - 130
9622706	Total Vanadium (V)	2019/10/10	101	75 - 125	104	75 - 125	<1.0	mg/kg	8.6	30	108	70 - 130
9622706	Total Zinc (Zn)	2019/10/10	92	75 - 125	103	75 - 125	<1.0	mg/kg	45 (1)	30	109	70 - 130
9622706	Total Zirconium (Zr)	2019/10/10	98	75 - 125	66	75 - 125	<0.50	mg/kg	6.9	40		
9622914	Biochemical Oxygen Demand	2019/10/15			94	85 - 115	<2.0	mg/L	4.5	20		
9623846	Available (KCl) Ammonia (N)	2019/10/11	NC	75 - 125	93	80 - 120	<2.0	mg/kg	17	35		
9625759	Available (NH4F) Phosphorus (P)	2019/10/12	98	75 - 125	94	80 - 120	<1.0	mg/kg	6.1	35		
9626992	Total Sulphide	2019/10/15	105	80 - 120	94	80 - 120	<0.0018	mg/L	NC	20		
9630371	Available (KCI) Total Kjeldahl Nitrogen	2019/10/17	NC	75 - 125	84	75 - 125	<5.0	mg/kg	16	30	100	75 - 125
9631184	Total Nitrogen	2019/10/17			104	80 - 120	<0.2	%	6.1	30	105	75 - 125
Duplicate:	Paired analysis of a separate portion of the same	sample. Used to	evaluate the	variance in t	he measuren	nent.						
Matrix Spik	e: A sample to which a known amount of the ana	alyte of interest h	as been adde	ed. Used to e	valuate samp	ole matrix inte	rference.					
QC Standar	d: A sample of known concentration prepared by	an external ager	ıcy under stri	ngent condit	ions. Used a:	s an independ	lent check of	method ac	curacy.			
Spiked Blan	ik: A blank matrix sample to which a known amou	unt of the analyte	, usually from	ם second so	urce, has bee	en added. Use	ed to evaluate	: method a	ccuracy.			
Method Bla	ank: A blank matrix containing all reagents used in	n the analytical p	rocedure. Us	ed to identify	/ laboratory o	contaminatio	Ċ.					
Surrogate:	A pure or isotopically labeled compound whose b	oehavior mirrors	the analytes	of interest. U	lsed to evalua	ate extraction	efficiency.					
NC (Matrix	Spike): The recovery in the matrix spike was not c	calculated. The re	elative differe	nce between	the concent	ration in the	barent sample	e and the sp	oike amount w	as too small	to permit a	reliable

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

recovery calculation (matrix spike concentration was less than the native sample concentration)

Appendix "A" to Report PW19008(g)/LS19004(f) Page 139 of 486

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

nella

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Donald Lai, Lab Coordinator

Kenneth Goldie, Sample Reception

en

Harry (Peng) Liang, Senior Analyst

Suwan Fock, B.Sc., QP, Inorganics Senior Analyst

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page. COR FCD-00265 / 4 Page____of____

16:09	С	93 (E 2 +					2 5 7			1	1 2 3			1 2 3		2	1 2 3					•	*		1	1 2 3			1 2 3	TIME (HH:MM)	60.01
03-Oct-19 onklin Gracian	B9R8283	L ENV-59	YES NO CODLER IL	TEMP	VFS NO COOLER IT		TEMP	YES NO COOLER IC		TEMP	YES NO COOLER IL		TEMP	LI GUI LUU LUUI LUU		TEMP	VEC NO CODIENT		TEMP	YES NO COOLER ID		TEMP	VES NO COOLER ID		TEMP	YES NO COOLER ID		TEMP	VEC NO COOLER ID	an management and	TEMP		(dd/mm/yyy	20/01
R TEMPI CUSTODY F R	IAXXAM JI	MV	CUSTODY SEAL	INTACT	CUSTODY SFAL	PRESENT	INTACT.	CUSTODY SEAL	PRESENT	INTACT ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	LICE PRESENT	PRESENT	INTACT	ICE PRESENT CLISTODY SFAL	PRESENT	INTACT	CUSTODY SEAL	PRESENT	INTACT ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT ICE DRESENT	CUSTODY SEAL	PRESENT	INTACT	ILE PRESENT	PRESENT	INTACT	ICE PRESENT	DATE (16196 24
ONAL COOLEI CHAIN-OF-I	2			8		r fa fa) ,) ~		In I. I.).).		ר ר נ	~	1 2 3	1 11 1	د و و	1 2 3	10 10 10 10 10 10 10 10 10 10 10 10 10 1		C 7 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> > *		2 1 4	9.		2	. €	5 F 3			1 2 3		COLENE CUKIT
ADDITI	ONS:		YES NO LOOLERID	TEMP	YESA NO COOLERID	2	TEMP	YES NO COOLERID	>	TEMP	YES NO COOLER ID	2	TEMP	VES NO CODICEIO		TEMP	YES NO COOLERID	7	TEMP	YES NO COOLER ID	2	TEMP	YES NO COOLER ID		TEMP	YES NO COOLERID		TEMP	VES NO COOLERID		TEMP		V & PRINT)	1
	COOLER OBSERVATI		PRESENT	INTACT INTACT	CUSTODY SEAL	PRESENT	INTACT ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT	ILE PRESENT	PRESENT	INTACT	ICLE PRESENT CUSTODY SEAL	PRESENT	INTACT	CUSTODY SEAL	PRESENT	INTACT ICE PRESENT	CUSTODY SEAL	PHESENT	INTACT ICE PRESENT	CUSTODY SEAL	PRESENT	INTACT ICF DBFCENT	CUSTODY SEAL	PRESENT	INTACT	ICE PRESENT	RECEIVED BY (SIGN	Ctum?
B985653_ACTR	OF CUSTODY #		614143	Cheller																														
Vyrillan Group Compary	CHAIN		1 of U	7. of 2		of	of		of	of		of	, te	5	of	4	10	of	of	5	of	of			of		of	of	1	of		of		

Page 29 of 29

Your Project #: 209.40666.00000 [B985653] Your C.O.C. #: B985653-ONTV-01-01

Attention: Safiann Maiter

Bureau Veritas Laboratories 4606 Canada Way Burnaby, BC CANADA V5G 1K5

> Report Date: 2019/10/10 Report #: R5916219 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9S3356 Received: 2019/10/09, 09:20

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Organic Carbon in Soil	9	N/A	2019/10/10	CAM SOP-00468	BCMOE TOC Aug 2014

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 8

Appendix "A" to Report PW19008(g)/LS19004(f) Page 145 of 486

Your Project #: 209.40666.00000 [B985653] Your C.O.C. #: B985653-ONTV-01-01

Attention: Safiann Maiter

Bureau Veritas Laboratories 4606 Canada Way Burnaby, BC CANADA V5G 1K5

> Report Date: 2019/10/10 Report #: R5916219 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9S3356 Received: 2019/10/09, 09:20

Encryption Key

Bureau Veritas Laboratories 10 Oct 2019 15:15:07

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ronklin Gracian, Project Manager Email: Ronklin.Gracian@bvlabs.com Phone# (905)817-5752

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

BV Labs ID		KZM471		KZM472	KZM473		KZM474		
Sampling Date		2019/10/0 09:20	01	2019/10/01 10:55	2019/10/01 13:35		2019/10/01 11:45		
COC Number		B985653-ONT\	/-01-01	B985653-ONTV-01-0	1 B985653-ONTV-01-0	1 B98	85653-ONTV-01-01		
	UNITS	WQ6244-BOAT	LAUNCH	WQ6245-C6 EAST/G	7 WQ6246-C5 EAST/G	6 V	VQ6247-C4 WEST	RDL	QC Batch
Inorganics									
Total Organic Carbon	mg/kg	35000		41000	39000		47000	500	6379999
RDL = Reportable Detection	on Limit								
QC Batch = Quality Contro	l Batch								
			1						
BV Labs ID		KZM474		KZM475	KZM476		KZM477		
Sampling Date		2019/10/01	L	2019/10/01	2019/10/02		2019/10/02		
oumphing butc		11:45		09:30	11:45		10:18		
COC Number		B985653-ONTV-	01-01 E	3985653-ONTV-01-01	B985653-ONTV-01-01	B985	5653-ONTV-01-01		
	UNITS	WQ6247-C4 W Lab-Dup	/EST	WQ6248-BLIND DUPLICATE	WQ6249-C3 WEST	WQ62	250-C3 CENTRE/G5	RDL	QC Batch
Inorganics	UNITS	WQ6247-C4 W Lab-Dup	/EST	WQ6248-BLIND DUPLICATE	WQ6249-C3 WEST	WQ62	250-C3 CENTRE/G5	RDL	QC Batch
Inorganics Total Organic Carbon	UNITS mg/kg	WQ6247-C4 W Lab-Dup 49000	/EST	WQ6248-BLIND DUPLICATE 37000	WQ6249-C3 WEST 39000	WQ62	250-C3 CENTRE/G5	RDL 500	QC Batch 6379999
Inorganics Total Organic Carbon RDL = Reportable Detectic	UNITS mg/kg	WQ6247-C4 W Lab-Dup 49000	/EST	WQ6248-BLIND DUPLICATE 37000	WQ6249-C3 WEST 39000	WQ62	250-C3 CENTRE/G5	RDL	QC Batch 6379999
Inorganics Total Organic Carbon RDL = Reportable Detectic QC Batch = Quality Contro	UNITS mg/kg on Limit ol Batch	WQ6247-C4 W Lab-Dup 49000	/EST	WQ6248-BLIND DUPLICATE 37000	WQ6249-C3 WEST 39000	WQ62	250-C3 CENTRE/G5	RDL	QC Batch 6379999
Inorganics Total Organic Carbon RDL = Reportable Detectic QC Batch = Quality Contro Lab-Dup = Laboratory Initi	mg/kg on Limit ol Batch iated Duplio	WQ6247-C4 W Lab-Dup 49000		WQ6248-BLIND DUPLICATE 37000	WQ6249-C3 WEST 39000	WQ62	250-C3 CENTRE/G5	RDL	QC Batch
Inorganics Total Organic Carbon RDL = Reportable Detectic QC Batch = Quality Contro Lab-Dup = Laboratory Initi	UNITS mg/kg on Limit ol Batch iated Duplid	WQ6247-C4 W Lab-Dup 49000		WQ6248-BLIND DUPLICATE 37000	WQ6249-C3 WEST 39000	WQ62	250-C3 CENTRE/G5	RDL	QC Batch
Inorganics Total Organic Carbon RDL = Reportable Detectic QC Batch = Quality Contro Lab-Dup = Laboratory Initi	UNITS mg/kg on Limit ol Batch iated Duplia BV Labs ID	WQ6247-C4 W Lab-Dup 49000		WQ6248-BLIND DUPLICATE 37000 KZM478	WQ6249-C3 WEST 39000 KZM479	WQ62	250-C3 CENTRE/G5	RDL	QC Batch
Inorganics Total Organic Carbon RDL = Reportable Detectic QC Batch = Quality Contro Lab-Dup = Laboratory Initi	UNITS mg/kg on Limit ol Batch iated Duplid BV Labs ID Sampling D	WQ6247-C4 W Lab-Dup 49000		WQ6248-BLIND DUPLICATE 37000 KZM478 2019/10/02 12:50	WQ6249-C3 WEST 39000 KZM479 2019/10/02 16:20	WQ62	250-C3 CENTRE/G5	RDL	QC Batch
Inorganics Total Organic Carbon RDL = Reportable Detectic QC Batch = Quality Contro Lab-Dup = Laboratory Initi	UNITS mg/kg on Limit ol Batch iated Duplid BV Labs ID Gampling D COC Numbe	WQ6247-C4 W Lab-Dup 49000 cate		WQ6248-BLIND DUPLICATE 37000 KZM478 2019/10/02 12:50 B985653-ONTV-01-01	WQ6249-C3 WEST 39000 KZM479 2019/10/02 16:20 B985653-ONTV-01-01	WQ62	250-C3 CENTRE/G5	RDL	QC Batch
Inorganics Total Organic Carbon RDL = Reportable Detectic QC Batch = Quality Contro Lab-Dup = Laboratory Initi	UNITS mg/kg on Limit ol Batch iated Duplid BV Labs ID Sampling D COC Numbe	WQ6247-C4 W Lab-Dup 49000 cate	UNITS	WQ6248-BLIND DUPLICATE 37000 KZM478 2019/10/02 12:50 B985653-ONTV-01-01 WQ6251-G4	WQ6249-C3 WEST 39000 KZM479 2019/10/02 16:20 B985653-ONTV-01-01 WQ6252-C1 WEST	RDL	250-C3 CENTRE/G5	RDL	QC Batch

31000

26000

500 6379999

RDL = Reportable Detection Limit

Total Organic Carbon

QC Batch = Quality Control Batch

mg/kg

TEST SUMMARY

BV Labs ID: Sample ID: Matrix:	KZM471 WQ6244-BOAT LAU Soil	NCH				Collected: Shipped: Received:	2019/10/01 2019/10/09
							,,,
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	oil	COMB	6379999	N/A	2019/10/10	Dhruvik M	odh
BV Labs ID: Sample ID: Matrix:	KZM472 WQ6245-C6 EAST/G Soil	7				Collected: Shipped: Received:	2019/10/01 2019/10/09
T D			Detail	E traded			
Test Description	- 11	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	01	COMB	6379999	N/A	2019/10/10	Dhruvik M	odh
BV Labs ID: Sample ID: Matrix:	KZM473 WQ6246-C5 EAST/G Soil	6				Collected: Shipped: Received:	2019/10/01 2019/10/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	oil	COMB	6379999	N/A	2019/10/10	Dhruvik M	odh
BV Labs ID: Sample ID:	KZM474 WQ6247-C4 WEST					Collected: Shipped:	2019/10/01
Matrix:	3011					Received:	2019/10/09
Matrix: Test Description	3011	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2019/10/09
Matrix: Test Description Total Organic Carbon in S	oil	Instrumentation COMB	Batch 6379999	Extracted	Date Analyzed 2019/10/10	Analyst Dhruvik M	odh
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix:	oil KZM474 Dup WQ6247-C4 WEST Soil	Instrumentation COMB	Batch 6379999	Extracted N/A	Date Analyzed 2019/10/10	Analyst Dhruvik M Collected: Shipped: Received:	odh 2019/10/01 2019/10/09
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description	oil KZM474 Dup WQ6247-C4 WEST Soil	Instrumentation COMB	Batch 6379999 Batch	Extracted N/A Extracted	Date Analyzed 2019/10/10 Date Analyzed	Analyst Dhruvik M Collected: Shipped: Received: Analyst	odh 2019/10/01 2019/10/09
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S	oil KZM474 Dup WQ6247-C4 WEST Soil	Instrumentation COMB Instrumentation COMB	Batch 6379999 Batch 6379999	Extracted N/A Extracted N/A	Date Analyzed 2019/10/10 Date Analyzed 2019/10/10	Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M	odh 2019/10/01 2019/10/09 odh
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix:	oil KZM474 Dup WQ6247-C4 WEST Soil oil KZM475 WQ6248-BLIND DUF Soil	Instrumentation COMB Instrumentation COMB PLICATE	Batch 6379999 Batch 6379999	Extracted N/A Extracted N/A	Date Analyzed 2019/10/10 Date Analyzed 2019/10/10	Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M Collected: Shipped: Received:	2019/10/09 odh 2019/10/01 2019/10/09 odh 2019/10/01 2019/10/09
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description	oil KZM474 Dup WQ6247-C4 WEST Soil oil KZM475 WQ6248-BLIND DUF Soil	Instrumentation COMB Instrumentation COMB PLICATE Instrumentation	Batch 6379999 Batch 6379999 Batch	Extracted N/A Extracted N/A	Date Analyzed 2019/10/10 Date Analyzed 2019/10/10 Date Analyzed	Collected: Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M Collected: Shipped: Received: Analyst	2019/10/09 odh 2019/10/01 2019/10/09 odh 2019/10/01 2019/10/09
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Sample ID: Matrix: Test Description Total Organic Carbon in S Total Organic Carbon in S	oil KZM474 Dup WQ6247-C4 WEST Soil oil KZM475 WQ6248-BLIND DUF Soil	Instrumentation COMB Instrumentation COMB PLICATE Instrumentation COMB	Batch 63799999 Batch 63799999 Batch 6379999	Extracted N/A Extracted N/A Extracted	Date Analyzed 2019/10/10 Date Analyzed 2019/10/10 Date Analyzed 2019/10/10	Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M	odh 2019/10/01 2019/10/09 odh 2019/10/01 2019/10/09 odh
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description	oil KZM474 Dup WQ6247-C4 WEST Soil oil KZM475 WQ6248-BLIND DUF Soil oil KZM476 WQ6249-C3 WEST Soil	Instrumentation COMB Instrumentation COMB PLICATE Instrumentation COMB	Batch 6379999 Batch 6379999 Batch 6379999	Extracted N/A Extracted N/A Extracted N/A	Date Analyzed 2019/10/10 Date Analyzed 2019/10/10 Date Analyzed 2019/10/10	Collected: Shipped: Received: Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M Collected: Shipped: Received:	2019/10/09 odh 2019/10/01 2019/10/09 odh 2019/10/09 odh 2019/10/09 odh 2019/10/09
Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Total Organic Carbon in S BV Labs ID: Sample ID: Matrix: Test Description Test Description	oil KZM474 Dup WQ6247-C4 WEST Soil oil KZM475 WQ6248-BLIND DUF Soil oil KZM476 WQ6249-C3 WEST Soil	Instrumentation COMB Instrumentation COMB PLICATE Instrumentation COMB	Batch 6379999 Batch 6379999 6379999 6379999	Extracted N/A Extracted N/A Extracted N/A Extracted	Date Analyzed 2019/10/10 Date Analyzed 2019/10/10 Date Analyzed 2019/10/10	Collected: Shipped: Received: Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M Collected: Shipped: Received: Analyst Dhruvik M	2019/10/09 odh 2019/10/01 2019/10/09 odh 2019/10/09 odh 2019/10/02 2019/10/09

Page 4 of 8

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

BV Labs ID: Sample ID: Matrix:	KZM477 WQ6250-C3 CENTRE Soil	/G5				Collected: Shipped: Received:	2019/10/02 2019/10/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	, -,
Total Organic Carbon in S	oil	COMB	6379999	N/A	2019/10/10	Dhruvik M	odh
BV Labs ID: Sample ID: Matrix:	KZM478 WQ6251-G4 Soil					Collected: Shipped: Received:	2019/10/02 2019/10/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	oil	COMB	6379999	N/A	2019/10/10	Dhruvik M	odh
BV Labs ID: Sample ID: Matrix:	KZM479 WQ6252-C1 WEST Soil					Collected: Shipped: Received:	2019/10/02 2019/10/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Organic Carbon in S	oil	СОМВ	6379999	N/A	2019/10/10	Dhruvik M	odh

GENERAL COMMENTS

Each to	Each temperature is the average of up to three cooler temperatures taken at receipt							
	Package 1	7.3°C]					
	-		_					
Result	s relate only to the i	tems tested.						

Page 6 of 8 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

Bureau Veritas Laboratories Client Project #: 209.40666.00000 [B985653] Sampler Initials: KAT

			Method E	lank	RPD	_	QC Stai	ndard
QC Batch	Parameter	Date	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6379999	Total Organic Carbon	2019/10/10	<500	mg/kg	5.3	35	103	75 - 125
Duplicate: Paire	d analysis of a separate portion of the same sample. Used to evalu	ate the variance in th	ne measurement.					
QC Standard: A s	ample of known concentration prepared by an external agency un	ider stringent conditi	ons. Used as an in	dependent che	sck of method accu	racy.		

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Page 7 of 8

Appendix "A" to Report PW19008(g)/LS19004(f) $^{Pag}Page^{151}e^{of}162$ of 486

Bureau Veritas Laboratories Client Project #: 209.40666.00000 [B985653] Sampler Initials: KAT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Certificate of Analysis

CLIENT INFORMATION

Client Name: HAMILTON WATER Attention: MANI SERADJ

Address: 77 JAMES STREET NORTH HAMILTON L8R 2K3

Appendix "A" to Report PW19008(g)/LS19004(f) Page 152 of 409 of 486 City of Hamilton Environmental Laboratory 700 Woodward Avenue, Hamilton, ON L8H 6P4 P. (905) 546-2424 F. (905) 545-0234

LABORATORY INFORMATION

Sample Date: 2019-09-30 Date Submitted: 2019-10-01

Laboratory Work Order Number: 330748

Samples in this work order were analyzed using the following methods:

cBOD/BOD/DO DO-Meter	TSS/VSS Gravimetric	Alk/pH/Cond/Temp PC Titrate	Bacteria Membrane Filtration mFC-BCIG agar
Mercury Cold Vapour AA	Anions IC	Ammonia Skalar	TKN Skalar
TOC/DOC Colourimetric	LIMS Calculation	Subcontract	Field Parameters - Client
Metals ICP/MS	o-Phosphate Colourimetric		

NOTES:

'<' = less than the Method Detection Limit (MDL), 'IS' = Insufficient Sample, '>' = greater than the reported result.

Methods used by the City of Hamilton's Environmental Laboratory (CHEL) are based upon or modified from those found in published reference methods. Specific information on the methods used and equations used for calculated analytes are available upon request. All analytical work performed at the CHEL is done according to accepted quality assurance and quality control procedures. Quality and other related data as well as uncertainty values are available upon request.

The results on this Certificate of Analysis relate only to the sample as received and analyzed. Field data provided by the customer is identified as such and can affect the validity of CHEL's results. The Certificate of Analysis shall not be reproduced except in full without approval of CHEL.

Final Report Approval by:

Chili

Digitally signed by Shannon Overholster Date: 2019.10.22 16:43:42 -04'00'

Shannon Overholster Supervisor, Quality Assurance

Analyte	Result	Units	MDL	
Water and Waste Water Systems Planning				
Chedoke Creek Surface Water Analysis				
C 1 West 2010 09 20 16:50:00 Pesserd 604014				
C-1 West 2019-09-30 10.50.00 Recold 604014				
Ammonia + Ammonium as N	0.05	mg/L	0.01	
Conductivity - Field	0.733	mS/cm		
Dissolved Organic Carbon	2.5	mg/L	0.4	
Dissolved Oxygen-Field	10.23	mg/L	0	
	4100		0	
Hardness (Calculation)	253	mg/L	0.7	
Nitrate + Nitrate - Nitrate as N	1.95	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	2.17	mg/L	0.02	
o Phosphato as P	0.22	mg/L	0.01	
o-Filospilate as F	0.44	nig/L	0.05	
pri nH - Field	0.5Z 8.25	pH	0.01	
pii-Field Phoenhorue Discolved Total	0.20	ma/l	0.010	
Phoenhorue Total	0.415	mg/⊏ ma/l	0.010	
Temperature - Field	15.7	C.	0.010	
Total Biochem Oxygen Demand	<2	ma/l	1	
Total Kieldahl Nitrogen as N	0.6	mg/L	0.2	
Total Organic Carbon	2.6	mg/L	0.4	
Total Suspended Solids	4.5	ma/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	3.0	ua/L	0.1	
Aluminum	0.145	ma/L	0.002	
Antimony	0.0002	mg/L	0.0001	
Arsenic	0.0013	mg/L	0.0001	
Barium	0.0394	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.149	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	72.3	mg/L	0.05	
Chromium	0.0002	mg/L	0.0001	
Cobalt	0.0001	mg/L	0.0001	
Copper	0.0029	mg/L	0.0001	
Dissolved Aluminum	0.013	mg/L	0.002	
Dissolved Antimony	0.0002	mg/L	0.0001	
Dissolved Arsenic	0.0012	mg/L	0.0001	
Dissolved Barium	0.0429	mg/L	0.0001	
Dissolved Beryllium	< 0.0001	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.143	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	69.4	mg/L	0.05	
Dissolved Chromium	< 0.0001	mg/L	0.0001	
	<0.0001	mg/L	0.0001	
	0.0019	mg/L	0.0001	
Dissolved Iron		mg/L	0.003	
Dissolved Lead	\0.0001 17 /	mg/L	0.0001	
	0.0152	mg/L	0.00	
	<0.0152	ing/∟	0.0001	
Dissolved Molybdenum	0.00	ma/l	0.00	
Dissolved Nickel	0.0010	ma/l	0.0001	
Dissolved Potassium	3.35	ma/l	0.05	
2				

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 154 of 406 Laboratory Work Order Age 1030 pfs486

Analyte	Result	Units	MDL	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.77	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	81.7	mg/L	0.05	
Dissolved Strontium	1.07	mg/L	0.0005	
Dissolved Thallium	<0.0003	mg/L	0.0003	
Dissolved Tin	<0.0001	mg/L	0.0001	
Dissolved Titanium	0.0003	mg/L	0.0001	
Dissolved Uranium	0.748	ug/L	0.002	
Dissolved Vanadium	0.0007	mg/L	0.0001	
Dissolved Zinc	0.012	mg/L	0.001	
Dissolved Zirconium	<0.0004	mg/L	0.0004	
Iron	0.202	mg/L	0.003	
Lead	0.0004	mg/L	0.0001	
Magnesium	17.5	mg/L	0.05	
Manganese	0.0203	mg/L	0.0001	
Mercury	<0.05	ug/L	0.05	
Molybdenum	0.0020	mg/L	0.0001	
Nickel	0.0011	mg/L	0.0001	
Potassium	3.40	mg/L	0.05	
Selenium	0.0002	mg/L	0.0001	
Silicon	3.05	mg/L	0.01	
Silver	< 0.0001	mg/L	0.0001	
Sodium	80.8	mg/L	0.05	
Strontium	1.09	mg/L	0.0005	
I hallium	< 0.0003	mg/L	0.0003	
lin Titani un	< 0.0001	mg/L	0.0001	
Litanium	0.0031	mg/L	0.0001	
Uranium	0.734	ug/L	0.002	
Vanadium	0.0010	mg/L	0.0001	
Ziriconium	<0.0017	mg/L	0.001	
2 II COI IIUIT	<0.0004	ng/∟	0.0004	
2 methylnaphthalone (Subcontract)	<0.5	ug/L	0.5	
Z-menyinaphinalene (Subcontract) 7H-dibenzo(c.g.)carbazole (Subcontract)	<0.5	ug/L	0.5	
	<0.1	ug/L	0.1	
	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzolalpyrene (Subcontract)	<0.1	ug/L	0.01	
Benzo[b/i]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzolelpyrene (Subcontract)	<0.1	ug/L	0.1	
Benzola, hilpervlene (Subcontract)	<0.2	ua/l	0.2	
Benzo[k]fluoranthene (Subcontract)	< 0.1	ua/L	0.1	
Chrvsene (Subcontract)	<0.1	ua/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,h]anthracene (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perylene (Subcontract)	<0.5	ug/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 155 of 406 Laboratory Work Order Age 1050 pfs486

Analyte	Result	Units	MDL	
C-1 West Duplicate 2019-09-30 16:52:00 Record 604015				
Ammonia + Ammonium as N	0.07	mg/L	0.01	
Dissolved Organic Carbon	2.6	mg/L	0.4	
Escherichia coli	3100	CFU/100mL	0	
Hardness (Calculation)	252	mg/L	0.7	
Nitrate as N	1.91	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	2.13	mg/L	0.02	
Nitrite as N	0.22	mg/L	0.01	
o-Phosphate as P	0.44	mg/L	0.05	
pH	8.32	рН	0.01	
pH - Field	8.25	рН		
Phosphorus Dissolved Total	0.410	mg/L	0.010	
Phosphorus Total	0.450	mg/L	0.010	
Temperature - Field	15.7	Č		
Total Biochem. Oxygen Demand	<2	mg/L	1	
Total Kjeldahl Nitrogen as N	0.6	mg/L	0.2	
Total Organic Carbon	3.0	mg/L	0.4	
Total Suspended Solids	13.8	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	4.1	ug/L	0.1	
Aluminum	0.299	mg/L	0.002	
Antimony	0.0002	mg/L	0.0001	
Arsenic	0.0013	mg/L	0.0001	
Barium	0.0404	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.143	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	70.6	mg/L	0.05	
Chromium	0.0004	mg/L	0.0001	
Cobalt	0.0003	mg/L	0.0001	
Copper	0.0037	mg/L	0.0001	
Dissolved Aluminum	0.014	mg/L	0.002	
Dissolved Antimony	0.0002	mg/L	0.0001	
Dissolved Arsenic	0.0013	mg/L	0.0001	
Dissolved Barium	0.0416	mg/L	0.0001	
Dissolved Beryllium	<0.0001	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.150	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	70.9	mg/L	0.05	
Dissolved Chromium	<0.0001	mg/L	0.0001	
Dissolved Cobalt	<0.0001	mg/L	0.0001	
Dissolved Copper	0.0021	mg/L	0.0001	
Dissolved Iron	0.008	mg/L	0.003	
Dissolved Lead	<0.0001	mg/L	0.0001	
Dissolved Magnesium	18.3	mg/L	0.05	
Dissolved Manganese	0.0158	mg/L	0.0001	
Dissolved Mercury	<0.05	ug/L	0.05	
Dissolved Molybdenum	0.0021	mg/L	0.0001	
Dissolved Nickel	0.0010	mg/L	0.0001	
Dissolved Potassium	3.55	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.75	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	82.3	mg/L	0.05	
Dissolved Strontium	1.13	mg/L	0.0005	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 156 of 406 Laboratory Work Order Ape 156 of 406 Laboratory Work Order Ape 1030 pfs486

Analyte	Result	Units	MDL	
Dissolved Thallium	<0.0003	mg/L	0.0003	
Dissolved Tin	<0.0001	mg/L	0.0001	
Dissolved Titanium	0.0003	mg/L	0.0001	
Dissolved Uranium	0.777	ug/L	0.002	
Dissolved Vanadium	0.0008	mg/L	0.0001	
Dissolved Zinc	0.011	mg/L	0.001	
Dissolved Zirconium	< 0.0004	mg/L	0.0004	
Iron	0.426	mg/L	0.003	
Lead	0.0010	mg/l	0.0001	
Magnesium	17.8	mg/l	0.05	
Manganese	0.0300	mg/l	0.0001	
Mercury	<0.05	ua/l	0.05	
Molybdenum	0.0020	mg/L	0.0001	
Nickel	0.0014	mg/L	0.0001	
Potassium	3 47	mg/L	0.05	
Selenium	0.0002	mg/L	0.001	
Silicon	3 16	mg/L	0.0001	
Silver	<0.001	mg/L	0.001	
Sodium	80.8	mg/L	0.0001	
Strontium	1 07	mg/L	0.00	
Thallium	<0.0003	mg/L	0.0003	
Tin	<0.0003	mg/L	0.0003	
Titopium	<0.0001 0.0058	mg/L	0.0001	
Itanium	0.0030	ng/∟	0.0001	
Vanadium	0.730	ug/L	0.002	
Vanadium	0.0012	mg/L	0.0001	
Zirconium	<0.022	mg/L	0.001	
1 mothylpaphthalong (Subcontract)	<0.0004	ng/∟	0.0004	
2 mothylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
Z-methylinaphiliaiene (Subcontract)	<0.5	ug/L	0.5	
Accompthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Actinaphilitylene (Subcontract)	<0.1	ug/L	0.1	
Antinacene (Subcontract)	<0.1	ug/L	0.1	
Benzelahurane (Subcontract)	<0.1	ug/L	0.1	
Denzo[a]pyrene (Subcontract)	<0.01	ug/L	0.01	
	<0.1	ug/L	0.1	
Benzela h ilperviene (Subcontract)	<0.1	ug/L	0.1	
Denzo[[//fluorenthene (Subcontract)	<0.2	ug/L	0.2	
Denzo[k]iluoranmene (Subcontract)	<0.1	ug/L	0.1	
Dihanza(a i)pyrana (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzola, njantnracene (Subcontract)	<0.1	ug/L	0.1	
Fluorantnene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perylene (Subcontract)	<0.5	ug/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	
C-3 Centre - G5 2019-09-30 16:35:00 Record 604016				
Ammonia + Ammonium as N	0.62	mg/L	0.01	
Conductivity - Field	0.760	mS/cm	o (
Dissolved Organic Carbon	3.4	mg/L	0.4	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 157 of 406 Laboratory Work Order Age 1050 pfs486

Analyte	Result	Units	MDL	
Dissolved Oxygen-Field	5.99	mg/L		
Escherichia coli	1700	CFU/100mL	0	
Hardness (Calculation)	244	mg/L	0.7	
Nitrate as N	1.77	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	1.88	mg/L	0.02	
Nitrite as N	0.11	mg/L	0.01	
o-Phosphate as P	0.37	mg/L	0.05	
Hq	7.99	рН	0.01	
pH - Field	7.61	pH		
Phosphorus Dissolved Total	0.260	mg/L	0.010	
Phosphorus Total	0.371	mg/L	0.010	
Temperature - Field	16.1	C		
Total Biochem. Oxygen Demand	2	mg/L	1	
Total Kjeldahl Nitrogen as N	1.1	mg/L	0.2	
Total Organic Carbon	4.0	mg/L	0.4	
Total Suspended Solids	19.8	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	9.0	ug/L	0.1	
Aluminum	0.467	mg/L	0.002	
Antimony	0.0003	mg/L	0.0001	
Arsenic	0.0015	mg/L	0.0001	
Barium	0.0484	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.197	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	67.0	mg/L	0.05	
Chromium	0.0007	mg/L	0.0001	
Cobalt	0.0004	mg/L	0.0001	
Copper	0.0035	mg/L	0.0001	
Dissolved Aluminum	0.003	mg/L	0.002	
Dissolved Antimony	0.0003	mg/L	0.0001	
Dissolved Arsenic	0.0012	mg/L	0.0001	
Dissolved Barium	0.0459	mg/L	0.0001	
Dissolved Beryllium	<0.0001	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.211	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	68.9	mg/L	0.05	
Dissolved Chromium	<0.0001	mg/L	0.0001	
Dissolved Cobalt	0.0002	mg/L	0.0001	
Dissolved Copper	0.0011	mg/L	0.0001	
Dissolved Iron	0.007	mg/L	0.003	
Dissolved Lead	<0.0001	mg/L	0.0001	
Dissolved Magnesium	17.5	mg/L	0.05	
Dissolved Manganese	0.0563	mg/L	0.0001	
Dissolved Mercury	<0.05	ug/L	0.05	
Dissolved Molybdenum	0.0022	mg/L	0.0001	
Dissolved Nickel	0.0012	mg/L	0.0001	
Dissolved Potassium	3.77	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.78	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	88.3	mg/L	0.05	
Dissolved Strontium	0.940	mg/L	0.0005	
Dissolved Thallium	< 0.0003	mg/L	0.0003	
Dissolved I in	<0.0001	mg/L	0.0001	
Dissolved Litanium	0.0002	mg/L	0.0001	

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 158 of 406 p48486

Dissolved Vanalum 0.675 upl. 0.002 Dissolved Vanalum 0.0011 mg/L 0.0001 Dissolved Zirconium 0.0083 mg/L 0.0001 Dissolved Zirconium 0.0833 mg/L 0.0001 Magnasium 17.5 mg/L 0.0001 Magnasium 17.5 mg/L 0.0001 Magnasium 17.5 mg/L 0.0001 Marganes 0.0730 mg/L 0.0001 Marganes 0.0730 mg/L 0.0001 Marganes 0.0031 mg/L 0.0001 Sticer 3.82 mg/L 0.0001 Sticer 3.82 mg/L 0.0001 Strontum 0.0047 mg/L 0.0001 Tir 0.0001 mg/L 0.0001 Tir 0.0001 mg/L 0.0001 Tir 0.0001 mg/L 0.0001 Tir 0.0001 mg/L 0.0001 Tirthume 0.00001 mg/L	Analyte	Result	Units	MDL	
Dissolved Yanadum 0.0011 mg/L 0.0001 Dissolved Zirconium <0.006	Dissolved Uranium	0.675	ug/L	0.002	
Dissolved Zino 10004 mg/L 0.0004 Iron 0.883 mg/L 0.0004 Iron 0.883 mg/L 0.003 Magnessium 17.5 mg/L 0.0031 Magnessium 0.055 0.0011 0.055 Magnessium 0.0021 mg/L 0.00011 Molydelmum 0.0021 mg/L 0.00011 Nickel 0.0031 mg/L 0.00011 Silicon 3.52 mg/L 0.0005 Silicon 3.52 mg/L 0.0001 Silicon 0.947 mg/L 0.0005 Trianium 0.0003 mg/L 0.0005 Trianium 0.0003 mg/L 0.0006 Trianium 0.0003 mg/L 0.0006 Trianium 0.0001 mg/L 0.0001 Uranium 0.0666 ug/L 0.001 Zirconium 0.0004 mg/L 0.0004 Uranium 0.0004 mg/L 0.0004 Uranium	Dissolved Vanadium	0.0011	mg/L	0.0001	
Dissolved Ziroonium e0.0004 mgL 0.0003 Lacad 0.0019 mgL 0.0001 Magnesium 17.5 mgL 0.005 Manganese 0.0730 mgL 0.0061 Manganese 0.0730 mgL 0.0061 Molybdomum 0.0021 mgL 0.0001 Nickel 0.019 mgL 0.0001 Salanium 0.0003 mgL 0.0001 Silver 40.0001 mgL 0.0001 Silver 40.0003 mgL 0.0003 Strontium 0.497 mgL 0.0005 Tin <0.0003	Dissolved Zinc	0.006	mg/L	0.001	
Icad 0.883 mg/L 0.0001 Magnassium 17.5 mg/L 0.0001 Magnassium 0.750 mg/L 0.0001 Molydbenum 0.0021 mg/L 0.0001 Nickel 0.0011 mg/L 0.0001 Nickel 0.0013 mg/L 0.0001 Potassum 3.88 mg/L 0.0001 Silicion 3.52 mg/L 0.0001 Silicion 3.52 mg/L 0.0001 Silicion 3.52 mg/L 0.0001 Silicion 0.53 Silicion 3.62 Vanadum 0.947 mg/L 0.0001 Tima 0.0001 Tima 0.0001 Tima 0.0003 mg/L 0.0001 Zirconium 0.0021 mg/L 0.0001 Zirconium 0.002 mg/L 0.0001 Zirconium 0.002 mg/L 0.0001 Zirconium 0.002 mg/L 0.0001 </td <td>Dissolved Zirconium</td> <td><0.0004</td> <td>mg/L</td> <td>0.0004</td> <td></td>	Dissolved Zirconium	<0.0004	mg/L	0.0004	
Lead 0.0019 mg/L 0.0001 Magnesium 77.5 mg/L 0.005 Molybdenum 0.0021 mg/L 0.0001 Molybdenum 0.0021 mg/L 0.0001 Nickel 0.0019 mg/L 0.0001 Nickel 0.0001 mg/L 0.0001 Silicon 3.82 mg/L 0.001 Silicon 3.52 mg/L 0.0003 Silicon 3.52 mg/L 0.0003 Thailum 0.0003 mg/L 0.0003 Tim 0.0001 mg/L 0.0001 Uranium 0.0866 ug/L 0.001 Zirconium <0.020	Iron	0.883	mg/L	0.003	
Magnesium 17.5 mg/L 0.065 Manganese 0.0730 mg/L 0.0001 Mercury <0.05	Lead	0.0019	mg/L	0.0001	
Marganese 0.0730 mg/L 0.0001 Mercury 0.005 Molybdenum 0.0021 mg/L 0.0001 Nickel 0.0003 mg/L 0.0001 Potassium 3.89 mg/L 0.0001 Silicon 3.52 mg/L 0.0011 Siliver <0.0001	Magnesium	17.5	mg/L	0.05	
Mercury -0.05 ug/L 0.001 Nickel 0.0019 mg/L 0.0001 Potassium 3.88 mg/L 0.0001 Sileri 3.88 mg/L 0.0001 Sileri 4.0001 mg/L 0.0001 Sileri 4.0001 mg/L 0.0001 Sileri 4.0001 mg/L 0.0005 Thalium 0.0003 mg/L 0.0001 Tim 4.0001 mg/L 0.0001 Uranium 0.0866 mg/L 0.0001 Uranium 0.0866 mg/L 0.0001 Uranium 0.0866 ug/L 0.0001 Zirco 1020 mg/L 0.0001 Uranium Zirconium 4.05 ug/L 0.5 Zirconium 4.05 ug/L 0.5 Zirconium 4.05 ug/L 0.1 Acenaphthone (Subcontract) 4.01 ug/L 0.1 Acenaphthone (Subcontract) 4.01 ug/L 0	Manganese	0.0730	mg/L	0.0001	
Molydenum 0.0021 mg/L 0.0001 Nicke 0.001 mg/L 0.0001 Potassium 3.88 mg/L 0.0001 Silicon 3.82 mg/L 0.001 Silicon 3.82 mg/L 0.001 Silicon 3.82 mg/L 0.003 Silicon 3.82 mg/L 0.0003 Strontium 0.947 mg/L 0.0003 Thailium 0.0086 mg/L 0.0001 Uranium 0.066 ug/L 0.0001 Zinconium 0.0061 mg/L 0.0001 Zinconium 0.0064 mg/L 0.0001 Zinconium 0.0004 mg/L 0.0001 Zinconium 0.0004 mg/L 0.001 Zinconium 0.0004 mg/L 0.001 Zinconium 0.001 mg/L 0.1 Acenaphthelene (Subcontract) <0.1	Mercury	<0.05	ug/L	0.05	
Nickel 0.0019 mg/L 0.0001 Selenium 0.0003 mg/L 0.0001 Silicon 3.88 mg/L 0.0001 Siliver <0.0001	Molybdenum	0.0021	mg/L	0.0001	
Potassium 3.88 mg/L 0.0001 Solenium 0.0001 mg/L 0.0001 Solenium 3.52 mg/L 0.001 Solenium 62.11 mg/L 0.0005 Thallium -0.0003 mg/L 0.0005 Transitum 0.0004 mg/L 0.0001 Tim -0.0001 mg/L 0.0001 Uranium 0.666 ug/L 0.0001 Zirconium -0.0004 mg/L 0.0001 Zirconium -0.0004 mg/L 0.0001 Zirconium -0.0004 mg/L 0.0004 1-methylnaphthalene (Subcontract) -0.5 ug/L 0.5 2-methylnaphthalene (Subcontract) -0.1 ug/L 0.1 Acenaphthylene (Subcontract) -0.1 ug/L 0.1 Benzolejjiprene (Subcontract) -0.1 ug/L 0.1 Benzolejiprene (Subcontract) -0.1 ug/L 0.1 Benzolejiprene (Subcontract) -0.1 ug/L 0.1	Nickel	0.0019	mg/L	0.0001	
Selenium 0.0003 mg/L 0.001 Silver <0.001	Potassium	3.88	mg/L	0.05	
Silicon 3.52 mg/L 0.001 Solium 82.1 mg/L 0.005 Strontum 0.947 mg/L 0.0005 Thallium -0.0001 mg/L 0.0001 Tin -0.0001 mg/L 0.0001 Tin -0.0001 mg/L 0.0001 Uranium 0.666 ug/L 0.0001 Uranium 0.666 ug/L 0.0001 Zirco. 0.001 mg/L 0.0001 Zirco. 0.002 mg/L 0.001 Zirco. 0.002 mg/L 0.001 Zirco. 0.002 mg/L 0.001 Zirco. 0.004 mg/L 0.001 Zirco. 0.004 mg/L 0.001 Zirco. 0.002 mg/L 0.1 Acenaphthylene (Subcontract) <0.1	Selenium	0.0003	mg/L	0.0001	
Silver < 0.001 mg/L 0.005 Sodium 82.1 mg/L 0.005 Strontum 0.947 mg/L 0.0005 Thallium <0.0001	Silicon	3.52	mg/L	0.01	
Sodium 82.1 mg/L 0.05 Strontium 0.947 mg/L 0.0003 Tin <0.0001	Silver	<0.0001	mg/L	0.0001	
Strontium 0.947 mg/L 0.0003 Thalium 0.0001 mg/L 0.0001 Titanium 0.0066 ug/L 0.0001 Uranium 0.666 ug/L 0.0001 Uranium 0.666 ug/L 0.0001 Zirconium 0.0004 mg/L 0.0004 1-methylnaphthalene (Subcontract) <0.5	Sodium	82.1	mg/L	0.05	
Thallium 0.0003 mg/L 0.0001 Titanium 0.0086 mg/L 0.0001 Titanium 0.0666 ug/L 0.0001 Vanadium 0.0019 mg/L 0.0001 Zirco 0.020 mg/L 0.0001 Zirco 0.020 mg/L 0.0004 1-methylnaphthalene (Subcontract) <0.5	Strontium	0.947	mg/L	0.0005	
Tin <0.0001 mg/L 0.0001 Titaium 0.0086 mg/L 0.0001 Uranium 0.666 ug/L 0.0001 Zinc 0.020 mg/L 0.0001 Zinc 0.020 mg/L 0.0004 1-methylnaphthalene (Subcontract) <0.5	Thallium	< 0.0003	mg/L	0.0003	
Titanium 0.0086 mg/L 0.0001 Uranium 0.666 ug/L 0.002 Vanadium 0.0019 mg/L 0.0001 Zirce 0.020 mg/L 0.0011 Zirconium <0.0044	Tin	<0.0001	mg/L	0.0001	
Uranium 0.666 ugl_L 0.0001 Varadium 0.0019 mg/L 0.0001 Zirco 0.0004 mg/L 0.0004 1-methylnaphthalene (Subcontract) <0.5	Titanium	0.0086	mg/L	0.0001	
Vanadium 0.0019 mg/L 0.0001 Zince 0.020 mg/L 0.0004 1-methylnaphthalene (Subcontract) <0.5	Uranium	0.666	ug/L	0.002	
Zinc 0.020 mg/L 0.0004 1-methylnaphthalene (Subcontract) <0.5	Vanadium	0.0019	mg/L	0.0001	
2/rconum <0.004		0.020	mg/L	0.001	
1-methylnaphthalene (Subcontract) <0.5		<0.0004	mg/L	0.0004	
2-intertryiniaprintairene (Subcontract) <0.5	1-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
Accenaphthene (Subcontract) <0.1	2-metnyinaphthalene (Subcontract)	< 0.5	ug/L	0.5	
Acenaphthylene (Subcontract) <0.1	/H-dibenzo(c,g)carbazole (Subcontract)	<0.1	ug/L	0.1	
Actinaptinitylenie (Subcontract) <0.1	Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Animate (Subcontract) <0.1	Acenaphinylene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]primaterie (Subcontract) <0.1	Antiliacene (Subcontract)	<0.1	ug/L	0.1	
Benzo[bi]]floranthene (Subcontract) <0.01	Benzolalavrene (Subcontract)	<0.1	ug/L	0.1	
Benzo[e]pyradiation S0.1 ug/L 0.1 Benzo[g,h,i]perylene (Subcontract) <0.2	Benzolajpyrene (Subcontract)	<0.01	ug/L	0.01	
Benzolg,h,ijperylene (Subcontract) <0.2	Benzo[b/j]idorantinene (Subcontract)	<0.1	ug/L	0.1	
Benzo[k]fluoranthene (Subcontract) <0.1 ug/L 0.1 Chrysene (Subcontract) <0.1 ug/L 0.1 Dibenzo(a,i)pyrene (Subcontract) <0.1 ug/L 0.1 Dibenzo(a,j)acridine (Subcontract) <0.1 ug/L 0.1 Dibenzo[a,j]acridine (Subcontract) <0.1 ug/L 0.1 Fluoranthene (Subcontract) <0.1 ug/L 0.1 Fluoranthene (Subcontract) <0.1 ug/L 0.1 indeno[1,2,3-cd]pyrene (Subcontract) <0.2 ug/L 0.2 Perylene (Subcontract) <0.1 ug/L 0.1 Phenanthrene (Subcontract) <0.5 ug/L 0.5 Phenanthrene (Subcontract) <0.1 ug/L 0.1 PAHS Total (Subcontract) <0.1 ug/L 0.1 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Benzola h ilpervlene (Subcontract)	<0.1	ug/L	0.1	
Chrysene (Subcontract) <0.1 ug/L 0.1 Dibenzo(a,i)pyrene (Subcontract) <0.1 ug/L 0.1 Dibenzo(a,i)acridine (Subcontract) <0.1 ug/L 0.1 Dibenzo[a,h]anthracene (Subcontract) <0.1 ug/L 0.1 Fluoranthene (Subcontract) <0.1 ug/L 0.1 Fluorene (Subcontract) <0.1 ug/L 0.1 indeno[1,2,3-cd]pyrene (Subcontract) <0.2 ug/L 0.2 Perylene (Subcontract) <0.2 ug/L 0.2 Perylene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 PAHs Total (Subcontract) <2 ug/L 2 Naphthalene (Subcontract) <0.5 ug/L 0.5 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Organic Carbon 0.4 Dissolved Or	Benzo[k]fluoranthene (Subcontract)	<0.2	ug/L	0.2	
Dibenzo(a,i)pyrene (Subcontract) <0.1 ug/L 0.1 Dibenzo(a,i)acridine (Subcontract) <0.1 ug/L 0.1 Dibenzo[a,h]anthracene (Subcontract) <0.1 ug/L 0.1 Fluoranthene (Subcontract) <0.1 ug/L 0.1 Fluorene (Subcontract) <0.1 ug/L 0.1 indeno[1,2,3-cd]pyrene (Subcontract) <0.2 ug/L 0.2 Perylene (Subcontract) <0.5 ug/L 0.5 Phenanthrene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 PAHS Total (Subcontract) <2 ug/L 2 Naphthalene (Subcontract) <0.5 ug/L 0.5 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Organic Carbon 2.9 mg/L 0.7	Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract) <0.1 ug/L 0.1 Dibenzo[a,h]anthracene (Subcontract) <0.1 ug/L 0.1 Fluoranthene (Subcontract) <0.1 ug/L 0.1 Fluorene (Subcontract) <0.1 ug/L 0.1 indeno[1,2,3-cd]pyrene (Subcontract) <0.2 ug/L 0.2 Perylene (Subcontract) <0.5 ug/L 0.5 Phenanthrene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 PAHs Total (Subcontract) <0.1 ug/L 0.1 PAHs Total (Subcontract) <2 ug/L 0.5 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Dibenzo(a i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,h]anthracene (Subcontract) <0.1	Dibenzo(a,i)acridine (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract) <0.1	Dibenzo[a,h]anthracene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract) <0.1	Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract) <0.2 ug/L 0.2 Perylene (Subcontract) <0.5 ug/L 0.5 Phenanthrene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 PAHs Total (Subcontract) <2 ug/L 2 Naphthalene (Subcontract) <0.5 ug/L 0.5 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Fluorene (Subcontract)	<0.1	ug/L	0.1	
Perylene (Subcontract) <0.5 ug/L 0.5 Phenanthrene (Subcontract) <0.1 ug/L 0.1 Pyrene (Subcontract) <0.1 ug/L 0.1 PAHs Total (Subcontract) <2 ug/L 2 Naphthalene (Subcontract) <0.5 ug/L 0.5 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Phenanthrene (Subcontract) <0.1	Pervlene (Subcontract)	<0.5	ug/L	0.5	
Pyrene (Subcontract) <0.1	Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract) <2 ug/L 2 Naphthalene (Subcontract) <0.5 ug/L 0.5 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Pyrene (Subcontract)	<0.1	ug/L	0.1	
Naphthalene (Subcontract) <0.5 ug/L 0.5 C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L 0.4 Hardness (Calculation) 248 mg/L 0.7	PAHs Total (Subcontract)	<2	ug/L	2	
C-3 West 2019-09-30 16:25:00 Record 604017 Ammonia + Ammonium as N 0.59 mg/L 0.01 Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Naphthalene (Subcontract)	<0.5	ug/L	0.5	
Ammonia + Ammonium as N0.59mg/L0.01Conductivity - Field0.771mS/cmDissolved Organic Carbon2.9mg/L0.4Dissolved Oxygen-Field6.38mg/LEscherichia coli1200CFU/100mL0Hardness (Calculation)248mg/L0.7	C-3 West 2019-09-30 16:25:00 Record 604017				
Conductivity - Field 0.771 mS/cm Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Ammonia + Ammonium og N	0 50	ma/l	0.01	
Dissolved Organic Carbon 2.9 mg/L 0.4 Dissolved Oxygen-Field 6.38 mg/L Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Annoula + Annoula B N Conductivity Field	0.09	mS/cm	0.01	
Dissolved Oxygen-Field 6.38 mg/L 0.4 Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Dissolved Organic Carbon	20	mo/l	0.4	
Escherichia coli 1200 CFU/100mL 0 Hardness (Calculation) 248 mg/L 0.7	Dissolved Organic Calbon Dissolved Ovygen-Field	۲.9 ۲.9 ۲.9	mg/L	0.4	
Hardness (Calculation) 248 mg/L 0.7	Escherichia coli	1200	CFU/100ml	0	
	Hardness (Calculation)	248	mg/L	0.7	

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 159 of 496 Laboratory Work Order Age 159 of 496

Analyte	Result	Units	MDL	
Nitrate as N	1.80	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	1.93	mg/L	0.02	
Nitrite as N	0.13	mg/L	0.01	
o-Phosphate as P	0.38	mg/L	0.05	
pH	8.03	рН	0.01	
pH - Field	7.65	рН		
Phosphorus Dissolved Total	0.271	mg/L	0.010	
Phosphorus Total	0.388	mg/L	0.010	
Temperature - Field	15.9	С		
Total Biochem. Oxygen Demand	<2	mg/L	1	
Total Kjeldahl Nitrogen as N	1.1	mg/L	0.2	
Total Organic Carbon	3.7	mg/L	0.4	
Total Suspended Solids	20.8	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	9.2	ug/L	0.1	
Aluminum	0.468	mg/L	0.002	
Antimony	0.0003	mg/L	0.0001	
Arsenic	0.0015	mg/L	0.0001	
Barium	0.0480	mg/L	0.0001	
Beryllium	< 0.0001	mg/L	0.0001	
Bismuin	< 0.0001	mg/L	0.0001	
DOIOII	0.193	mg/L	0.010	
Caunium	<0.0001 68.0	mg/L	0.0001	
Chromium	00.9	mg/L	0.001	
Cobalt	0.0007	mg/L	0.0001	
Copper	0.0036	mg/L	0.0001	
Dissolved Aluminum	0.004	mg/L	0.002	
Dissolved Antimony	0.0003	mg/L	0.0001	
Dissolved Arsenic	0.0012	ma/L	0.0001	
Dissolved Barium	0.0466	mg/L	0.0001	
Dissolved Beryllium	<0.0001	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.204	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	69.8	mg/L	0.05	
Dissolved Chromium	0.0001	mg/L	0.0001	
Dissolved Cobalt	0.0002	mg/L	0.0001	
Dissolved Copper	0.0010	mg/L	0.0001	
Dissolved Iron	0.015	mg/L	0.003	
Dissolved Lead	<0.0001	mg/L	0.0001	
Dissolved Magnesium	17.6	mg/L	0.05	
Dissolved Manganese	0.0542	mg/L	0.0001	
Dissolved Mercury	<0.05	ug/L	0.05	
Dissolved Molybdenum	0.0021	mg/L	0.0001	
Dissolved Nickel	0.0013	mg/L	0.0001	
Dissolved Potassium	3.74	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.80	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	89.8	mg/L	0.05	
	0.952	mg/L	0.0005	
		mg/L	0.0003	
Dissolved Titonium	N0.0001	mg/L	0.0001	
	0.0002	mg/∟	0.0001	
Dissolved Vanadium	0.702	uy/L ma/l	0.002	
	0.001	mg/⊑	0 001	
	0.000	ing/L	0.001	

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 160 of 496 Laboratory Work Order Age 1 \$30 \$248486

Analyte	Result	Units	MDL	
Dissolved Zirconium	<0.0004	mg/L	0.0004	
Iron	0.890	mg/L	0.003	
Lead	0.0021	mg/L	0.0001	
Magnesium	17.9	mg/L	0.05	
Manganese	0.0713	mg/L	0.0001	
Mercury	<0.05	ug/L	0.05	
Molybdenum	0.0021	mg/L	0.0001	
Nickel	0.0018	mg/L	0.0001	
Potassium	3.87	mg/L	0.05	
Selenium	0.0002	mg/L	0.0001	
Silicon	3.62	mg/L	0.01	
Silver	<0.0001	mg/L	0.0001	
Sodium	84.2	mg/L	0.05	
Strontium	0.976	mg/L	0.0005	
Thallium	<0.0003	mg/L	0.0003	
Tin	<0.0001	mg/L	0.0001	
Titanium	0.0089	mg/L	0.0001	
Uranium	0.690	ug/L	0.002	
Vanadium	0.0019	mg/L	0.0001	
Zinc	0.021	mg/L	0.001	
Zirconium	<0.0004	mg/L	0.0004	
1-methylnaphthalene (Subcontract)	< 0.5	ug/L	0.5	
2-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
/H-dibenzo(c,g)carbazole (Subcontract)	<0.1	ug/L	0.1	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphtnylene (Subcontract)	<0.1	ug/L	0.1	
Aninracene (Subcontraci)	<0.1	ug/L	0.1	
Benzolajanunacene (Subcontract)	<0.1	ug/L	0.1	
Benzelb/ilflueranthene (Subcontract)	<0.01	ug/L	0.01	
Benzo[a]nvrene (Subcontract)	<0.1	ug/L	0.1	
Benzola h ilpervlene (Subcontract)	<0.1	ug/L	0.1	
Benzo[k]fluoranthene (Subcontract)	<0.2	ug/L	0.2	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a i)nyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzola hlanthracene (Subcontract)	<0.1	ug/L	0.1	
Eluoranthene (Subcontract)	<0.1	ug/L	0.1	
Eluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Pervlene (Subcontract)	<0.5	ua/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	
C-4 West 2019-09-30 16:15:00 Record 604018		-		
Ammonia + Ammonium as N	0.84	ma/l	0.01	
Conductivity - Field	0.739	mS/cm	0.01	
Dissolved Organic Carbon	3.9	ma/l	0.4	
Dissolved Oxygen-Field	4.85	ma/L	5.1	
Escherichia coli	800	CFU/100ml	0	
Hardness (Calculation)	233	ma/l	0.7	
Nitrate as N	1.64	ma/L	0.01	
Nitrate+Nitrite as N (Calculation)	1.73	mg/L	0.02	
Nitrite as N	0.09	mg/L	0.01	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 161 of 496 Laboratory Work Order 999 1820 248486

Analyte	Result	Units	MDL	
o-Phosphate as P	0.33	ma/L	0.05	
Hq	7.94	Hq	0.01	
pH - Field	7.52	pH		
Phosphorus Dissolved Total	0.217	mg/L	0.010	
Phosphorus Total	0.363	mg/L	0.010	
Temperature - Field	16.3	Ċ		
Total Biochem. Oxygen Demand	2	mg/L	1	
Total Kjeldahl Nitrogen as N	1.4	mg/L	0.2	
Total Organic Carbon	4.4	mg/L	0.4	
Total Suspended Solids	21.2	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	10.1	ug/L	0.1	
Aluminum	0.489	mg/L	0.002	
Antimony	0.0003	mg/L	0.0001	
Arsenic	0.0016	mg/L	0.0001	
Barium	0.0492	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.206	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	63.4	mg/L	0.05	
Chromium	0.0008	mg/L	0.0001	
Cobalt	0.0004	mg/L	0.0001	
Copper	0.0036	mg/L	0.0001	
Dissolved Aluminum	0.002	mg/L	0.002	
Dissolved Antimony	0.0003	mg/L	0.0001	
Dissolved Arsenic	0.0012	mg/L	0.0001	
Dissolved Barlum	0.0486	mg/L	0.0001	
Dissolved Beryllium	< 0.0001	mg/L	0.0001	
Dissolved Bismuin	<0.0001	mg/L	0.0001	
Dissolved Bolon	0.209	mg/L	0.010	
Dissolved Cadmium	<0.0001 65.4	mg/L	0.0001	
	<0.0001	mg/L	0.00	
Dissolved Chlonium	<0.0001	mg/L	0.0001	
	0.0002	mg/L	0.0001	
Dissolved Iron	0.006	mg/L	0.0001	
Dissolved Lead	<0.000	mg/L	0.0001	
Dissolved Magnesium	16.7	mg/L	0.05	
Dissolved Magnese	0.0630	mg/L	0.0001	
Dissolved Mercury	< 0.05	ua/L	0.05	
Dissolved Molvbdenum	0.0020	ma/L	0.0001	
Dissolved Nickel	0.0018	mg/L	0.0001	
Dissolved Potassium	3.75	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.75	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	82.1	mg/L	0.05	
Dissolved Strontium	0.869	mg/L	0.0005	
Dissolved Thallium	<0.0003	mg/L	0.0003	
Dissolved Tin	<0.0001	mg/L	0.0001	
Dissolved Titanium	0.0001	mg/L	0.0001	
Dissolved Uranium	0.601	ug/L	0.002	
Dissolved Vanadium	0.0012	mg/L	0.0001	
Dissolved Zinc	0.004	mg/L	0.001	
Dissolved Zirconium	<0.0004	mg/L	0.0004	
Iron	0.990	mg/L	0.003	
Lead	0.0021	mg/L	0.0001	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 162 of 496 Laboratory Work Order Appendix 2016

Analyte	Result	Units	MDL	
Magnesium	17.0	mg/L	0.05	
Manganese	0.0882	mg/L	0.0001	
Mercury	<0.05	ug/L	0.05	
Molybdenum	0.0020	mg/L	0.0001	
Nickel	0.0019	mg/L	0.0001	
Potassium	3.89	mg/L	0.05	
Selenium	0.0003	mg/L	0.0001	
Silicon	3.55	mg/L	0.01	
Silver	<0.0001	mg/L	0.0001	
Sodium	79.8	mg/L	0.05	
Strontium	0.881	mg/L	0.0005	
Thallium	< 0.0003	mg/L	0.0003	
Tin	< 0.0001	mg/L	0.0001	
litanium	0.0092	mg/L	0.0001	
Uranium	0.602	ug/L	0.002	
Vanadium	0.0021	mg/L	0.0001	
Zinc Zirconium	0.020	mg/L	0.001	
Zirconium	<0.0004	mg/∟	0.0004	
2 methylnaphthalana (Subcontract)	<0.5	ug/L	0.5	
Z-memyinaphinalene (Subcontract)	<0.5	ug/L	0.5	
Aconanthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzolalanthracene (Subcontract)	<0.1	ug/L	0.1	
Benzolalpyrene (Subcontract)	<0.1	ug/L	0.01	
Benzo[b/i]fluoranthene (Subcontract)	<0.01	ug/L	0.01	
Benzolelpyrene (Subcontract)	<0.1	ug/L	0.1	
Benzola, h. ilpervlene (Subcontract)	<0.2	ua/L	0.2	
Benzo[k]fluoranthene (Subcontract)	<0.1	ua/L	0.1	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,h]anthracene (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perylene (Subcontract)	<0.5	ug/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	
C-5 East - G6 2019-09-30 16:05:00 Record 604019				
Ammonia + Ammonium as N	1.05	mg/L	0.01	
Conductivity - Field	0.700	mS/cm		
Dissolved Organic Carbon	4.1	mg/L	0.4	
Dissolved Oxygen-Field	2.96	mg/L		
Escherichia coli	390	CFU/100mL	0	
Hardness (Calculation)	223	mg/L	0.7	
Nitrate as N	1.44	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	1.51	mg/L	0.02	
Nitrite as N	0.07	mg/L	0.01	
o-Phosphate as P	0.30	mg/L	0.05	
pH	7.87	pH	0.01	
pH - Field	7.43	рН		

Appendix "A" to Report PW19008(g)/LS19004(f) Page 163 of 496 Laboratory Work Order 99 163 of 496

Analyte	Result	Units	MDL	
Phosphorus Dissolved Total	0.166	mg/L	0.010	
Phosphorus Total	0.314	mg/L	0.010	
Temperature - Field	16.3	C		
Total Biochem. Oxygen Demand	3	mg/L	1	
Total Kjeldahl Nitrogen as N	1.5	mg/L	0.2	
Total Organic Carbon	4.5	mg/L	0.4	
Total Suspended Solids	26.8	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	10.3	ug/L	0.1	
Aluminum	0.598	mg/L	0.002	
Antimony	0.0004	mg/L	0.0001	
Arsenic	0.0015	mg/L	0.0001	
Barium	0.0495	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.177	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	61.4	mg/L	0.05	
Chromium	0.0010	mg/L	0.0001	
Copait	0.0005	mg/L	0.0001	
Dissolved Aluminum	0.0041	mg/L	0.0001	
	<0.002	mg/L	0.002	
Dissolved Antimony	0.0004	mg/L	0.0001	
Dissolved Arsenic	0.0012	mg/L	0.0001	
Dissolved Bandin Dissolved Bervllium	<0.0472	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.183	mg/L	0.010	
Dissolved Cadmium	< 0.0001	mg/L	0.0001	
Dissolved Calcium	61.7	mg/L	0.05	
Dissolved Chromium	< 0.0001	mg/L	0.0001	
Dissolved Cobalt	0.0002	mg/L	0.0001	
Dissolved Copper	0.0007	mg/L	0.0001	
Dissolved Iron	0.011	mg/L	0.003	
Dissolved Lead	<0.0001	mg/L	0.0001	
Dissolved Magnesium	16.7	mg/L	0.05	
Dissolved Manganese	0.0762	mg/L	0.0001	
Dissolved Mercury	<0.05	ug/L	0.05	
Dissolved Molybdenum	0.0020	mg/L	0.0001	
Dissolved Nickel	0.0012	mg/L	0.0001	
Dissolved Potassium	3.95	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.69	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	//.6	mg/L	0.05	
Dissolved Strontium	0.869	mg/L	0.0005	
Dissoived Inallium	< 0.0003	mg/L	0.0003	
Dissolved Tin	< 0.0001	mg/L	0.0001	
	N0.0001	mg/L	0.0001	
Dissolved Uranium	0.077	uy/L ma/l	0.002	
	0.0012	mg/L	0.0001	
Dissolved ZIIC Dissolved Zirconium	<0.004	mg/L	0.001	
Iron	1 18	ma/l	0.003	
holi heal	0.0023	ma/l	0.000	
Magnesium	16.5	ma/l	0.05	
Manganese	0.0989	ma/l	0.0001	
Mercurv	< 0.05	ug/L	0.05	
		<u> </u>		

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 164 of 406 Laboratory Work Order Age 1 530 p48486

Analyte	Result	Units	MDL	
Molybdenum	0.0020	mg/L	0.0001	
Nickel	0.0020	mg/L	0.0001	
Potassium	3.92	mg/L	0.05	
Selenium	0.0003	mg/L	0.0001	
Silicon	3.71	mg/L	0.01	
Silver	<0.0001	mg/L	0.0001	
Sodium	72.8	mg/L	0.05	
Strontium	0.850	mg/L	0.0005	
Thallium	<0.0003	mg/L	0.0003	
Tin	<0.0001	mg/L	0.0001	
Titanium	0.0112	mg/L	0.0001	
Uranium	0.556	ug/L	0.002	
Vanadium	0.0023	mg/L	0.0001	
Zinc	0.021	mg/L	0.001	
Zirconium	<0.0004	mg/L	0.0004	
1-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
2-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
7H-dibenzo(c,g)carbazole (Subcontract)	<0.1	ug/L	0.1	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]pyrene (Subcontract)	<0.01	ug/L	0.01	
Benzo[b/j]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzo[e]pyrene (Subcontract)	<0.1	ug/L	0.1	
Benzo[g,h,i]perylene (Subcontract)	<0.2	ug/L	0.2	
Benzo[k]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,h]anthracene (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perylene (Subcontract)	<0.5	ug/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	
C-6 East - G7 2019-09-30 13:40:00 Record 604020				
Ammonia + Ammonium as N	0.28	mg/L	0.01	
Conductivity - Field	0.711	mS/cm		
Dissolved Organic Carbon	4.6	mg/L	0.4	
Dissolved Oxygen-Field	9.06	mg/L		
Escherichia coli	60	CFU/100mL	0	
Hardness (Calculation)	257	mg/L	0.7	
Nitrate as N	0.35	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	0.35	mg/L	0.02	
Nitrite as N	<0.05	mg/L	0.05	
o-Phosphate as P	<0.05	mg/L	0.05	
pH	8.27	pН	0.01	
pH - Field	8.20	рН		
Phosphorus Dissolved Total	<0.010	mg/L	0.010	
Phosphorus Total	0.169	mg/L	0.010	
Temperature - Field	17.1	С		

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 165 of 496 Laboratory Work Order Age 1 500 pts486

Analyte	Result	Units	MDL	
Total Biochem. Oxygen Demand	7	mg/L	1	
Total Kjeldahl Nitrogen as N	1.3	mg/L	0.2	
Total Organic Carbon	5.2	mg/L	0.4	
Total Suspended Solids	37.6	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	16.4	ua/L	0.1	
Aluminum	0.585	ma/L	0.002	
Antimony	0.0003	mg/L	0.0001	
Arsenic	0.0016	mg/l	0.0001	
Barium	0.0640	mg/L	0.0001	
Bervllium	< 0.0001	mg/l	0.0001	
Bismuth	< 0.0001	mg/l	0.0001	
Boron	0.104	mg/l	0.010	
Cadmium	< 0.0001	mg/l	0.0001	
Calcium	67.0	mg/l	0.05	
Chromium	0.0010	mg/L	0.0001	
Cobalt	0.0005	mg/L	0.0001	
Copper	0.0043	mg/L	0.0001	
Dissolved Aluminum	<0.002	mg/L	0.002	
Dissolved Antimony	0.0003	mg/L	0.0001	
Dissolved Arsenic	0.0009	mg/L	0.0001	
Dissolved Barium	0.0521	mg/L	0.0001	
Dissolved Bervilium	<0.0021	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Bisindin	0.0001	mg/L	0.0001	
Dissolved Detail	<0.100	mg/L	0.0001	
Dissolved Calcium	67.2	mg/L	0.0001	
Dissolved Chromium	<0.0001	mg/L	0.001	
Dissolved Onionium	0.0001	mg/L	0.0001	
Dissolved Copper	0.0001	mg/L	0.0001	
Dissolved Iron	0.0004	mg/L	0.0001	
Dissolved I on	<0.007	mg/L	0.0001	
Dissolved Magnesium	20.5	mg/L	0.0001	
Dissolved Magnese	0.0228	mg/L	0.001	
Dissolved Mangariese	<0.0220	ug/L	0.0001	
Dissolved Molybdenum	0.0068	mg/L	0.001	
	0.0000	mg/L	0.0001	
Dissolved Nickel	5.00	mg/L	0.0001	
	0.0002	mg/L	0.001	
Dissolved Silicon	2 / 3	mg/L	0.0001	
Dissolved Silver	<0.0001	mg/L	0.001	
Dissolved Sodium	70.2	mg/L	0.0001	
Dissolved Strontium	0.954	mg/L	0.005	
Dissolved Thallium	<0.004	mg/L	0.0003	
Dissolved Tin	<0.0003	mg/L	0.0003	
Dissolved Titanium	<0.0001	mg/L	0.0001	
Dissolved Iranium	0.0001	ug/L	0.0001	
Dissolved Vanadium	0.900	mg/L	0.002	
	0.0003	mg/L	0.0001	
Dissolved Zirconium	<0.002	ma/l	0.001	
	1 2/	ma/l	0.0004	
	0 0020	mg/L	0.003	
Leau	0.0000 01 7	mg/L	0.0001	
Manganaa	21./ 0.160	mg/L	0.00	
Ivianganese	0.100 20.05	IIIY/L	0.0001	
	0.00 0 0067	ug/L	0.00	
	0.0007	mg/L	0.0001	
	0.0023 E EA	mg/L	0.0001	
Polassium	0.04	mg/L	0.05	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 166 of 496 Laboratory Work Order Age 1830 248486

Analyte	Result	Units	MDL	
Selenium	0.0002	mg/L	0.0001	
Silicon	3.62	mg/L	0.01	
Silver	<0.0001	mg/L	0.0001	
Sodium	65.3	mg/L	0.05	
Strontium	1.05	mg/L	0.0005	
Thallium	<0.0003	mg/L	0.0003	
Tin	<0.0001	mg/L	0.0001	
Titanium	0.0121	mg/L	0.0001	
Uranium	1.02	ug/L	0.002	
Vanadium	0.0020	mg/L	0.0001	
Zinc	0.020	mg/L	0.001	
Zirconium	<0.0004	mg/L	0.0004	
1-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
2-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
7H-dibenzo(c,g)carbazole (Subcontract)	<0.1	ug/L	0.1	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]anthracene (Subcontract)	< 0.1	ug/L	0.1	
Benzolajpyrene (Subcontract)	0.01	ug/L	0.01	
Benzo[b/j]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzolejpyrene (Subcontract)	< 0.1	ug/L	0.1	
Benzo[g,n,i]perviene (Subcontract)	<0.2	ug/L	0.2	
Benzo[k]iluorantnene (Subcontract)	<0.1	ug/L	0.1	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acifulite (Subcontract)	<0.1	ug/L	0.1	
Eluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1.2.3-cd]pyrepe (Subcontract)	<0.1	ug/L	0.1	
Pervlene (Subcontract)	<0.2	ug/L	0.2	
Phenanthrene (Subcontract)	<0.0	ug/L	0.0	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	
G-1 2019-09-30 17:00:00 Record 604021				
	0.07	4	0.04	
Ammonia + Ammonium as N	0.07	mg/L	0.01	
Conductivity - Field	0.729	mS/cm	0.4	
Dissolved Organic Carbon	2.5	mg/L	0.4	
Dissolved Oxygen-Field	10.4	mg/L	0	
Escherichia coli Herdness (Celevietien)	2800	CFU/TUUML	0 7	
	249	mg/L	0.7	
Niliale as N	1.94	mg/L	0.01	
Nitale+Nitile as N (Calculation)	2.14	mg/L	0.02	
o Phoenbato as P	0.20	mg/L	0.01	
	0.44 8 10	шу/с ъЧ	0.05	
pn nH. Eiold	0.42 8 36	рн ъН	0.01	
Phoenhorue Diegolved Total	0.00	ma/l	0.010	
Phoenhorus Total	0.420 ∩⊿28	mg/L	0.010	
Temperature - Field	15.7		0.010	
Total Biochem, Oxygen Demand	<2	ma/l	1	
Total Kieldahl Nitrogen as N	0.5	ma/l	0.2	
Total Organic Carbon	2.4	mg/L	0.4	
5		0		

Appendix "A" to Report PW19008(g)/LS19004(f) Page 167 of 496 Laboratory Work Order Age 1 50 pfs486

Analyte	Result	Units	MDL	
Total Suspended Solids	5.3	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	5.3	ug/L	0.1	
Aluminum	0.160	mg/L	0.002	
Antimony	0.0002	mg/L	0.0001	
Arsenic	0.0013	mg/L	0.0001	
Barium	0.0386	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.143	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	69.9	mg/L	0.05	
Chromium	0.0002	mg/L	0.0001	
Cobalt	0.0002	mg/L	0.0001	
Copper	0.0030	mg/L	0.0001	
Dissolved Aluminum	0.013	mg/L	0.002	
Dissolved Antimony	0.0002	mg/L	0.0001	
Dissolved Arsenic	0.0012	mg/L	0.0001	
Dissolved Barium	0.0385	mg/L	0.0001	
Dissolved Beryllium	< 0.0001	mg/L	0.0001	
Dissolved Bismuth	< 0.0001	mg/L	0.0001	
Dissolved Boron	0.147	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	71.0	mg/L	0.05	
	<0.0001	mg/L	0.0001	
	<0.0001	mg/L	0.0001	
Dissolved Copper Dissolved Iron	0.0019	mg/L	0.0001	
Dissolved Lead	<0.013	mg/L	0.0001	
Dissolved Magnesium	17.5	mg/L	0.05	
Dissolved Magnese	0.0118	mg/L	0.0001	
Dissolved Mercury	< 0.05	ua/L	0.05	
Dissolved Molvbdenum	0.0021	ma/L	0.0001	
Dissolved Nickel	0.0010	mg/L	0.0001	
Dissolved Potassium	3.32	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.68	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	81.9	mg/L	0.05	
Dissolved Strontium	1.09	mg/L	0.0005	
Dissolved Thallium	<0.0003	mg/L	0.0003	
Dissolved Tin	<0.0001	mg/L	0.0001	
Dissolved Titanium	0.0002	mg/L	0.0001	
Dissolved Uranium	0.750	ug/L	0.002	
Dissolved Vanadium	0.0007	mg/L	0.0001	
Dissolved Zinc	0.009	mg/L	0.001	
Dissolved Zirconium	<0.0004	mg/L	0.0004	
Iron	0.227	mg/L	0.003	
Lead	0.0005	mg/L	0.0001	
Magnesium	17.5	mg/L	0.05	
Manganese	0.0181	mg/L	0.0001	
Mercury	< 0.05	ug/L	0.05	
Molybdenum	0.0020	mg/L	0.0001	
Nickel	0.0012	mg/L	0.0001	
Potassium	3.35	mg/L	0.05	
Selenium	0.0002	mg/L	0.0001	
Silicon	J.U4 ∠0.0001	mg/L	0.001	
Silver	\U.UUU I	mg/L	0.0001	

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 168 of 496 Laboratory Work Order Age 1 530 p48486

Analyte	Result	Units	MDL	
Sodium	78.0	mg/L	0.05	
Strontium	1.10	mg/L	0.0005	
Thallium	<0.0003	mg/L	0.0003	
Tin	<0.0001	mg/L	0.0001	
Titanium	0.0037	mg/L	0.0001	
Uranium	0.741	ug/L	0.002	
Vanadium	0.0010	mg/L	0.0001	
Zinc	0.017	mg/L	0.001	
Zirconium	<0.0004	mg/L	0.0004	
1-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
2-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
7H-dibenzo(c,g)carbazole (Subcontract)	<0.1	ug/L	0.1	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]pyrene (Subcontract)	<0.01	ug/L	0.01	
Benzo[b/j]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzo[e]pyrene (Subcontract)	<0.1	ug/L	0.1	
Benzolg,h,ijperylene (Subcontract)	<0.2	ug/L	0.2	
Benzo[K]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,n]antinacene (Subcontract)	<0.1	ug/L	0.1	
Fluoranti lette (Subcontract)	<0.1	ug/L	0.1	
indeno[1.2.3.cd]pyrene (Subcontract)	<0.1	ug/L	0.1	
Pervlene (Subcontract)	<0.2	ug/L	0.2	
Phenanthrene (Subcontract)	<0.0	ug/L	0.0	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	
G_4 2019-09-30 16:40:00 Record 604022				
	0.40	"	0.04	
Ammonia + Ammonium as N	0.40	mg/L	0.01	
Conductivity - Field	0.780	mS/cm	0.4	
Dissolved Organic Carbon	2.0	mg/L	0.4	
Dissolved Oxygen-Field	1000	CELI/100ml	0	
	1900 257	CF0/100IIIL	07	
Nitrate as N	207	mg/L	0.7	
Nitrate+Nitrite as N (Calculation)	2.07	mg/L	0.01	
Nitale Munice as N (Calculation)	0.28	mg/L	0.02	
o-Phosphate as P	0.20	mg/L	0.01	
nH	8.06	nH	0.00	
nH - Field	7 67	рН рН	0.01	
Phosphorus Dissolved Total	0.343	ma/l	0.010	
Phosphorus Total	0.425	ma/l	0.010	
Temperature - Field	15.7	C	0.010	
Total Biochem. Oxvden Demand	<2	ma/L	1	
Total Kieldahl Nitrogen as N	1.2	mg/L	0.2	
Total Organic Carbon	2.8	mg/L	0.4	
Total Suspended Solids	10.3	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	6.5	ug/L	0.1	
Aluminum	0.307	mg/L	0.002	

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 169 of 406 p48486

Analyte	Result	Units	MDL	
Antimony	0.0002	mg/L	0.0001	
Arsenic	0.0014	mg/L	0.0001	
Barium	0.0460	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.169	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	71.6	mg/L	0.05	
Chromium	0.0004	mg/L	0.0001	
Cobalt	0.0003	mg/L	0.0001	
Copper	0.0035	mg/L	0.0001	
Dissolved Aluminum	0.004	mg/L	0.002	
Dissolved Antimony	0.0002	mg/L	0.0001	
Dissolved Arsenic	0.0013	mg/L	0.0001	
Dissolved Barium	0.0434	mg/L	0.0001	
Dissolved Beryllium	< 0.0001	mg/L	0.0001	
Dissolved Bismuth	< 0.0001	mg/L	0.0001	
Dissolved Boron	0.175	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	72.4	mg/L	0.05	
Dissolved Chromium	<0.0001	mg/L	0.0001	
Dissolved Copait	0.0001	mg/L	0.0001	
Dissolved Copper	0.0012	mg/L	0.0001	
Dissolved Iron	0.009	mg/L	0.003	
Dissolved Lead	<0.0001	mg/L	0.0001	
Dissolved Magnesium	10.1	mg/L	0.03	
Dissolved Marganese	<0.05	ing/∟	0.0001	
Dissolved Melvbdenum	<0.00 0.0022	mg/L	0.001	
	0.0022	mg/L	0.0001	
Dissolved Potassium	3 75	mg/L	0.0001	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2 79	mg/L	0.01	
Dissolved Silver	< 0.0001	mg/L	0.0001	
Dissolved Sodium	93.4	mg/L	0.05	
Dissolved Strontium	1.02	mg/L	0.0005	
Dissolved Thallium	< 0.0003	mg/L	0.0003	
Dissolved Tin	< 0.0001	mg/L	0.0001	
Dissolved Titanium	0.0002	mg/L	0.0001	
Dissolved Uranium	0.741	ug/L	0.002	
Dissolved Vanadium	0.0009	mg/L	0.0001	
Dissolved Zinc	0.009	mg/L	0.001	
Dissolved Zirconium	<0.0004	mg/L	0.0004	
Iron	0.628	mg/L	0.003	
Lead	0.0012	mg/L	0.0001	
Magnesium	18.4	mg/L	0.05	
Manganese	0.0504	mg/L	0.0001	
Mercury	<0.05	ug/L	0.05	
Molybdenum	0.0021	mg/L	0.0001	
Nickel	0.0017	mg/L	0.0001	
Potassium	3.84	mg/L	0.05	
Selenium	0.0003	mg/L	0.0001	
Silicon	3.26	mg/L	0.01	
Silver	<0.0001	mg/L	0.0001	
Sodium	87.9	mg/L	0.05	
Strontium	1.02	mg/L	0.0005	
Thallium	<0.0003	mg/L	0.0003	
Appendix "A" to Report PW19008(g)/LS19004(f) Page 170 of 406 Laboratory Work Order Age 130 pfs486

Analyte	Result	Units	MDL	
Tin	<0.0001	mg/L	0.0001	
Titanium	0.0060	mg/L	0.0001	
Uranium	0.730	ug/L	0.002	
Vanadium	0.0014	mg/L	0.0001	
Zinc	0.021	mg/L	0.001	
Zirconium	< 0.0004	mg/L	0.0004	
1-methylnaphthalene (Subcontract)	< 0.5	ua/L	0.5	
2-methylnaphthalene (Subcontract)	< 0.5	ua/L	0.5	
7H-dibenzo(c.g)carbazole (Subcontract)	<0.1	ua/L	0.1	
Acenaphthene (Subcontract)	<0.1	ua/l	0.1	
Acenaphthylene (Subcontract)	<0.1	ua/l	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzolalanthracene (Subcontract)	<0.1	ug/L	0.1	
Benzolalpyrene (Subcontract)	<0.01	ug/L	0.01	
Benzolb/ilfluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzolelpyrene (Subcontract)	<0.1	ug/L	0.1	
Benzola h ilpervlene (Subcontract)	<0.1	ug/L	0.1	
Benzo[k]fluoranthene (Subcontract)	<0.2	ug/L	0.2	
	<0.1	ug/L	0.1	
Dihenze(a i)pyrana (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,njanthracene (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
Indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perylene (Subcontract)	<0.5	ug/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	
R-1 2019-09-30 13:20:00 Record 604023				
Ammonia + Ammonium as N	0.03	mg/L	0.01	
Conductivity - Field	1.200	mS/cm		
Dissolved Organic Carbon	2.4	mg/L	0.4	
Dissolved Oxygen-Field	8.67	mg/L		
Escherichia coli	10	CFU/100mL	0	
Hardness (Calculation)	414	ma/L	0.7	
Nitrate as N	0.33	mg/l	0.01	
Nitrate+Nitrite as N (Calculation)	0.33	mg/l	0.02	
Nitrite as N	< 0.05	mg/l	0.05	
o-Phosphate as P	<0.05	mg/l	0.05	
nHa	8 11	nH	0.01	
pH - Field	7 76	рН	0.01	
Phosphorus Dissolved Total	<0.010	ma/l	0.010	
Phosphorus Total	<0.010	mg/L	0.010	
Temperature - Field	18 1	C	0.010	
Total Riochem, Owgen Domand	<2	mc/l	1	
	~2	mg/L	0.0	
Total Organia Carbon	0.0	mg/L	0.2	
Total Organic Carbon	2.9	mg/L	0.4	
I otal Suspended Solids	3.4	mg/L	0.0	
Unionized Ammonia as INH3 at Field Temperature (Calculation)	0.7	ug/L	0.1	
Aiuminum	0.024	mg/L	0.002	
Antimony	0.0002	mg/L	0.0001	
Arsenic	0.0006	mg/L	0.0001	
Barium	0.0626	mg/L	0.0001	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 171 of 406 Laboratory Work Order 1990 1320 248486

Analyte	Result	Units	MDL	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	<0.0001	mg/L	0.0001	
Boron	0.131	mg/L	0.010	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	117	mg/L	0.05	
Chromium	<0.0001	mg/L	0.0001	
Cobalt	<0.0001	mg/L	0.0001	
Copper	0.0012	mg/L	0.0001	
Dissolved Aluminum	<0.002	mg/L	0.002	
Dissolved Antimony	0.0002	mg/L	0.0001	
Dissolved Arsenic	0.0005	mg/L	0.0001	
Dissolved Barium	0.0611	mg/L	0.0001	
Dissolved Beryllium	<0.0001	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.141	mg/L	0.010	
Dissolved Cadmium	< 0.0001	mg/L	0.0001	
Dissolved Calcium	118	mg/L	0.05	
Dissolved Chromium	< 0.0001	mg/L	0.0001	
Dissolved Cobalt	< 0.0001	mg/L	0.0001	
Dissolved Copper	0.0010	mg/L	0.0001	
Dissolved Iron	0.004	mg/L	0.003	
Dissolved Lead	< 0.0001	mg/L	0.0001	
Dissolved Magnesium	28.9	mg/L	0.05	
Dissolved Manganese	0.101	mg/L	0.0001	
Dissolved Mercury	< 0.05	ug/L	0.05	
Dissolved Molybdenum	0.0021	mg/L	0.0001	
Dissolved Nickel	0.0007	mg/L	0.0001	
Dissolved Potassium	4.87	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	3.80	mg/L	0.01	
Dissolved Silver	< 0.0001	mg/L	0.0001	
Dissolved Sodium	124	mg/L	0.05	
Dissolved Strontium	2.58	mg/L	0.0005	
Dissolved I hallium	< 0.0003	mg/L	0.0003	
Dissolved Th	< 0.0001	mg/L	0.0001	
Dissolved Litanium	0.0001	mg/L	0.0001	
Dissolved Uranium	1.47	ug/L	0.002	
	0.0001	mg/L	0.0001	
Dissolved Zinc	0.004	mg/L	0.001	
Dissolved Zirconium	<0.0004	mg/L	0.0004	
	0.140	mg/L	0.003	
Magnosium	28.0	mg/L	0.0001	
Manganasa	20.9	mg/L	0.00	
Mariganese	<0.150	ng/∟	0.0001	
Melvedenum	0.0020	ug/L	0.00	
Nickel	0.0020	mg/L	0.0001	
Potassium	5.01	mg/L	0.0001	
Selenium	0.0002	mg/L	0.00	
Selenium	3 97	mg/⊏	0.0001	
Silver	<0.001	mg/⊏	0.01	
Soliver	121	mg/⊏	0.0001	
Strontium	2.61	mg/⊏	0.00	
Thallium	<0.0003	ma/l	0.0003	
Tin	<0.0000	ma/l	0.0000	
Titanium	0.000	ma/l	0.0001	
Uranium	1 46	ua/l	0.0001	
Oranium	1.10	ug/L	0.002	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 172 of 496 Laboratory Work Order Ape 1330 2484

Analyte	Result	Units	MDL	
Vanadium	0.0002	mg/L	0.0001	
Zinc	0.005	mg/L	0.001	
Zirconium	<0.0004	mg/L	0.0004	
1-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
2-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
7H-dibenzo(c,g)carbazole (Subcontract)	<0.1	ug/L	0.1	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]pyrene (Subcontract)	<0.01	ug/L	0.01	
Benzo[b/j]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzo[e]pyrene (Subcontract)	<0.1	ug/L	0.1	
Benzo[g,h,i]perylene (Subcontract)	<0.2	ug/L	0.2	
Benzo[k]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,h]anthracene (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	< 0.1	ug/L	0.1	
Indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perviene (Subcontract)	< 0.5	ug/L	0.5	
Phenantinene (Subcontract)	<0.1	ug/L	0.1	
PAte Total (Subcontract)	<0.1	ug/L	0.1	
Nanhthalene (Subcontract)	~2	ug/L	2 0.5	
	-0.5	ug/L	0.5	
R-2 2019-09-30 13:00:00 Record 604024				
Ammonia + Ammonium as N	<0.01	mg/L	0.01	
Conductivity - Field	1.205	mS/cm		
Dissolved Organic Carbon	2.4	mg/L	0.4	
Dissolved Oxygen-Field	9.75	mg/L		
Escherichia coli	30	CFU/100mL	0	
Hardness (Calculation)	457	mg/L	0.7	
Nitrate as N	0.31	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	0.31	mg/L	0.02	
Nitrite as N	<0.05	mg/L	0.05	
o-Phosphate as P	<0.05	mg/L	0.05	
pH	8.14	рН	0.01	
pH - Field	8.02	pH		
Phosphorus Dissolved Total	< 0.010	mg/L	0.010	
Phosphorus I otal	< 0.010	mg/L	0.010	
I emperature - Field	18.4	C "		
I otal Biochem. Oxygen Demand	<2	mg/L	1	
I otal Kjeldani Nitrogen as N	<0.2	mg/L	0.2	
I otal Organic Carbon	3.4	mg/L	0.4	
Lipionized Ammonia as NH2 at Eigld Temperature (Coloritation)	<z< td=""><td>mg/∟</td><td>2</td><td></td></z<>	mg/∟	2	
	∿0.4 0.010	ug/L	0.4	
Aluminum	0.012	mg/L	0.002	
Anumony	0.0002	mg/L	0.0001	
Alsenic	0.0000	mg/L	0.0001	
Barlum	<0.0092 <0.0001	mg/L	0.0001	
Rismuth	<0.0001	ma/l	0.0001	
Roron	0.129	mg/L	0.010	
DOION	0.120	ing/L	0.010	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 173 of 406 Laboratory Work Order 1050 018486

Analyte	Result	Units	MDL	
Cadmium	<0.0001	mg/L	0.0001	
Calcium	115	mg/L	0.05	
Chromium	<0.0001	mg/L	0.0001	
Cobalt	<0.0001	mg/L	0.0001	
Copper	0.0011	mg/L	0.0001	
Dissolved Aluminum	<0.002	mg/L	0.002	
Dissolved Antimony	0.0002	mg/L	0.0001	
Dissolved Arsenic	0.0005	mg/L	0.0001	
Dissolved Barium	0.0624	mg/L	0.0001	
Dissolved Beryllium	<0.0001	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.137	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	136	mg/L	0.05	
Dissolved Chromium	<0.0001	mg/L	0.0001	
Dissolved Cobalt	<0.0001	mg/L	0.0001	
Dissolved Copper	0.0010	mg/L	0.0001	
Dissolved Iron	0.004	mg/L	0.003	
Dissolved Lead	< 0.0001	mg/L	0.0001	
Dissolved Magnesium	28.6	mg/L	0.05	
Dissolved Manganese	0.106	mg/L	0.0001	
Dissolved Mercury	<0.05	ug/L	0.05	
Dissolved Molybdenum	0.0020	mg/L	0.0001	
Dissolved Nickel	0.0007	mg/L	0.0001	
Dissolved Potassium	4.96	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	4.41	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	123	mg/L	0.05	
Dissolved Strontium	2.57	mg/L	0.0005	
Dissolved Thallium	<0.0003	mg/L	0.0003	
Dissolved I in	< 0.0001	mg/L	0.0001	
Dissolved Litanium	< 0.0001	mg/L	0.0001	
Dissolved Uranium	1.45	ug/L	0.002	
Dissolved Vanadium	0.0001	mg/L	0.0001	
	0.003	mg/L	0.001	
Dissolved Zirconium	< 0.0004	mg/L	0.0004	
Iron	0.119	mg/L	0.003	
Lead	< 0.0001	mg/L	0.0001	
Magnesium	27.9	mg/L	0.05	
Marganese	0.125	mg/∟	0.0001	
Melvedenum	<0.05 0.0020	ug/L	0.05	
Morybaenum	0.0020	mg/L	0.0001	
	0.0007	mg/L	0.0001	
Folassium	4.70	mg/L	0.05	
Selerium	2 70	mg/L	0.0001	
Silver	-0.0001	mg/L	0.01	
Sodium	119	mg/L	0.0001	
Strontium	2 52	mg/L	0.00	
Thallium	2.JZ	mg/L	0.0003	
	<0.0003	mg/L	0.0003	
Titopium	-0.000 I	mg/L	0.0001	
	1 15	IIIg/L	0.0001	
Vanadium	0.0000	uy/L	0.002	
Vandulum Zino	0.0002	mg/L	0.0001	
ZIIIC Zirconium	<0.004	mg/L	0.001	
Zirconium	<u><u></u> <u></u> </u>	mg/∟	0.0004	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 174 of 406 Laboratory Work Order Age 1330 pfs486

Analyte	Result	Units	MDL	
1-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
2-methylnaphthalene (Subcontract)	<0.5	ug/L	0.5	
7H-dibenzo(c,g)carbazole (Subcontract)	<0.1	ug/L	0.1	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]pyrene (Subcontract)	<0.01	ug/L	0.01	
Benzo[b/j]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzo[e]pyrene (Subcontract)	<0.1	ug/L	0.1	
Benzo[g,h,i]perylene (Subcontract)	<0.2	ug/L	0.2	
Benzo[k]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,h]anthracene (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perylene (Subcontract)	<0.5	ug/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHS Total (Subcontract)	<z< td=""><td>ug/L</td><td>2</td><td></td></z<>	ug/L	2	
Naprinalene (Subcontract)	<0.5	ug/L	0.5	
Boat Launch 2019-09-30 13:50:00 Record 604025				
Ammonia + Ammonium as N	0.18	mg/L	0.01	
Conductivity - Field	0.710	mS/cm		
Dissolved Organic Carbon	4.4	mg/L	0.4	
Dissolved Oxygen-Field	10.46	mg/L		
Escherichia coli	30	CFU/100mL	0	
Hardness (Calculation)	259	mg/L	0.7	
Nitrate as N	0.34	mg/L	0.01	
Nitrate+Nitrite as N (Calculation)	0.34	mg/L	0.02	
Nitrite as N	<0.05	mg/L	0.05	
o-Phosphate as P	<0.05	mg/L	0.05	
pH	8.32	рН	0.01	
pH - Field	8.41	рН		
Phosphorus Dissolved Total	<0.010	mg/L	0.010	
Phosphorus Total	0.173	mg/L	0.010	
Temperature - Field	17.1	С		
Total Biochem. Oxygen Demand	9	mg/L	1	
Total Kjeldahl Nitrogen as N	1.3	mg/L	0.2	
Total Organic Carbon	5.3	mg/L	0.4	
Total Suspended Solids	35.4	mg/L	0.8	
Unionized Ammonia as NH3 at Field Temperature (Calculation)	16.6	ug/L	0.1	
Aluminum	0.496	mg/L	0.002	
Antimony	0.0003	mg/L	0.0001	
Arsenic	0.0015	mg/L	0.0001	
Barium	0.0622	mg/L	0.0001	
Beryllium	<0.0001	mg/L	0.0001	
Bismuth	< 0.0001	mg/L	0.0001	
Boron	0.100	mg/L	0.010	
	<0.0001	mg/L	0.0001	
	68.7	mg/L	0.05	
Chromium	0.0011	mg/L	0.0001	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 175 of 496 Laboratory Work Order Age 1350 pfs486

Analyte	Result	Units	MDL	
Cobalt	0.0004	mg/L	0.0001	
Copper	0.0034	mg/L	0.0001	
Dissolved Aluminum	<0.002	mg/L	0.002	
Dissolved Antimony	0.0003	mg/L	0.0001	
Dissolved Arsenic	0.0009	mg/L	0.0001	
Dissolved Barium	0.0581	mg/L	0.0001	
Dissolved Beryllium	<0.0001	mg/L	0.0001	
Dissolved Bismuth	<0.0001	mg/L	0.0001	
Dissolved Boron	0.103	mg/L	0.010	
Dissolved Cadmium	<0.0001	mg/L	0.0001	
Dissolved Calcium	66.7	mg/L	0.05	
Dissolved Chromium	<0.0001	mg/L	0.0001	
Dissolved Cobalt	0.0001	mg/L	0.0001	
Dissolved Copper	0.0005	mg/L	0.0001	
Dissolved Iron	0.008	mg/L	0.003	
Dissolved Lead	< 0.0001	mg/L	0.0001	
Dissolved Magnesium	20.4	mg/L	0.05	
Dissolved Manganese	0.0076	mg/L	0.0001	
Dissolved Mercury	< 0.05	ug/L	0.05	
Dissolved Molybdenum	0.0068	mg/L	0.0001	
Dissolved Nickel	0.0013	mg/L	0.0001	
Dissolved Potassium	5.05	mg/L	0.05	
Dissolved Selenium	0.0002	mg/L	0.0001	
Dissolved Silicon	2.45	mg/L	0.01	
Dissolved Silver	<0.0001	mg/L	0.0001	
Dissolved Sodium	67.4	mg/L	0.05	
Dissolved Strontium	0.983	mg/L	0.0005	
Dissolved Thallium	<0.0003	mg/L	0.0003	
Dissolved Tin	<0.0001	mg/L	0.0001	
Dissolved Litanium	<0.0001	mg/L	0.0001	
Dissolved Uranium	0.983	ug/L	0.002	
Dissolved Vanadium	0.0004	mg/L	0.0001	
Dissolved Zinc	0.001	mg/L	0.001	
Dissolved Zirconium	< 0.0004	mg/L	0.0004	
Iron	1.12	mg/L	0.003	
Lead	0.0026	mg/L	0.0001	
Magnesium	21.2	mg/L	0.05	
Manganese	0.148	mg/L	0.0001	
Mehubdenum		ug/L	0.05	
Molybdenum	0.0000	mg/L	0.0001	
	0.0020	mg/L	0.0001	
Polassium	5.27	mg/L	0.05	
Selerium	2.51	mg/L	0.0001	
Silver	-0.0001	mg/L	0.01	
Silver	<0.0001 64.4	mg/L	0.0001	
Strontium	1.04	mg/L	0.005	
Thallium	<0.0003	mg/L	0.0003	
Tiandin	<0.0003	mg/L	0.0003	
Titanium	0.0001 0.0102	mg/L	0.0001	
	0.0102	ug/L	0.0001	
Vanadium	0.907	ma/L	0.002	
Zinc	0.0010	mg/L	0.0001	
Zinc	<0.013	mg/L	0.001	
1-methylnanhthalene (Subcontract)	<0.0004	ug/L	0.0004	
2-methylnanhthalene (Subcontract)	<0.5	ug/L	0.5	
7H-dibenzo(c d)carbazole (Subcontract)	<0.0	ug/L	0.0	
	-0.1	ug/L	0.1	

Appendix "A" to Report PW19008(g)/LS19004(f) Laboratory Work Order Age 176 of 1050 pts486

Analyte	Result	Units	MDL	
Acenaphthene (Subcontract)	<0.1	ug/L	0.1	
Acenaphthylene (Subcontract)	<0.1	ug/L	0.1	
Anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]anthracene (Subcontract)	<0.1	ug/L	0.1	
Benzo[a]pyrene (Subcontract)	<0.01	ug/L	0.01	
Benzo[b/j]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Benzo[e]pyrene (Subcontract)	<0.1	ug/L	0.1	
Benzo[g,h,i]perylene (Subcontract)	<0.2	ug/L	0.2	
Benzo[k]fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Chrysene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,i)pyrene (Subcontract)	<0.1	ug/L	0.1	
Dibenzo(a,j)acridine (Subcontract)	<0.1	ug/L	0.1	
Dibenzo[a,h]anthracene (Subcontract)	<0.1	ug/L	0.1	
Fluoranthene (Subcontract)	<0.1	ug/L	0.1	
Fluorene (Subcontract)	<0.1	ug/L	0.1	
indeno[1,2,3-cd]pyrene (Subcontract)	<0.2	ug/L	0.2	
Perylene (Subcontract)	<0.5	ug/L	0.5	
Phenanthrene (Subcontract)	<0.1	ug/L	0.1	
Pyrene (Subcontract)	<0.1	ug/L	0.1	
PAHs Total (Subcontract)	<2	ug/L	2	
Naphthalene (Subcontract)	<0.5	ug/L	0.5	

Report Comment: Total PAHs is the sum of the individual PAH compounds reported.

Appendix "A" to Report PW19008(g)/LS19004(f) Page 177 of 188 of 486

VIRONMENTAL LABORATORY				CHAIN	OFCUST	O D Y	ORATORY WORK	ORDER NUMBER	33	3074	8
Woodward Avenue, Hamilton, C 905-546-2424 Ext 8834 Fax: 90 Client Name Contact Name Address	ontario L8H 6P4 19:545-0234 : HAMILTON WATER - Water : Mani Seradj (cc: Kimberley : 77 JAMES STREET NORTH	& Wastewa / Tasker- Sl SUITE 400	ter System Planning .R)			is the sa	mple(s) taken Human (YES [from a source Consumption NO E	e intended for I	ANALYSIS RE	Offester
Phone	: 905-546-2424 EXT 4480			Che	doke Cree	ek Surface	Water	Analys	is 2019		See Attached
LAB USE ONLY	Sample Location	# of bottles	Field Temperature *C	Field Conductivity mS/cm	Field pH pH	Field Dissolved Oxygen mg/L	Sample Matrix	Sample Type	Sample Date	Sample Time (24 hour clock) 00:00	
604014	C-1WEST	5	15.7	0.733	8,25	10.23	Water	Surface Water	Sedadia	16:50	x
604016	C-3 Centre	5	16.1	0,760	7.61	5.99	Water	Surface Water	Sidzola	16:35	x
04017	C-3 West	5	15,9	0,771	7.65	6.33	Water	Surface Water	Sept3019	16:25	x
04018	C-4 West	5	16.3	0.739	7.52.	4.85	Water -	Surface Water	Seltable	16:15	x
04019	C-5 East	5	16.8	0.700	7.43	2.96	Water	Surface Water	Sept 30/19	16:05	x
04020	C-6 East	5	17.1	0,711	8.20	9.06	Water	Surface Water	SpitalA	13:40	x
04021	G-1	5	15,7	0,729	8.36	10.4	Water	Surface Water	Sept 35/19	17:00	×
04022	G-4	5	15.7	0.780	7.67	7,01	Water	Surface Water	Sept30/19	16:40	×
	G-5		-		and the second second second second second second second second second second second second second second second		Water	Surface Water		and the second second second second second second second second second second second second second second second	×
	G-6						Water	Surface Water		a ana ana amin'ny tanàna mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia ka	×
	G-7						Water	Surface Water			x
04023	R-1	5	18.1	1.200	7.76	8.67	Water	Surface Water	Sept30	13:20	x
04024	R-2	5	18.4	1.205	8.02	9.75	Water	Surface Water	Sept30/19	13:00	x
04025	Boat Launch	S	17.1	0.710	8.41	10.46	Water	Surface Water	Septadia	13:50	x
	Chedoke Upstream						Water	Surface Water			. .x
04015	CI WEST DUPLICATE	5	/	/	/		WATER	SW	Septaglig	16:52	×.
	200 200 .1/19 0	APPI	CLIEN Y PWQ	C REQUI O GUIDI Performance outo contro the touch MABENT TEMPERATURE	RES CS ELINES	V REPO AT REPO (Sign & Print Name) KIMBER	RT D ORTII	NG Sample (Sign R	(s) Delivered by: Print Name) Kilv Kembul	MBERLE Horan	1
ments: Chedoke Cree TAT: 21 Days. ONE WORK O Print preservation	k Surface Water Analy RDER on report. Deliver sample	sis 2020 s to the be	ench.	un #12 KSOU	3838	Date & Time: (See above for details) Sept 30/	-7 1A	Date &	Time: Sapt 30,	/ /19 19:0	00
						13:00	- 16:5	2.			

1

l

APPENDIX C Ecological Receptors Supporting Information

Photograph 1. Study area of Chedoke Creek within Cootes Paradise ESA.

Photograph 2. Riparian bank edged with armour stone along Chedoke Creek.

Photograph 3. Steep concrete banks near box culvert at Glen Road and Tope Crescent.

Photograph 4. Treed vegetation found along the Chedoke Creek.

Photograph 5. Band of Cultural Meadow found along eastern banks of Chedoke Creek.

Photograph 6. Evidence of previous restoration efforts along shoreline.

Photograph 7. An example of Mixed Shallow Aquatic (SA) areas along the creek side.

Photograph 8. Another example of Mixed Shallow Aquatic (SA) areas along the creek.

Photograph 9. Example of shallow vegetation that provide opportunities for fish and wildlife.

Photograph 10. Great Egret sitting within the shallow vegetation at Chedoke Creek.

209.40666

Hamilton Fish List

Recorded fish community observed in seining and electrofishing fish surveys since 1970. Data from the watersheds were obtained from over 600 unpublished studies and were compiled into databases by the Hamilton Conservation Authority and Conservation Halton. Data from Cootes Paradise and Hamilton Harbour were from electrofishing, and entrapment surveys by DFO, RBG, and OMNR. Abundance Levels are based on quartiles with "1" as the lowest, and "4" as the highest relative abundance. Bowlby et Al, 2009

Cootes Paradise / Chedoke Creek

** Invaders and Cold Water Species are Excluded

* Strikeouts - Listed in SNC report but not listed in Bowlby 2009. Bowlby Considered more relevant to Study Area

Scientific Name	Species	Abundance
Notropis atherinoides	Emerald shiner	4
N. hudsonius	Spottail shiner	4
Castostomus commersoni	Common white sucker	4
Ameiurus nebulosus	Brown bullhead	4
Ictalurus punctatus	Channel Catfish	4
Lepomis gibbosus	Pumpkinseed	4
Micropterus salmoides	Largemouth bass	4
Perca flavescens	Yellow perch	4
Aplodinotus grunniens	Fresh Water Drum	4
Amia calva	Bowfin	3
Esox lucius	Northern pike	3
Pimephales notatus	Bluntnose minnow	3
P. promelas	Fathead minnow	3
Ambloplites rupestris	Rock bass	3
Lepomis cyanellus	Green sunfish	3
Pomoxis nigromaculatus	Black crappie	3
Etheostoma nigrum	Johny Darter	3
Labidesthes sicculus	Brook Silverside	3
Lepisosteus osseus	Longnose gar	2
Luxilus cornutus	Common shiner	2
Notemigonus crysoleucas	Golden shiner	2
Ameiurus melas	Black Bullhead	2
Noturus gyrinus	Tadpole Madtom	2
Micropterus dolomieu	Smallmouth bass	2
Sander vitreus	Walleye	2
Ictiobus cyprinellus	Bigmouth Bufflo	2
Moxostoma macrolepidotum	Shorthead Redhorse	2
Lepisosteus osseus	Spotted gar	1
N. micropogon	River chub	1
N. ludibundus	Sand shiner	1
R. cataractae	Longnose dace	1
Semotilus atromaculatus	Creek chub	1
Morone chrysops	White bass	1
Pomoxis annularis	White crappie	1
Moxostoma anisurum	Silver Redhorse	1
Moxostoma valenciennesi	Greater Redhorse	1
Moxostoma erythrurum	Goldern Redhorse	1
Lampetra appendix	American brook lamprey	
Salvelinus fontinalis	Brook trout	

SOURCE

Umbra limi Central	mudminnow
Chrosomus eos	Northern redbelly dace
C. neogaeus	Finescale dace
Clinostomus elongates	Redside dace
Hybognathus hankinsoni	Brassy minnow
Nocomis biguttatus	Hornyhead chub
Notropis heterolepis	Blacknose shiner
N. rubellus	Rosyface shiner
Cyprinella spiloptera	Spotfin shiner
Notropis volucellus	Mimic shiner
Rhinichthys atratulus	Blacknose dace
Luxilus chrysocephalus	Striped shiner
Semotilus margarita	Pearl dace
Hypentelium nigricans	Northern hog sucker
Culaea inconstans	Brook stickleback
L. macrochirus	Bluegill
Etheostoma caeruleum	Rainbow darter
E. flabellare	Fantail darter

Cootes Paradise Heritage Lands Management Plan , Inventory, Issues and Opportunities, May 2018 (CPHLI, 2018), DFO SAR MAPS . 2019

DI O OAK MAI O , 2013		
Northern Brook Lamprey (SC)	Ichthyomyzon fossor	(CPHLI, 2018) - 1997 (historic), DFO
Eastern Pondmussel (SC)	Ligumia nasuta	(CPHLI, 2018), DFO
Mapleleaf Mussel (SC)	Quadrula quadrula	(CPHLI, 2018), DFO
Lilliput (THR)	Toxolasma parvum	(CPHLI, 2018), DFO
Eastern Pondmussel (SC) Mapleleaf Mussel (SC) Lilliput (THR)	Ligumia nasuta Quadrula quadrula Toxolasma parvum	(CPHLI, 2018), DFO (CPHLI, 2018), DFO (CPHLI, 2018), DFO

DO NOT INCLUDE - HABITATS NOT RELANT SOURCES (DATES) CANNOT NOT OBSERVED - Hendrie Valley Report (2018) or by LISTED BY DFO - EXCLUDE

	(
Silver Lamprey (SC)	Ichthyomyzon unicuspis	-CPHLI, 2018	
Lake Sturgeon (THR)	Acipenser fulvescens	-CPHLI, 2018-	Historic
Spotted Gar (THR)	Lepisosteus oculatus	-CPHLI, 2018	
American Eel (END)	Anguilla rostrata	-CPHLI, 2018	
Redside Dace (END)	Clinostomus elongatus	-CPHLI, 2018-	-1950 (historic)
Black Redhorse (END)	Moxostoma duquesnei	-CPHLI, 2018	
Grass Pickerel (SC)	Esox americanus vermiculatus	-CPHLI, 2018	
Kiyi (SC)	Coregonus kiyi orientalis	-CPHLI, 2018	
Silver Shiner (THR)	Notropis photogenis	-CPHLI, 2018	
Shortnose Cisco	Coregonus reighardi	-CPHLI, 2018-	Historic-

The following represents a selection of dominate vegetation known to occur and or observed within the Chedoke Creek Study Area

Flora

Source: SLR Consulting Canada, 2019 Field Inventories, Hamilton Conservation (Various Resources), Royal Botanical Garden (Various Resources).

RBG - Princes Point /TPO1 -FODCootes Paradise Sanctuary 15Dry TallCoronation ParkGrassCootes Paradise Sanctuary 1Prarie

SpeciesBotantialEmergent SpeciesAmerican BulrushBlueflag IrisBroad-leaved CattailBroad-leaved ArrowheadCommon ReedNarrow-leaved CattailNarrow-leaved CattailNarrow-leaved ArrowheadPickerel WeedReed Canary GrassWater PlantainWater Smartweed

Submerent Species Brittle Naiad Canada Waterweed Coontail Curly-leaved Pondweed Eurasian Milfoil Floating-leaved Pondweed Sago Pondweed

Floating Leaf Duckweed Sp. White Water lily Yellow Water Lily

Source:

Cootes Paradise Heritage Lands Management Plan, Inventory, Issues and Opportunities, May 2018

Hamilton Conservation Authority (HCA) 2008. Chedoke Creek Subwatershed Stewardship Action Plan

209.40666.000 Chedoke Creek - SAR and Wildlife Screening

Hamilton Fauna Species List - complied by KLF based on Secondary Sources, Report Resources and in field habitat assesments

ic debris. Capable of catching live fish ic debris. Capable of catching live fish is debris. Capable of catching live fish is debris. Capable of catching live fish is debris. Capable of catching live fish berries, and aquatic de berries, and aquatic de berries, and aquatic de berries, and aquatic de berries, and aquatic de Herdrei valey is a current and recent report thin relevant species lists, local and habital affinities Radiassa et al. 2019. 2018 Environmental Review of Hendrie Valley, RBG Report No. 2019-6. Codes Parales Hendrei Lands Annagement Pan, Invertoy, Hense and Opportations. Any 2018 (CHL, 2019) Bioles Report as a record screening. This expertines all NHC records and MMF data complete Also efficiences and the Durds Allaratis. Any 2016 (CHL, 2019) Bioles Lested as a second screening. This expertines all NHC records and MMF data complete The two reports use the Nature Codes Franchis Screen Allaration Codes and any 2018 (CHL, 2019) Bioles Lested Research of the Allaratis. All NHC data Complete The Non-reports use the Nature Codes Franchis Screen Allaration Codes and NHC records and MMF data complete The Non-reports use the Nature Codes Franchis Allaration Codes Natures. Biol. 2018 (CHL, 2010) Biol. 2019 (CHL, 2010) Biol. 2010 (CHL, 2 carrion, b carrion, b carrion, b carrion, b carrion, b aquatic invertebrates, fish, frogs, crayfish, ca aquatic invertebrates, fish, frogs, crayfish, ca quadic invertebrates, fish, frogs, crayfish, ca aquatic invertebrates, fish, frogs, crayfish, ca aquatic invertebrates, fish, frogs, crayfish, ca 2009/1965 Extirpated 2018 Present 2018 Present 2018 Present 2018 Present Not identified / listed 2018 Present 2018 Present 2011 Present 2018 Present 1993 Absent Not identified / listed Not identified / listed Not identified / listed SC THR SC SC SC SC SC SC SC SC SC SC THR N/A - COSEWIC SC SC SC NON BREEDING NON BREEDING CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 CPHLI, 2018 Stemotherus odoratus Emydoidea blandingii Chrysemys picta marginata Graptemys geographica Chelydra serpentina Tharmophis seuritus Pelecanus exthronyhydros Haliaeetus leucocephelus Aquila chrysaetos Podiega auritus Caldrás seuritus Caldrás seuritus Caldrás seuritus Caldrás seuritus Caldrás boatus Phalaropus boatus Childonias nger Eastern Ribbonsnake White Petican Bald Eagle Colden Eagle Homed Greebe Red Knor tufa subspecies Buff-breasted Sandpiper Red-nacked Phalarope Black Tern Omnivorous Eastern Musk Turtle Blanding's Turtle Midland Painted Turtle Northern Map Turtle Snapping Turtle

and duckweeds) as well as aquatic insects, mollusks an algae smartweeds, pondweeds, jent and emergent (e. seeds of aquatic plands, Herbacious / Omnivore -

adwall	Anas strepera	CPHLI, 2018	Rare, Hamilton NAI
merican Wigeon	Anas americana	CPHLI, 2018	Rare, Hamilton NAI
merican Black Duck	Anas rubripes	CPHLI, 2018	Rare, Hamilton NAI
lue-winged Teal	Anas discors	CPHLI, 2018	Rare, Hamilton NAI
orthern Shoveler	Anas clypeata	CPHLI, 2018	Rare, Hamilton NAI
lorthern Pintai	Anas acuta	CPHLI, 2018	Rare, Hamilton NAI
sreen-winged Teal	Anas crecca	CPHLI, 2018	Rare, Hamilton NAI
tedhead	Aythya americana	CPHLI, 2018	Rare, Hamilton NAI
common Gallinule	Gallinula galeata	CPHLI, 2018	Rare, Hamilton NAI
arniverous / Inverterbrates			
looded Merganser	Lophodytes cucullatus	CPHLI, 2018	Rare, Hamilton NAI
reat Black-backed Gull Ickerel Frog sprey	Larus marinus Lithobates palustris Pandion haliaetus	CPHLI, 2018 CPHLI, 2018 CPHLI, 2018	Rare, Hamilton NAI Rare, Hamilton NAI Rare, Hamilton NAI

** Feeds marky on small fish, crayfish and other custaceans, and aquatic insects also some tadpoles, a few nucleas, small annual of plant market. Young outstay set imosity benefss afters exist carrindon fish, motales, custaceans, aquatic worms, incomin to each benefss agglos other exists carried and aquatic invertebrates, including snails, small caryfish and a warely of insects * exists existential and aquatic invertebrates, including snails, small caryfish and a warely of insects * exists existential and aquatic invertebrates, including snails, small caryfish and a warely of insects * existential exists and suatic invertebrates.

** Below Species lists are not entire and provide a few reprensative speices only for Trophic Levels / Groups

Carnivorous Birds / Mamals / Reptiles - NON RARE - NON SAR Representive of Tropic Level Group Known or Observed for Checkofa Creek New oscistors of Bish - small fish and also take outservens, mollisch, squark instance, isoense, and frogs Henns - Example Grant Date inch runda Mandas, Green Henn R. Date Rokords viseous, Black-convente Nigh-Henn Alycicorax rypricorax

	aini vinaa hainnias' niaa		VILGOCGIJO, DH
Belted Kingfisher	Megaceryle alcyon	CPHLI, 2018	
Great Egret	Ardea alba	CPHLI, 2018	
Common Loon	Gavia immer	CPHLI, 2018	
Common Golden Eye	Bucephala clangula	CPHLI, 2018	
Tems - Example Caspian Tem	Hydroprogne caspia	CPHLI, 2018	
Northern Watersnake	Nerodia sipedon sipedon	CPHLI, 2018	
Eastern Gartersnake	Thamnonhis sirtalis sirtali	5 CPHII 2018	

atic animals		
ans, snails, and other aqu	reek	
for Chedoke Greek tion, small fish, crustace	Observed for Chedoke C	l for Chedoke Creek
up Known or Observed During winter and migra 18 18 18	c Level Group Known or 1. Tubers and rhizomes 18 18 18 18	oup Known or Observed 18 18
of Tropic Level Gr breeding season. CPHLI, 20 CPHLI, 20 CPHLI, 20 CPHLI, 20	resnative of Tropi aquatic Vegetaio CPHLI, 20 CPHLI, 20 CPHLI, 20 CPHLI, 20	of Tropic Level G CPHLI, 20 CPHLI, 20 CPHLI, 20
 NON SAR Representative of ind insect larvae during the Tringa melanoleuca Bartramia korgicauda Actitis macularius Tringa solitaria 	VON RARE - NON SAR Rep nany types of pond weeds, Branta canadersis Aras platy rhynchos Cygnus bucinator Cygnus bucinator Ondatra zibethicus	E - NON SAR Represnative Littrobates clamitans Pseudacris crucifer Littrobates pipiens
Shorebirds - NON RARE Carniverous - Insects an Greater Yellowlegs Upland Sandpiper Spotted Sandpiper Solitary Sandpiper Solitary Sandpiper	Herbivorous Species - 1 Ieaves, seeds, roots of n Canada Goose Mallard Trumpeter Swan Muskrat	Amphibians - NON RAR. Green Frog Spring Peeper Northern Leopard Frog

also eat roots and bugs and aquatic plants tree bark and cambium, but can

Not a Huge Concern - Not including at this time Secondary Species - when mammalan previse screet, and birds, eggs, fregs, fish, and insects. Or treeded vegation / Leaves but do send time in Cheodoke Creek and or substrates (beavers for xsample) Ermine CPHL, 2018 Beaver Castor canadensis CPHL, 2018 American Mirk Neovson vison CPLL, 2018

through their skin/ will lay eggs in vegetaion through their skin/ will lay eggs in vegetaion through their skin/ will lay eggs in vegetaion

soft substrates for Hibernation / percutaneous absorption soft substrates for Hibernation / percutaneous absorption soft substrates for Hibernation / percutaneous absorption

" Use:

209.40666 Hamilton Reference List - complied by KLF based on Secondary Sources and Report Resources in field and internet Research ** Not all sources are listed yet see folder 06 KLF BG_Research (SAR FloraFauna)

MASTER RESOURSE LIST - SAR / WILDLIFE

SNC Lavalin, 2010. City of Hamilton B-Line Light Rapid Transit - Draft Environmental Project Report, Appendix B. Matural Heritage Features Bowbby, J.N., K. McComack, and M.G. Heaton. 2009. Hamilton Harbour and Watershed Fisheries Management Plan. Ontario Ministry of Natural Resources and Royal Botanical Gardens. Eakins, R. J. 2019. Ontario Freshwater Fishes Life History Database. Version 4.88. Ontine database. (http://www.ontariofishes.ca), accessed 03 January 2020	Chedoke Creek Watershed Fact Sheet, 2018. http://conservationhamilton.ca/wp-content/uploads/sites/5/2018/04/Chedoke-Creek-Factsheet-2018.pdf Hamilton Conservation Authority (HCA) 2008. Chedoke Creek Subwatershed Stewardship Action Plan	Government of Ontario, 2019. O. Reg. 23008: Species at Risk in Ontario List - Under Endangered Species Act, 2007, s. O. 2007, c. 6 - Acessed On-line January 3 2020. Current to E-Laws currency date December 8, 201	Department of Fisheries and Oceans, 2019. Aquatic Species at Risk Mapping Date modified: 2019-08-23, Acessed On-line January 3, 2020. https://www.dfo-mpo.gc.ca	COSEWIC. 2013. COSEWIC assessment and status report on the Liliput Toxolasma parvum in Canada. Committee on the Status of Endangered	COSEWIC. 2016. COSEWIC assessment and status report on the Mapleleaf Quadrula quadrula, Great Lakes - Upper St. Lawrence population and Saskatchewan - Nelson Rivers population, in Canada.	Committee on the Status of Endangered Wildlife in Canada. Ottawa: xi + 86 pp.	COSEWIC 2007. COSEWIC assessment and status report on the Eastern Pondmussel Ligumia nasuta in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 34 pp.	COSEWIC 2007. COSEWIC assessment and update status report on the northern brook lamprey (chthyomyzon fossor (Great Lakes – Upper St. Lawrence populations and Saskatchewan – Nelson population) in Canada.	Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 30 pp	Schweitz, N. 2014. Hamilton Conservation Authority. Nature Counts. Hamilton Natural Areas Inventory Project, 3rd Edition. Site Summaries, Species Checklists. 753 pp + 287 pp.	Cootes to Escarpment EcoPark System, 2018. Cootes Paradise Heritage Lands Management Plan, Inventory, Issues and Opportunities, May 2018 Acessed on-line	Vincent, K. 2017. 2017 Environmental Condition of Cootes Paradise South Shore. RBG Report No. 2018-12. Royal Botanical Gardens. Burlington, ON.	Radassao, F., Barr, L., and Peicre, M. 2018. 2018 Environmental Review of Hendrie Valley. RBG Report No. 2019-6. Royal Botanical Gardens. Burlington, ON.	Oldham, M., Bakowsky, W. and Sutherland, D. 1995. Floristic quality assessment for southern Ontario. Natural Heritage Information Centre, Ontario Ministry of Natural Resources, Peterborough, Ontario.	eBIRD Canada, 2019. Online Dundas Marsh/Cooles Paradise (general location), Acessed at https://ebird.org/canada/hotspot
2010 2009 2019	2018 2008	2019	2019	2013		2016	2007a		2007b	2014	2018	2017	2019	1995	2019
SNC Lavalin Bowlby et Al Eakins, R. J	Hamilton Conservation Authority (HCA) Hamilton Conservation Authority (HCA)	Government of Ontario	Department of Fisheries and Oceans	COSEWIC		COSEWIC	COSEWIC		COSEWIC	Schwetz, N	Cootes to Escarpment EcoPark System (CEES)	Vincent	Radassao et al.	Oldham et al.	eBIRD Canada

Appendix "A" to Report PW19008(g)/LS19004(f) Page 189 of 200 of 486

APPENDIX D ERA Analytical Chemistry Dataset

4

8

7.3

5.9

4.3

16

	Carbon		Partic	le Size	
TABLE D-1: SOIL -PHYSICAL PARAMETERS	Total Organic Carbon	% gravel (>2mm)	% sand by hydrometer	% silt by hydrometer	% clay (<4um)
	μg/g	%	%	%	%
ON PSQG LEL	10000				
ON PSQG SEL	100000				

		Sample							
	Sample	Depth	Sample						
Site Area	Location	(mbg)	Date	Sample ID	Matrix Description				
C-1	C-1 West	0-0.15	2019-Oct-2	C1 WEST	Grab	26,000	<2	69	27
C-3	C-3 West	0-0.15	2019-Oct-2	C3 WEST	Grab	39,000	<2	39	53
C-4	C-4 West	0-0.15	2019-Oct-1	C4 WEST	Grab	47,000	<2	32	61
G-4	G-4 Comp	0-0.15	2019-Oct-2	G4	Grab	31,000	<2	49	45
G-5	G-5 Comp	0-0.15	2019-Oct-2	C3 CENTRE / G5	Grab	20,000	<2	83	11
G-6	G-6 Comp	0-0.15	2019-Oct-1	C5 EAST / G6	Grab	39,000	<2	28	56

Standards / Guidelines Descriptions:

- ON PSQG LEL:Ontario Provincial Sediment Quality Guideline Lowest Effect Level
- ON PSQG SEL:Ontario Provincial Sediment Quality Guideline Severe Effect Level

Notes:

m - metres

- µg/g micrograms per gram
- '-' sample not analyzed for parameter indicated
- formatting of cells indicates exceedances of like-formatted standards
- where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

µm - micrometres

• laboratory reports detail detection limits, testing protocols and QA/QC procedures.

% - percent

- '-' sample not analyzed for parameter indicated
- > denotes particle size greater than 75 micrometres

SLR Project No.: 209.40666.00000 January 2020

PAHs

	РОГУСУ	TABLE 'CLIC ARC	D-2: SEDIM	ENT - DROCARBONS		moisture	ənəiyitiqqanəse	ənəhthqanəse	anshracene	bens(a)anthracene	aenzo(α)πiuoranthene benzo(b+j)fluoranthenes	benzo(g,h,i)perylene	benzo(k)fluoranthene	benzo(a)pyrene	อนอร์งมุว	eneosentfre(d,e)snedib	9n9dtnerouli	fluorene	ənəזүq(bɔ-ɛ̃,ᡗ,ᡗ)onəbni	-1. (ənəleritingeniyi)	-2 ,ənəlaritiqaniyitəm	ənəlshirdsn	phenanthrene	byrene	sHA9 thäiəw ısluoəlom thäil	neavy molecular weight PAHs	
						%	Hg/g	Hg/g	Hg/g	1 <u>g/g</u> µ ₁	3/g µg/	g/gu g/	t µg/g	µg/g	Hg/g	µg/g	Hg/g	µg/g	µg/g	µg/g	Hg/g	Hg/g	ug/g I	ug/g µ	g/g µ	<u>з/в</u> н	.00
teported Detection	ו Limit					0.3	0.0005	0.0005	0.001 0	.001 0.	0.0	00.0 1C	2 0.001	0.001	0.001	0.0005	0.001	0.001	0.002	F	0.001	0.001 0).001 0	0.001 0.	001 0.0	0.100	11
ON PSQG LEL									0.22	0.32		0.17	0.24	0.37	0.34	0.06	0.75	0.19	0.2				0.56	0.49			
IN PSQG SEL									7.77	39.62		6.4	26.8	28.8	9.2	2.6	20.4	3.2	6.4				19	17		2	0
N Sediment Table	1 Background	p							0.22 (0.32		0.17	0.24	0.37	0.34	0.06	0.75	0.19	0.2				0.56 (0.49			
CME SedQG Fresh	water (ISQG)						0.00587	0.00671													<u>2.0202</u>	0.0346					
	Cample	Sample			Matriv																						1
Site Area	Location	(mbg)	Sample Dat	sample ID	Description																						
1	t and	0.015	2018-Sep-18	C-1<15 (10:40)	Core	27.1	<0.1	1.49	4.69	6.6 8.	.37 -	4.36	2.29	6.01	7.15	0.79	24.5	1.76	3.45	<0.1	< 0.1	<0.1	16.5	18.9	 ,	6	2
	C-T MEST	CT-0-0	2019-Oct-2	C1 WEST	Grab	26	0.011	0.049	0.13	0.6 0.	.74 1.:	1 0.46	0.31	0.69	0.86	0.12	1.9	0.063	0.45	-	0.012 (0.014	0.86	1.4	1.1 5	5.6	
22	C-2 West	0-0.15	2018-Sep-18	C-2<15 (11:10)	Core	31.1	<0.1	0.26	0.43	1.79 2.	52 -	0.99	0.99	1.71	2.13	0.22	5.25	0.29	0.9	<0.1	<0.1	0.22	3.63	4.06	,		
33	C-3 East	0-0.15	2018-Sep-18	C-3A<15 (16:50)	Core	34.4	<0.1	<0.1	<0.1	0.38 0.	. 71 -	0.23	<0.2	0.39	0.5	<0.1	1.1	<0.1	0.2	<0.1	<0.1	<0.1	0.39	0.86		- 4	5
	C-3 Centre	0-0.15	2018-Sep-18	C-3B<15 (16:35)	Core	23.6	<0.1	0.27	0.28	1.1 1.	- 64	0.44	0.63	1.05	1.34	0.12	3.7	0.26	0.46	<0.1	<u>0.1</u>	0.24	3.23	2.75	,		
	C_2 Weet	15	2018-Sep-18	C-3C<15 (16:20)	Core	62.9	<0.1	<0.1	0.12	0.79 1.	- 76 -	0.54	0.52	0.91	1.23	0.13	2.56	<0.1	0.54	<0.1	< 0.1	<0.1	1.13	2.09	-	-	
	C-7 MC31	010-0	2019-Oct-2	C3 WEST	Grab	47	0.016	0.27	0.43	1.1	1	4 0.57	0.41	0.94	1.5	0.16	3.2	0.31	0.54	-	0.067	0.13	2.5	2.3	3.7 9	t.	
-4	C-4 East	0-0.15	2018-Sep-19	C-4A<15 14:35	Core	45.6	<0.1	<0.1	<0.1	0.44	-	0.37	0.23	0.48	0.66	<0.1	1.41	<0.1	0.27	<0.1	<0.1	<0.1	0.6	1.13		- 9	6
	C-4 Centre	0-0.15	2018-Sep-19	C-4B<15 15:15	Core	32.5	<0.1	<0.1	0.15	0.71 1.	- 26	0.41	0.3	0.69	0.89	<0.1	2.12	0.11	0.35	<0.1	<0.1	<0.1	1.16	1.62	,		•
	C-4 West	0-015	2018-Sep-19	C-4C<15 15:35	Core	53.2	0.11	0.25	0.69	1.69 2.		0.77	0.7	1.5	2.01	0.2	4.5	0.47	0.65	0.15	0.3	0.14	3.32	3.48		- 2	5
			2019-Oct-1	C4 WEST	Grab	53	0.021	0.045	0.1	0.71	1	3 0.74	0.47	0.69	1.3	0.17	2.2	0.074	0.63	-	0.034	0.023	0.83	1.6	1.1 6	9.	~
<u>-5</u>	C-5 East	0-0.15	2018-Sep-19	C-5A<15 14:10	Core	28.7	0.18	<0.1	0.28	1.99 2.	- 16	0.98	0.72	1.69	1.76	0.26	2.99	0.1	0.88	<0.1	<0.1	0.15	0.93	2.94			
	C-5 Centre	0-0.15	2018-Sep-19	C-5B<15 13:15	Core	25.5	<0.1	<0.1	<0.1	0.42 0.	- 63	0.31	<0.2	0.39	0.47	<0.1	1.15	<0.1	0.25	<0.1	<0.1	<0.1	0.58	0.92	,	-	~
	C-5 West	0-0.15	2018-Sep-19	C-5C<15 14:20	Core	16.4	<0.1	<0.1	<0.1	0.46 0.	- 96	0.38	0.25	0.5	0.68	<0.1	1.44	<0.1	0.27	<0.1	<0.1	<0.1	0.72	1.16		-	
5-1	G-1 Comp	0-0.1	2018-Sep-18	G-1 Comp (10:30) Grab	21.8	<0.1	0.83	0.99	2.96 3.	- 29	1.45	1.37	2.4	3.24	0.37	9.08	0.84	1.34	0.2	0.3	0.98	9.53	6.75		- 4	2
5-2	G-2 Comp	0-0.1	2018-Sep-18	G2-Comp (12:00)	Grab	22.2	<0.1	<0.1	0.12	0.38 0.	- 53	0.22	<0.2	0.36	0.45	<0.1	1.11	<0.1	0.19	<0.1	< 0.1	<0.1	0.73	0.85		-	_
5-3	G-3 Comp	0-0.1	2018-Sep-18	G3-Comp (13:40)	Grab	25.1	<0.1	<0.1	<0.1	0.18 0.	32 -	0.13	<0.2	0.18	0.26	<0.1	0.59	<0.1	0.11	<0.1	<0.1	<0.1	0.25 (0.47		- 2	2
5-4	G-4 Comp	0-0.1	2018-Sep-18	G4-Comp (15:20)	Grab	30	<0.1	<0.1	<0.1	0.34 0.	- 53	0.2	<0.2	0.33	0.42	<0.1	0.96	<0.1	0.18	<0.1	< 0.1	<0.1	0.45	0.76	-	- 4	-
		0-0.15	2019-Oct-2	G4	68 10	42	0.013	0.03	0.08	0.45 0.	69 0.5	18 0.43	0.25	0.57	0.79	0.11	1.5	0.047	0.39	-	0.014	0.014	0.6	1.1 0	.79 4	Ω.	~
3-5	6-5 Comn	0-0.1	2018-Sep-19	G-5 Comp 15:55	Grah	40.6	<0.1	<0.1	0.16	0.68 1.	- 28	0.38	0.29	0.68	0.84	<0.1	1.91	<0.1	0.32	<0.1	<0.1	<0.1	0.94	1.48		•	
	1	0-0.15	2019-Oct-2	C3 CENTRE / G5	22 0	23	0.012	0.038	0.12	0.54 0	.63 0.5	9 0.38	0.23	0.58	0.75	0.1	1.6	0.048	0.36	-	0.0096 C	0.0089	0.68	1.2 0	.91 4	œ.	
3-6	G-6 Comp	0-0.15	2019-Oct-1	C5 EAST / G6	Grab	52	0.02	0.084	0.12	0.61 0	93 1.	3 0.63	0.34	0.75	1.1	0.13	2	0.087	0.54	-	0.027	0.029	0.89	1.5	1.3 6	1.	~

Standards / Guidelines Descriptions:

ON PSQG IEL:Ontario Provincial Sediment Quality Guideline - Lowest Effect Level
 ON PSQG SEL:Ontario Provincial Sediment Quality Guideline - Severe Effect Level
 ON Sediment Table 1 Background:Ontario Sediment Table 1: Full Depth Background Site Condition Standards
 CON SedGG Freshwater (ISGG):CONE Sediment Quality Guidelines for the Protection of Aquatic Life, Freshwater (Interim sediment quality guidelines)

Notes:

m - metres

µg/g - micrograms per gram

% - percent

< - less than reported detection limit

'-' - sample not analyzed for parameter indicated

formatting of cells indicates exceedances of like-formatted standards

 where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded PAH - polycyclic aromatic hydrocarbons

• Total PAHS include acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,b)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene

City of Hamilton Ecological Risk Assessment

SLR Project No.: 209.40666.00000 January 2020

	, zirconium	μ <u>8/8</u>	6								2.82					0.78				0.59			,		,			0.81		1.7	9.0
	, zinc	H8/8	- 5	8	120	820	120			215	214	244	310	202	505	427	298	215	472	532	414	244	428	187	167	311	215	332	275	272	339
	muibenev ,	H8/8	-							18	22.1	17	13	13	22	24.9	18	15	21	28.7	53	15	22	18	16	18	16	22.8	17	20.4	20.1
	, uranium	HB/8	cn:n							0.58	0.659	0.55	0.46	0.58	0.88	0.766	0.64	0.48	0.76	0.886	0.59	0.56	0.69	0.67	0.58	0.66	0.58	0.68	0.65	0.798	0.483
	uətsgaut ,	8/8	2							E	0.5	,	-	-	-	:0.5	•	-	,	0.5	,	,	-	-	,	,	-	:0.5	•	:0.5	0.5
	, titanium	18/8 h	-							ŀ	121				,	139 <				22			,					126 <		124 <	101
	tin ,	H8/8	10							ŀ	1.36				,	4.32				5.05	·		,					6.31		1.63	2.96
	muilledt ,	HB/8	cn:n							60.0	0.12	0.11	0.12	0.11	0.23	0.255	0.16	0.12	0.2	0.263	11/	0.13	0.2	0.11	0.08	0.13	0.13	0.204	0.14	0.214	0.18
	muitnorte ,	18/8 2 4	1.0							F	109				,	142 0				151								129 0		137 0	108
	muibos ,	H8/8	3							ŀ	363		•	•	,	215				447	·		,			÷		245	•	209	321
	, silver	H8/8	60.0				0.5			0 11	0.083	0.19	0.3	0.37	1.6	0.607	0.58	0.27	3.3	1.18		0.53	1.3	0.13	0.1	0.48	0.31	0.387	0.42	0.263	0.342
	muinalas ,	8/8 	0.0							∠ U	0.5	:0.7	0.7	0.7		0.5	0.7	:0.7	0.8	0.74	_	:0.7	0.7	:0.7	0.7	:0.7	:0.7	:0.5	0.7	:0.5	0.5
	, potassium	1 8/81	3							Ē	390	•	•	•	,	330 <	•	,		430		•	-	•	•	•	-	280 <	•	030 <	620 <
	, nickel	18/8		10	16	75	16			23	22 2	20	16	17	24	5.6 2	18	17	32	6.6	36	22	29	22	21	21	20	2.3 2	21	0.6 2	18 1
	wnuəpqAjow `	8/8	-							0	50.	6.0	D.6	0.7	2.4	.49 2	L.2	0.8	8.	58 19	~	6.0	5.1	1.2	0.8	1.1	9.0	.15 2	1.1	.87 2	.05
	, mercuty	8/2	- 		2	0	5			F	57 1	_	-	_		55 1		-		97 2		-		-	_	_	_	04 1		1	1
	2020090000	8 8 1 8			0 0	8	0			ŀ	6 0.0	_	Ĥ	Ľ	_	8 0.2		_		4			_	Ĺ	Ĺ	_		0.0		3	0.0
als	asauezuem	вч а	5	ŧ	46	11				ŀ	00 56	<u> </u>	Ļ	-	'	00 58		<u>'</u>		00	'	<u>'</u>	-	Ļ	Ļ	<u> </u>	_	00 55		00 62	00 35
Met	muisəngem ,	/8H								Ľ	30, 1('	<u>'</u>	<u>'</u>	1	23,6	•	1	1	24,0	'	'	'	'		'	1	24,40	•	23,7(13,5(
	muidtil	H8/8	5							Ŀ	25.3	•	1	•	1	26.9	•	'	•	28.1	·	•	1	•	·	·	1	24.6	•	21.7	19.4
	beal ,	H8/8	1.5	3	31	250	31			20	24.5	34	59	28	87	44.9	32	28	72	51.3	145	49	56	16	13	50	22	39.6	42	29.6	46.1
	, iron	H8/8		nnnne	20000	40000				ŀ	23,000		•			24,800			•	25,600	•							22,600		21,100	18,800
	, cobber	μ <u>8/8</u>		ç	16	110	16			30	44.6	51	60	71	170	85.7	72	42	145	125	136	99	97	63	50	81	58	64.9	64	38.1	64.1
	, cobalt	H8/8	1.0				20			44	8.41	8.5	6.4	7	8.6	10.3	7	6.8	11	10.1	=	7.9	10	9.1	8.2	7.8	7.7	8.77	7.2	9.07	6.91
	(IV+III) muimorta	μ <u>8/8</u>	C.) F	7	26	110	26			22	21.8	19	16	26	31	31.5	22	19	41	35.9	37	20	32	21	21	20	22	25.7	21	19.8	22.6
	muioleo ,	H8/8								ŀ	75,600		•			69,600				61,800	•							67,400		78,400	41,500
	muimbes ,	μ <u>8/8</u>		-	0.6	10	0.6			0.41	1.32	0.58	0.76	0.39	0.81	0.753	0.74	0.56	6.1	0.914	8.5	0.86	3.1	0.37	0.27	0.56	0.39	0.623	0.57	0.601	0.609
	, boron	H8/8	-							17	23.5	15	11	13	15	21.7	Ħ	14	20	23.4	20	5	21	17	17	15	14	22.6	13	20.1	14.9
	, bismuth	H8/8	Tin							ŀ	0.22				,	1.03				2.16	·		,			·		0.55		0.4	0.75
	, beryllium	H8/8	7.0							0.43	0.55	0.4	0.28	0.33	0.44	0.6	0.35	0.32	0.46	0.67	0.57	0.36	0.45	0.42	0.41	0.38	0.38	0.55	0.37	0.53	0.44
	muined ,	H8/8	1.0							110	10	91	69	85	120	106	8	2	141	123	710	53	134	130	80	130	88	102	11	75.5	77.8
	, arsenic	18/8	7.0	Ŧ	9	33	9			3.6	3.56	4.6	3.8	3.5	4.7	4.97	4.3	4.1	5.5	5.76	12	3.7	5.7	3.8	m	3.9	3.6	4.13	3.9	3.71	4.29
	, antimony	H8/8	710							< 0 ×	0.53	<0.8	<0.8	<0.8	<0.8	1.11	<0.8	<0.8	<0.8	1.54	1:3	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	0.92	<0.8	0.66	0.92
	munimule ,	H8/8	A L								0,500				,	2,200				3,200			,					0,700		9420	9030
	(api) ud	nits	1								15		H			22		_		4			_			_		31 3		8	_
	(40) на	đ	ļ					,	-		_{so}	_	Ĺ	Ĺ		80				oo				Ĺ	Ĺ	_		8	Ľ	80	~
									crintio	-																					
									triv De	a	e de	e	e	e	re	qe	e	e	e	g	e	e	e	q	q	qe	4	2	4	2	ą
									ŝ	2	3 5	8	8	S	S	Ģ	8	8	8	5	3	8	8	0) Gr) G	G G	ن ا	5	<u>ي</u>	5	5
									01 elu	10.401		11:10)	(16:50)	(16:35)	(16:20)		14:35	15:15	15:35		14:10	13:15	14:20	p (10:3	o (12:00	o (13:40	o (15:20		p 15:55	RE / G5	/ G6
	Ļ								and and and and and and and and and and	-1<15/	1 WEST	-2<15 ()	-3A<15	-38<15	-3C<15	3 WEST	-4A<15	-4B<15	-4C<15	4 WEST	-5A<15	-58<15	-5C<15	-1 Com	2-Comp	3-Comp	4-Comp	4	-5 Com	3 CENTI	5 EAST
	MEN								Jato	18	5 0	- 18	-18 C	-18 C	-18 C	-2 C	-19 C	19	-19 C	-	-19	19	-19 C	-18	-18	-18	-18 G	-2	-19	-2 C	- -
	SEDI] alume	18-Sen	19-Oct-	18-Sep-	18-Sep-	18-Sep-	18-Sep-	19-Oct-	18-Sep	18-Sep-	18-Sep	19-Oct-	18-Sep	18-Sep-	18-Sep-	18-Sep-	18-Sep-	18-Sep-	18-Sep-	19-Oct-	18-Sep-	19-Oct-	19-Oct-
	ED-3: ME								e ti e			20	20	20	20	20	50	20	8	×	2	2	20	20	20	20	20	20	20	20	20
	TABLE								Sam Dept		0-0.15	0-0.15	0-0.15	0-0.15	10.0	1.0-0	0-0.15	0-0.15	0-0.15		0-0.15	0-0.15	0-0.15	0-0.1	0-0.1	0-0.1	0-0.1	0-0.15	0-0.1	0-0.15	0-0.15
			a no ot cotio	Incentrativ			kground		iample Vration		West	West	East	Centre	Moet.	MCDI	East	Centre	West		East	Centre	West	Comp	Comp	Comp	umoj		Comp	4	Comp
			UI LIIII.	חווחרר			le 1 Bac		0,2	╞	5	C-2	C-3	C-3	0	5	4	9 4	4	+	3	5	5 C	G-1	G-2	6-3	5	5	5-5	;	9-9
			Deelecti	DdLKgi	LEL	SEL	ent Tab		Area																						
			naunda	N P3CC	N PSQG	N PSQG	N Sedin		Cito			-2	ņ				4				ņ			Ļ	-2	ņ	4		÷		ب
		Ŀ	_ 0	اد	0	0	0			1Ċ	,	Ú	Ú	_	_		Ú	_	_	_	υ			U	U	G	0		σ		0

Standards / Guidelines Descriptions:
 ON PSQG Background Concentrations:Ontario Provincial Sediment Quality Guideline - Table 3 and Table 4 Background Sediment Concentrations:
 ON PSQG ELE-Ontario Provincial Sediment Quality Guideline - Texaes: Effect Level
 ON PSQG SEL, Ontario Provincial Sediment Quality Guideline - Severe Effect Level
 ON PSQG SEL, Ontario Provincial Sediment Quality Guideline - Severe Effect Level
 ON PSQG SEL, Ontario Provincial Sediment Quality Guideline - Severe Effect Level
 ON PSQG SEL, Ontario Provincial Sediment Quality Guideline - Severe Effect Level
 ON Sediment Table I Background:Ontario Sediment Table 1: Full Depth Background Ste Condition Standards
 ON Sediment Table I Background:Ontario Sediment Table 1: Full Depth Background Ste Condition Standards
 Netes
 In enters
 In enters
 In enters
 In enters
 In some detection limit
 -1: sample not analyted for parameter indicated
 -1: sample not analyted for parameter indicated
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters
 In enters

SLR

Appendix "A" to Report PW19008(g)/LS19004(f) Page 193 of 406 of 486

			Inor	ganics				Ecological	
TABLE D-4: SEDIMENT -NUTRIENTS & BACTERIA	ammonia and ammonium (as N)	ammonia as N	kjeldahl nitrogen total	nitrogen (total)	organic phosphorus	total phosphorus	E. coli	Fecal Coliforms	Total Coliforms
	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	MPN/100g	MPN/100g	MPN/100g
Reported Detection Limit		2	5	2000	1	10	20	20	20
ON PSQG LEL			550			600			
ON PSQG SEL			4800			2000			

		Sample												
	Sample	Depth			Matrix									
Site Area	Location	(mbg)	Sample Date	Sample ID	Description									
C-1	C 1 Wort	0.0.15	2018-Sep-18	C-1<15 (10:40)	Core	<100	-	500	-	-	598	-	12,000	-
	C-1 West	0-0.15	2019-Oct-2	C1 WEST	Grab	-	3.6	5.8	<2000	<1	715	3500	3500	160000
C-2	C-2 West	0-0.15	2018-Sep-18	C-2<15 (11:10)	Core	200	-	1000	-	-	837	-	21,000	-
C-3	C-3 East	0-0.15	2018-Sep-18	C-3A<15 (16:50)	Core	<100	-	800	-	-	642	-	19,000	-
	C-3 Centre	0-0.15	2018-Sep-18	C-3B<15 (16:35)	Core	<100	-	600	-	-	660	-	43,000	-
	C 2 Wort	0.0.15	2018-Sep-18	C-3C<15 (16:20)	Core	400	-	1900	-	-	1622	-	45,000	-
	C-5 West	0-0.15	2019-Oct-2	C3 WEST	Grab	-	26	95	3000	3.1	1170	5400	5400	92000
C-4	C-4 East	0-0.15	2018-Sep-19	C-4A<15 14:35	Core	100	-	1000	-	-	861	-	10,000	-
	C-4 Centre	0-0.15	2018-Sep-19	C-4B<15 15:15	Core	<100	-	600	-	-	718	-	17,000	-
	C 4 Wost	0.0.15	2018-Sep-19	C-4C<15 15:35	Core	300	-	1600	-	-	1260	-	11,000	-
	C-4 West	0-0.15	2019-Oct-1	C4 WEST	Grab	-	190	330	4000	4.6	1560	2800	2800	92000
C-5	C-5 East	0-0.15	2018-Sep-19	C-5A<15 14:10	Core	200	-	900	-	-	978	-	3000	-
	C-5 Centre	0-0.15	2018-Sep-19	C-5B<15 13:15	Core	<100	-	500	-	-	781	-	10,000	-
	C-5 West	0-0.15	2018-Sep-19	C-5C<15 14:20	Core	200	-	1200	-	-	1120	-	<1000	-
G-1	G-1 Comp	0-0.1	2018-Sep-18	G-1 Comp (10:30)	Grab	<100	-	900	-	-	690	-	8000	-
G-2	G-2 Comp	0-0.1	2018-Sep-18	G2-Comp (12:00)	Grab	<100	-	400	-	-	628	-	16,000	-
G-3	G-3 Comp	0-0.1	2018-Sep-18	G3-Comp (13:40)	Grab	<100	-	600	-	-	795	-	37,000	-
G-4	C. A. Cama	0-0.1	2018-Sep-18	G4-Comp (15:20)	Croh	<100	-	400	-	-	737	-	38,000	-
	G-4 Comp	0-0.15	2019-Oct-2	G4	Grab	-	27	47	<2000	2.4	993	2400	2400	160000
G-5		0.01	2018-Sep-18	G-5 Comp (17:10)	Croh	-	-	-	-	-	-	-	24,000	-
	G-5 Comp	0-0.1	2018-Sep-19	G-5 Comp 15:55	Grab	<100	-	800	-	-	756	-	30,000	-
		0-0.15	2019-Oct-2	C3 CENTRE / G5	Grab	-	13	35	<2000	1.1	871	5400	5400	92000
G-6	G-6 Comp	0-0.15	2019-Oct-1	C5 EAST / G6	Grab	-	130	180	3000	1.7	904	5400	5400	13000

Standards / Guidelines Descriptions:

• ON PSQG LEL:Ontario Provincial Sediment Quality Guideline - Lowest Effect Level

• ON PSQG SEL:Ontario Provincial Sediment Quality Guideline - Severe Effect Level

Notes:

m - metres

 $\mu\text{g/g}$ - micrograms per gram

MPN - most probable number

< - less than reported detection limit

'-' - sample not analyzed for parameter indicated

• formatting of cells indicates exceedances of like-formatted standards

• where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

City of Hamilton Ecological Risk Assessment

SLR Project No.: 209.40666.00000 January 2020

TABLE D-5: DEEP SEDIMENT -	ULY CY CLIC AROIMATIC HYDROCARBON
----------------------------	-----------------------------------

ON PSQG SEL ON Sediment Table 1 Background CCME SedOG Freshwater (ISOG)

ON PSQG LEL

2HA9 lstoT	µg∕g	4	200		
byrene	μg/g	0.49	17	0.49	
phenanthrene	µg/g	0.56	19	0.56	
ənəleritiqen	Hg/g				0.0346
-2 ,ənəleritiqaniyritəm	Hg/g				0.0202
-Ն ,ənəlshthqsnlγhtəm	μg/g				
ənəזγq(bɔ-ɛ,ኌ,ı)onəbni	µg/g	0.2	6.4	0.2	
fluorene	µg/g	0.19	3.2	0.19	
fluoranthene	µg/g	0.75	20.4	0.75	
ənəsərhtns(h,s)znədib	µg/g	0.06	2.6	0.06	
cµıλɛsus	µg/g	0.34	9.2	0.34	
penzo(a)pyrene	µg/g	0.37	28.8	0.37	
benzo(k)fluoranthene	µg/g	0.24	26.8	0.24	
benzo(g,h,i)perylene	µg/g	0.17	6.4	0.17	
benzo(b)fluoranthene	hg/g				
benz(a)anthracene	µg/g	0.32	29.6	0.32	
anthracene	µg/g	0.22	7.77	0.22	
ənəntinqenəse	Hg/g				0.00671
ənəlytthqsnəse	hg/g				0.00587

PAHs

			.87	.11	86	53	.46	86	.87	77	.58	.04	54	.05	Ę.	.08	.46	64	21	59	.77	88	.33
			00 1C	59 21	05 0	25 1	33 47	05 0	31 14	24 7	24 13	54 10	24 7	22 13	75 5	39 11	4 20	25 6	51 8	4 7	35 32	53 8	12 00
			.2 2.	39 3.(.05 <0.	0 90	0 7.5	.05 <0.	92 2.	31 1.	9 2.	95 1.(62 1.:	41 2.	.0 6.	02 1.3	81 3.	52 1.:	16 1.	85 1.	88 5.3	25 1.	96 2.0
			1 1	5 4.	05 <0	0.		05 <0	1 2.	<u>6</u> 1.	4	7 1.	80.	3.	1 0	1 2.	7 3.	1 0.	1.	1.0.	4 6.	1 1.	1.
			<0>	0.4	<0.0>	>0.0	1.	<0.0>	.0 ~	0.0	0.1	0.0	0.1	0.1	<0>	<0>	0.1	~0	~0~	.0 ~	0.4	~0~	0
			<0.1	0.17	<0.05	<0.05	0.37	<0.05	1.92	0.73	1.57	1.21	0.18	<0.12	<0.2	0.76	1.94	<0.1	0.24	<0.1	1.16	0.43	0.55
			<0.1	0.11	<0.05	<0.05	0.28	<0.05	0.85	0.29	0.73	0.47	<0.1	<0.1	0.12	0.42	0.89	<0.1	0.11	<0.1	0.65	0.22	0.27
			0.5	0.68	<0.1	<0.1	1.25	<0.1	0.41	0.31	0.36	0.34	0.47	0.51	0.19	0.35	0.71	0.33	0.32	0.31	1.04	0.4	0.49
			<0.1	0.29	<0.05	<0.05	1.04	<0.05	0.6	0.25	0.54	0.36	0.1	0.27	0.16	0.44	0.67	<0.1	0.17	0.11	1.06	0.23	0.33
			2.6	4.85	<0.05	0.3	10.3	<0.05	2.95	1.51	2.76	1.98	1.3	2.74	0.97	2.39	4.37	1.44	1.67	1.66	6.15	1.83	2.5
			0.12	0.18	<0.06	<0.06	0.35	<0.06	0.13	0.09	0.11	0.1	0.14	0.13	<0.1	<0.1	0.21	<0.1	<0.1	<0.1	0.27	0.1	0.14
			1.08	1.87	<0.05	0.11	4.04	<0.05	1.23	0.7	1.02	0.88	0.72	1.06	0.42	0.96	1.75	0.71	0.77	0.76	2.51	0.8	1.1
			0.87	1.36	<0.05	0.12	3.11	<0.05	0.9	0.59	0.86	0.7	0.76	0.92	0.34	0.72	1.38	0.56	0.62	0.62	2.09	0.64	0.89
			0.47	0.77	<0.05	0.06	1.48	<0.05	0.5	0.31	0.47	0.32	0.37	0.45	<0.2	0.34	0.6	0.28	0.32	0.3	1.11	0.34	0.52
			0.56	0.72	<0.1	<0.1	1.23	<0.1	0.51	0.37	0.44	0.41	0.6	0.59	0.24	0.45	0.89	0.39	0.37	0.36	1.2	0.52	0.66
			1.37	2.35	<0.05	0.21	4.96	<0.05	1.6	0.96	1.5	1.18	1.04	1.28	0.54	1.35	2.37	0.93	0.98	1	2.92	0.96	1.3
			0.85	1.27	<0.05	0.12	3.54	<0.05	0.95	0.6	1.01	0.75	0.7	0.98	0.4	0.77	1.51	0.56	0.71	0.68	2.48	0.71	0.99
			0.13	0.21	<0.05	<0.05	1.08	<0.05	0.34	0.21	0.34	0.26	0.14	0.31	0.13	0.27	0.56	<0.1	0.18	0.14	1.12	0.2	0.3
			<0.1	0.28	<0.05	<0.05	0.91	<0.05	0.92	0.17	0.29	0.23	<0.1	0.23	<0.1	0.18	0.33	<0.1	0.11	<0.1	0.97	0.13	0.16
			_	_			_		_		_		_	_				_		_		_	
			<0.1	<0.1	<0.05	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	rix	ption																					
	Mat	Descri	ore	ore	040	a lo	ore	ore	o.co	5	oro	5	ore	040	υ	o.co	0	oro	D I G	0.00	D OI	040	υ
		٩	10) C	10) C	(20)	(05)	:20) C	35 C	15	15	35	35 7	10 C	15	15	20	20	15	15	35	35	20	20
		Sample	>15 (10:4	-15 (11::	4>30 (16	4>15 (16	C>15 (16	4>15 14:	3>15 15:	3>30 15:	>15 15:	C>30 15:	4>15 14:	3>15 13:	3>30 13:	<pre>>15 14:</pre>	<pre>>>30 14:</pre>	4>15 10:	4>30 10:	3>15 10:	3>30 10:	>15 11:	C>30 11:
			C-1	C-2	C-3	с С	č -	C-4	C-4	C-4	C-4	C-4	C-5	C-5	C-5	C-5	C-5	9 0	9 5	C-6	C-6	9 -0	9 0
		ple Date	sp-18	sp-18	10	ot-d	sp-18	ep-19	10	CT_d	01-0	CT_d	sp-19	10	CT-d	10	CT_d	10	6T-d	10	CT-d:	10	CT-d
		Sam	2018-Se	2018-Se	2010 6	AC-OTOZ	2018-Se	2018-Se	2010 6	1C-0T07	2010-01	C-0107	2018-Se	2010 6	1C-0T07	2010 6	1C-0T07	2010 6	C-OTOZ	20100	C-OTOZ	2010 6	1C-0T07
ampie	bepth	mbg)	5-0.3	5-0.3	_	5-0.3	5-0.3	5-0.3	5-0.3		5-0.3	~	5-0.3	5-0.3	~	5-0.3	~	5-0.3	_	5-0.3		5-0.3	~
s	-	ç	0.15	0.15	8	0.1	0.1	0.15	0.1		0.1	>0.	0.1	0.1	×	0.15		0.15	8	0.15	0.3	0.15	~
	Sample	Locatio	-1 West	-2 West	+503 0	1Sb3 C-	-3 West	-4 East	Contro		-4 W/act	10000 4-	-5 East	Control 1		E Moct	ין עעכאר	6 Eact	-D Edst	Control	ם רבוות -	E 10/00+	- מעכאו
			Ċ	ن ا		ر	ن	ن		ر		ر	ن ا		ر	C	ر		ر		ر		ر
		Site Area																					
		-,	Ŧ	2	'n			4					Ϋ́					φ					

Standards / Guidelines Descriptions:
 ON PSQG IEL:Ontario Provincial Sediment Quality Guideline - Lowest Effect Level
 ON Sediment Table 1 Background:Ontario Sediment Table 1: Full Depth Background Site Condition Standards
 CNE SedGG Freshwater (ISQS):CCME Sediment Quality Guidelines of the Protection of Aquatic Life, Freshwater (Interim sediment quality guidelines)
 ON PSQG SEL:Ontario Provincial Sediment Quality Guideline - Severe Effect Level

Notes:

m - metres

μg/g - micrograms per gram

< - less than reported detection limit

'-' - sample not analyzed for parameter indicated

formatting of cells indicates exceedances of like-formatted standards

where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

PAH - polycyclic aromatic hydrocarbons

• Total PAHS include Acenaphthene, Anthracene, Berzoloffluoranthene, Berzoloffluoranthene, Berzolgalpathracene, Berzolga

City of Hamilton Ecological Risk Assessment

SLR Project No.: 209.40666.00000 January 2020

Metals

zinc	µg/g	65	120	820	120			250	339	30	86	305	31	437	300	412	275	546	258	364	818	922	245	324	253	540	368	489
muibenev	µg/g							19	18	11	13	15	11	22	22	18	19	30	14	16	25	26	14	15	14	20	17	18
ตมเกตาม	µg/g							0.64	0.48	0.32	0.43	0.53	0.3	0.67	0.6	0.55	0.58	0.81	0.46	0.51	0.73	0.78	0.42	0.46	0.43	0.58	0.52	0.53
muilledt	µg/g							0.13	0.11	0.06	0.08	0.13	0.04	0.15	0.14	0.11	0.11	0.25	0.1	0.11	0.17	0.18	0.1	0.1	0.1	0.15	0.12	0.12
silver	µg/g				0.5			0.37	1.2	<0.05	0.46	0.47	0.06	4.4	4.3	7.7	4.5	2.4	2.4	3.3	17	27	1.5	3.8	0.87	8.3	3.2	6.7
muinələs	µg/g							<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	1.5	<0.7	<0.7	0.7	0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
nickel	µg/g	31	16	75	16			23	21	10	15	18	7.5	51	37	52	35	37	47	55	93	89	19	34	18	59	32	65
աոսəpqʎֈoա	µg/g							1.1	2.4	0.2	0.3	1	0.1	1.1	0.9	1	0.8	3.3	0.6	0.7	1.3	1.5	0.6	0.6	0.6	1.2	0.8	0.9
beal	µg/g	23	31	250	31			29	59	6.1	20	100	6.2	141	94	116	89	181	134	140	241	228	67	115	80	194	138	173
cobber	µg/g	25	16	110	16			71	73	20	29	61	18	124	85	129	86	127	82	111	265	358	65	69	76	126	81	175
tlsdoz	µg/g				50			9.3	8.5	5.1	6.2	6.9	3.5	14	13	13	11	12	11	15	22	21	6.9	9.8	6.7	15	11	16
chromium (III+VI)	µg/g	31	26	110	26			24	23	7.3	12	26	6.3	50	31	45	32	45	28	35	87	97	21	32	18	52	33	49
muimbeo	µg/g		0.6	10	0.6			0.4	1.1	0.07	3.8	0.81	0.09	22	11	29	14	7.6	8.9	12	49	68	1.2	7.6	1.6	20	4.9	19
poron	µg/g							16	13	4	5	11	4	23	21	19	20	24	15	21	39	45	23	32	17	40	32	40
peryllium	µg/g							0.44	0.38	0.21	0.24	0.31	0.16	0.52	0.48	0.39	0.41	0.85	0.34	0.39	0.51	0.51	0.29	0.34	0.3	0.45	0.4	0.43
parium	µg/g							120	88	34	40	80	16	217	145	201	143	265	143	209	398	397	80	127	70	228	136	237
arsenic	µg/g	4	9	33	9			4.7	9	2.7	3.1	4.2	1.7	6.8	7.1	5.9	5.4	16	4.9	6.2	6	9.1	3.5	4.4	3.7	6.9	5.3	9.9
Ynomitne	µg/g							<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	0.8		-1	<0.8	1.1	0.9	1.3	1.9	1.7	<0.8	<0.8	<0.8	1.4	0.8	1.5
						240 H	Description	Core	Core	()) Core	Core	Core		Core		Core	U.C.		Core		, or o		Core		Core	200
- TN							Sample ID	C-1>15 (10:40)	C-2>15 (11:10)	C-3A>30 (16:50	C-3A>15 (16:50	C-3C>15 (16:20	C-4A>15 14:35	C-4B>15 15:15	C-4B>30 15:15	C-4C>15 15:35	C-4C>30 15:35	C-5A>15 14:10	C-5B>15 13:15	C-5B>30 13:15	C-5C>15 14:20	C-5C>30 14:20	C-6A>15 10:15	C-6A>30 10:15	C-6B>15 10:35	C-6B>30 10:35	C-6C>15 11:20	C-6C>30 11:20
EEP SEDIMI ETALS							Sample Date	2018-Sep-18	2018-Sep-18	2018-Can-18	5010-0Ch 10	2018-Sep-18	2018-Sep-19	2018-Can-10	CT_CD_CDTO7	2018-Can-10	CT_CD_CDTO7	2018-Sep-19	2010 Con 10	TOTO-OTO-	2018-Can-10	CT_dac_otoz	2018-Con-10	TT doc otos	2018-San-19	CT_dac_otoz	3018-San-10	11-12-0107
ABLE D-6: D MI		ons				Comp. Comp.	(mbg)	0.15-0.3	0.15-0.3	>0.3	0.15-0.3	0.15-0.3	0.15-0.3	0.15-0.3	>0.3	0.15-0.3	>0.3	0.15-0.3	0.15-0.3	>0.3	0.15-0.3	>0.3	0.15-0.3	>0.3	0.15-0.3	0.3	0.15-0.3	>0.3
F		nd Concentrativ			1 Background	ela me o	Location	C-1 West	C-2 West	C_2 Fact		C-3 West	C-4 East	C-A Contro		C-1 Wast		C-5 East	C Contro		C_5 \\/act		C_6 Eact		C-6 Contro		C-6 W/act	C-0 WC31
		ON PSQG Backgroun	ON PSQG LEL	ON PSQG SEL	ON Sediment Table		Site Area	C-1	C-2	C-3			C-4					C-5					C-6					

Standards / Guidelines Descriptions:
ON PSQG Background Concentrations:Ontario Provincial Sediment Quality Guideline - Table 3 and Table 4 Background Sediment Concentrations
ON PSQG LEL:Ontario Provincial Sediment Quality Guideline - Lowest Effect Level
ON PSQG SEL:Ontario Provincial Sediment Quality Guideline - Severe Effect Level
ON PSQG SEL:Ontario Provincial Sediment Quality Guideline - Severe Effect Level
ON Sediment Table 1 Background:Ontario Sediment Table 1: Full Depth Background Site Condition Standards

Notes:

μg/g - micrograms per gram m - metres

< - less than reported detection limit

'-' - sample not analyzed for parameter indicated

formatting of cells indicates exceedances of like-formatted standards

SLR

where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

Appendix "A" to Report PW19008(g)/LS19004(f) Page 196 of 486

City of Hamilton Ecological Risk Assessment

ON PSQG LEL ON PSQG SEL SLR Project No.: 209.40666.00000 January 2020

Ir	organi	cs	Ecological	Physical
				Parameters
ammonia and ammonium (as N)	kjeldahl nitrogen total	phosphorus	Fecal Coliforms	moisture
µg/g	µg/g	µg/g	MPN/100g	%
	550	600		
	4800	2000		

TABLE D-7: DEEP SEDIMENT -NUTRIENTS & BACTERIA

	Sample	Sample								
Site Area	Location	Depth (mbg)	Sample Date	Sample ID	Matrix Description					
C-1	C-1 West	0.15-0.3	2018-Sep-18	C-1>15 (10:40)	Core	200	600	934	<1000	37.8
C-2	C-2 West	0.15-0.3	2018-Sep-18	C-2>15 (11:10)	Core	200	800	937	<1000	28
0-3	C 2 Fact	>0.3	2019 Sop 19	C-3A>30 (16:50)	Coro	<100	<100	563	<1000	55.5
	C-5 Last	0.15-0.3	2010-3ep-18	C-3A>15 (16:50)	COTE	<100	300	637	<1000	25.7
	C-3 West	0.15-0.3	2018-Sep-18	C-3C>15 (16:20)	Core	200	600	929	9000	35.4
2-4	C-4 East	0.15-0.3	2018-Sep-19	C-4A>15 14:35	Core	<100	200	636	<1000	20.8
	C 4 Contro	0.15-0.3	2019 Sop 10	C-4B>15 15:15	Coro	100	700	1140	<1000	36
	C-4 Centre	>0.3	2010-3eb-19	C-4B>30 15:15	COTE	100	600	909	<1000	35.8
	C. A.Wost	0.15-0.3	2018 Son 10	C-4C>15 15:35	Coro	200	900	1090	<1000	33
	C-4 West	>0.3	2018-3ep-19	C-4C>30 15:35	COTE	100	800	881	<1000	32.4
2-5	C-5 East	0.15-0.3	2018-Sep-19	C-5A>15 14:10	Core	100	1400	1021	1000	51.1
	C 5 Contro	0.15-0.3	2018 Son 10	C-5B>15 13:15	Coro	<100	200	882	<1000	21.3
	C-5 Centre	>0.3	2018-3ep-19	C-5B>30 13:15	COTE	100	600	995	<1000	26.6
	C E Wort	0.15-0.3	2019 Son 10	C-5C>15 14:20	Coro	200	1200	1760	<1000	35.3
	C-5 West	>0.3	2010-3eb-19	C-5C>30 14:20	COTE	200	1500	1820	1000	44.7
-6	C 6 East	0.15-0.3	2018 Son 10	C-6A>15 10:15	Coro	100	700	827	<1000	26.1
	C-0 Last	>0.3	2018-3ep-19	C-6A>30 10:15	COTE	200	1000	1084	<1000	28.4
	C 6 Contro	0.15-0.3	2018 500 10	C-6B>15 10:35	Coro	<100	500	768	<1000	26
	C-0 Centre	0.3	2010-3eb-13	C-6B>30 10:35		100	1300	1444	<1000	28.3
	C 6 Wost	0.15-0.3	2019 500 10	C-6C>15 11:20	Coro	100	800	1059	<1000	24.4
	C-0 west	>0.3	2010-36b-13	C-6C>30 11:20	COLE	200	1200	1370	<1000	29.7

Standards / Guidelines Descriptions:

• ON PSQG LEL:Ontario Provincial Sediment Quality Guideline - Lowest Effect Level

• ON PSQG SEL:Ontario Provincial Sediment Quality Guideline - Severe Effect Level

Notes:

m - metres

 $\mu g/g$ - micrograms per gram

MPN - most probable number

< - less than reported detection limit

'-' - sample not analyzed for parameter indicated

• formatting of cells indicates exceedances of like-formatted standards

• where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

SLR Project No.: 209.40666.00000 January 2020

ON PWQO

	Sample						
Site Area	Location	Sample Date	Sample ID				
C-1	C-1 West	2019-Son-30	C-1 West	15.7	8.25	733	10.23
	C-1 West	2019-3ep-30	C-1 West Duplicate	15.7	8.25	733	10.23
C-3	C-3 Centre	2019-Sep-30	C-3 Centre - G5	16.1	7.61	760	5.99
	C-3 West	2019-Sep-30	C-3 West	15.9	7.65	771	6.38
C-4	C-4 West	2019-Sep-30	C-4 West	16.3	7.52	739	4.85
C-5	C-5 East	2019-Sep-30	C-5 East - G6	16.3	7.43	700	2.96
G-1	G-1 Comp	2019-Sep-30	G-1 Comp	15.7	8.36	729	10.4
G-4	G-4 Comp	2019-Sep-30	G-4 Comp	15.7	7.67	780	7.01
Reference	R-1	2019-Sep-30	R-1	18.1	7.76	1200	8.67
	R-2	2019-Sep-30	R-2	18.4	8.02	1205	9.75

mg/L - milligram per litre μS/cm -microseimens per centimeter oC - degrees centigrade

Standard/Guideline Descriptions

• ON PWQO:Ontario Provincial Water Quality Objectives, July 1994 (and updates)

Standard/Guideline Comments

#1:Dependent upon temperature, cold water biota, and warm water biota. Objective represents minimum DO concentration for warm water biota at 15 degrees.

Appendix "A" to Report PW19008(g)/LS19004(f) Page 198 of 409 of 486

City of Hamilton Ecological Risk Assessment SLR Project No.: 209.40666.00000 January 2020

Physica	l Paran	neters	Miso	cellanous
Total Suspended Solids	Total Organic Carbon	Dissolved Organic Carbon (Filtered)	Biochemical Oxygen Demand (5-day test)	Dibenz(a.j)acridine
mg/L	mg/L	mg/L	mg/L	mg/L

TABLE D-9: SURFACE WATER -PHYSICAL PARAMETERS

	Sample							
Site Area	Location	Sample Date	Sample ID					
C-1	C 1 Wost	2010 500 20	C-1 West	4.5	2.6	2.5	<2	<0.0001
	C-1 West	2019-3ep-30	C-1 West Duplicate	13.8	3	2.6	<2	<0.0001
C-3	C-3 Centre	2019-Sep-30	C-3 Centre - G5	19.8	4	3.4	2	< 0.0001
	C-3 West	2019-Sep-30	C-3 West	20.8	3.7	2.9	<2	<0.0001
C-4	C-4 West	2019-Sep-30	C-4 West	21.2	4.4	3.9	2	<0.0001
C-5	C-5 East	2019-Sep-30	C-5 East - G6	26.8	4.5	4.1	3	<0.0001
G-1	G-1 Comp	2019-Sep-30	G-1 Comp	5.3	2.4	2.5	<2	< 0.0001
G-4	G-4 Comp	2019-Sep-30	G-4 Comp	10.3	2.8	2.6	<2	<0.0001
Reference	R-1	2019-Sep-30	R-1	3.4	2.9	2.4	<2	<0.0001
	R-2	2019-Sep-30	R-2	<2	3.4	2.4	<2	< 0.0001

mg/L - milligram per litre

SLR Project No.: 209.40666.00000 January 2020

POLYCYCLIC AROMATIC HYDROCARBOI TABLE D-10: SURFACE WATER -

	(lstot fo mus) sHA9	µg/L		
	byrene	µg/L		0.025
	phenanthrene	µg/L	0.03 ^{#1}	0.4
	berylene	µg/L	0.00007 ^{#1}	
	ənəledinden	µg/L	7#1	1.1
	-2 ,ənəlshthqsnlyhtəm	µg/L	2#1	
	-1, ənələhthqsniydtəm	µg/L	2 ^{#1}	
	indeno(Σ,Σ,Σ,Ξ-cd)pyrene	µg/L		
	fluorene	µg/L	0.2 ^{#1}	m
	fluoranthene	µg/L	0.0008 ^{#1}	0.04
	dibenzo(a,i)pyrene	µg/L		
	9losed1sว[g,ɔ]osn9diQ-HT	µg/L		
PAHs	ansorthrac(d,s)znadib	µg/L	0.002 ^{#1}	
	cµıλseue	µg/L	$0.0001^{#1}$	
	penzo(a)pγrene	µg/L		0.015
	benzo(k)fluoranthene	µg/L	0.0002 ^{#1}	
	benzo(g,h,i)perylene	µg/L	0.00002 ^{#1}	
	penzo(e)pyrene	µg/L		
	benzo(b+j)fluoranthene (SPLP)	µg/L		
	ənəsendtna(a)snəd	μg/L	0.0004 ^{#1}	0.018
	anthracene	µg/L	0.0008 ^{#1}	0.012
	ənəhthqanəsa	µg/L		5.8
	ənəlyhthqanəse	µg/L		
		_		
	SNS			

								1		1	202		1		2) 1					0 1			
ON PWQO					0.0008	^{#1} 0.000	#1		0.00002 ^{#1}	0.0002 ^{#1}		$0.0001^{#1}$	0.002 ^{#1}		0.000	8 ^{#1} 0.2 [‡]	1	2 ^{#1}	2#1	7 ^{#1} 0.0000	7 ^{#1} 0.03	#1		_
CCME WQG Fresh	water Aquatic	Life (long term)		5.	8 0.012	0.01	~				0.015				0.0	t 3				.1	0.	1 0.02	5	
																								I
	Sample																							
Site Area	Location	Sample Date	Sample ID																					
C-1	C 1 Wort	2010 500 20	C-1 West	<0.1 <0.	1.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	L <0.2	<0.5	< 0.5 <	0.5 <0.5	~0	1 <0.	1 <2	_
		ne-dae-etnz	C-1 West Duplicate	<0.1 <0	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	L <0.2	<0.5	< 0.5 <	0.5 <0.5	<0>	1 <0.	1 <2	
C-3	C-3 Centre	2019-Sep-30	C-3 Centre - G5	<0.1 <0.	1.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0	1 <0.	L <0.2	<0.5	<0.5 <	0.5 <0.5	.0 V	1 <0.	1 <2	_
	C-3 West	2019-Sep-30	C-3 West	<0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1	L <0.2	<0.5	<0.5 <	0.5 <0.5	~0~	1 <0.	1 <2	
C-4	C-4 West	2019-Sep-30	C-4 West	<0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	1 <0.2	<0.5	< 0.5 <	0.5 <0.5	~0~	1 <0.	1 <2	
C-5	C-5 East	2019-Sep-30	C-5 East - G6	<0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	1 <0.2	<0.5	< 0.5 <	0.5 <0.5	~0	1 <0.	1 <2	_
G-1	G-1 Comp	2019-Sep-30	G-1 Comp	<0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	1 <0.2	<0.5	<0.5 <	0.5 <0.5	<0>	1 <0.	1 <2	_
G-4	G-4 Comp	2019-Sep-30	G-4 Comp	<0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	1 <0.2	<0.5	< 0.5 <	0.5 <0.5	~0	1 <0.	1 <2	_
Reference	R-1	2019-Sep-30	R-1	<0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	1 <0.2	<0.5	<0.5 <	0.5 <0.5	<0>	1 <0.	1 <2	_
	R-2	2019-Sep-30	R-2	<0.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.01	<0.1	<0.1	<0.1 <0.	1 <0.	1 <0.	1 <0.2	<0.5	<0.5 <	0.5 <0.5	~0~	1 <0.	1 <2	_
																								1

µg/L - microgram per litre

 Standard/Guideline Descriptions

 • ON PWQO:Ontario Provincial Water Quality Objectives, July 1994 (and Updates)

 • CCME WQG Freshwater Aquatic Life (long term):CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term)

Standard/Guideline Comments #1:Interim PWQO

City of Hamilton Ecological Risk Assessment

Standard/Guideline Descriptions • ON PWQO:Ontario Provincial Water Quality Objectives, July 1994 (and updates)

Standard/Gudeline Comments Standard/Gudeline Comments #2:Interim PWOO. The PWOO Is 100 ug/L. #3:Criteria is for Isoshed merter #5:Gudeline is dependent on waterbook hardness. Most conservative value listed. Most conservative value listed. pH dependent *hardness dependent

Appendix "A" to Report PW19008(g)/LS19004(f) Page 2000 f 486

SLR Project No.: 209.40666.00000 January 2020

																				Metals	_ د																
ТА	BLE D-11: N	SURFACE AETALS	E WATI	- E	bsəl	lead (Filtered)	muisəngem	(Filtered) muizəngem	əsəueguem	(Filtered) esenegnem	mercury	mercury (Filtered)	wnuəpqʎjow	molybdenum (Filtered)	nickel nickel (Filtered)	unissefod	potassium (Filtered)	minalas	selenium (Filtered)	silver silver (etheral)	siiver (Hirtered)	sodium (Filtered)	strontium	strontium (Filtered)	muilledt	(Filtered) muillent	tin	tin (Filtered)	titanium	(Filtered) muinstit	muinsiu	uranıum (Filtered)	muibenev (baratii3) muibenev	zinc	zinc (Filtered)	muinoziz	zirconium (Filtered)
					Hg/L	Hg/L	mg/L	mg/L	µg/L	μg/L	μg/L	Hg/L	Hg/L	ug/L H	g/L µg.	// hg/r	Hg/L	hg/L	Hg/L	July Lake	g/L m£	g/L mg	/L µg/l	L µg/L	µg/L	µg/L	Hg/L 1	Hg/L 1	1 1/8n	rd γ	g/L Ht	g/L µ	lg/L μg.	/L µg/	L µg/L	Hg/L	µg/L
ON PWQO					1 ^{#1} - 5 ^{#1 %1}	* 1 ^{#1} - 5 ^{#1} **					0.2"4	0.2	40*1	40 #1	25 2:	5		100	100	0.1 0	1.1				0.3 #1	0.3 ^{#1}					111	1.11	6 ^{#1} 6 [#]	1 20 [#]	¹¹ 20 ^{#1}	4*1	4*1
	Sample																																				
Site Area	Location	Sample L	Date	Sample ID																																	
C-1	C 1 Micce	1010 500	50 C-1	West	0.4	<0.1	17.5	17.4	20.3	15.2	<0.05	<0.05	2	2.1	1.1	3400	3350	0.2	0.2	<0.1 <(0.1 80	0.8 81	.7 1090	0 1070	<0.3	< 0.3	<0.1	<0.1	3.1	0.3 0.	734 0.7	748	1	7 17	12	<0.4	<0.4
	C-T MC21	don or oz	-1-0	West Duplicate	1	<0.1	17.8	18.3	30	15.8	<0.05	<0.05	2	2.1 1	1.4 1	3470	3550	0.2	0.2	<0.1 <l< td=""><td>0.1 80</td><td>0.8 82</td><td>.3 1070</td><td>0 1130</td><td><0.3</td><td>< 0.3</td><td>< 0.1</td><td><0.1</td><td>5.8</td><td>0.3 0.3</td><td>73 0.</td><td>777</td><td>1.2 0.</td><td>8 22</td><td>11</td><td><0.4</td><td><0.4</td></l<>	0.1 80	0.8 82	.3 1070	0 1130	<0.3	< 0.3	< 0.1	<0.1	5.8	0.3 0.3	73 0.	777	1.2 0.	8 22	11	<0.4	<0.4
C.3	C-3 Centre	2019-Sep-	-30 C-3	Centre - G5	1.9	<0.1	17.5	17.5	73	56.3	<0.05	<0.05	2.1	2.2	1.9 1.	2 388C	3770	0.3	0.2	<0.1 <(9.1 82	.1 88	.3 947	940	<0.3	< 0.3	< 0.1	<0.1	8.6	0.2 0.	666 0.(675 :	1.9 1.	1 20	9	<0.4	<0.4
	C-3 West	2019-Sep-	-30 C-3	West	2.1	<0.1	17.9	17.6	71.3	54.2	<0.05	<0.05	2.1	2.1 1	1.8 1.	3 3870	3740	0.2	0.2	<0.1 <l< td=""><td>0.1 84</td><td>1.2 89</td><td>.8 976</td><td>952</td><td><0.3</td><td>< 0.3</td><td>< 0.1</td><td>< 0.1</td><td>8.9</td><td>0.2 0</td><td>.0 69</td><td>702</td><td>1.9 1.</td><td>1 21</td><td>ŝ</td><td><0.4</td><td><0.4</td></l<>	0.1 84	1.2 89	.8 976	952	<0.3	< 0.3	< 0.1	< 0.1	8.9	0.2 0	.0 69	702	1.9 1.	1 21	ŝ	<0.4	<0.4
C-4	C-4 West	2019-Sep-	1-30 C-4	West	2.1	<0.1	17	16.7	88.2	63	<0.05	<0.05	2	2	1.9 1.	8 3890	3750	0.3	0.2	<0.1 <(9.1 79	9.8 82	.1 881	869	<0.3	< 0.3	< 0.1	<0.1	9.2	0.1 0.	602 0.0	601	2.1 1.	2 20	4	<0.4	<0.4
C-5	C-5 East	2019-Sep-	30 C-5	East - G6	2.3	<0.1	16.5	16.7	98.9	76.2	<0.05	<0.05	2	2	2 1.	2 3920	3950	0.3	0.2	<0.1 <l< td=""><td>9.1 72</td><td>.8 77</td><td>.6 850</td><td>869</td><td><0.3</td><td><0.3</td><td>< 0.1</td><td>< 0.1</td><td>11.2</td><td><0.1 0.</td><td>556 0.1</td><td>577 2</td><td>2.3 1.</td><td>2 21</td><td>4</td><td><0.4</td><td><0.4</td></l<>	9.1 72	.8 77	.6 850	869	<0.3	<0.3	< 0.1	< 0.1	11.2	<0.1 0.	556 0.1	577 2	2.3 1.	2 21	4	<0.4	<0.4
6-1	G-1 Comp	2019-Sep-	-30 G-1	Comp	0.5	<0.1	17.5	17.5	18.1	11.8	<0.05	<0.05	2	2.1 1	1.2 1	3350	3320	0.2	0.2	<0.1 <(9.1 74	8 81	.9 1100	0 1090	<0.3	<0.3	< 0.1	<0.1	3.7	0.2 0.	741 0.	.75	1 0.	7 17	6	<0.4	<0.4
G-4	G-4 Comp	2019-Sep-	1-30 G-4	Comp	1.2	<0.1	18.4	18.1	50.4	39.8	<0.05	<0.05	2.1	2.2	1.7 1.	2 384C	3750	0.3	0.2	<0.1 <l< td=""><td>9.1 87</td><td>.9 93</td><td>.4 102(</td><td>9 1020</td><td><0.3</td><td><0.3</td><td>< 0.1</td><td><0.1</td><td>9</td><td>0.2 0</td><td>73 0.</td><td>741 5</td><td>1.4 0.</td><td>9 21</td><td>б</td><td><0.4</td><td><0.4</td></l<>	9.1 87	.9 93	.4 102(9 1020	<0.3	<0.3	< 0.1	<0.1	9	0.2 0	73 0.	741 5	1.4 0.	9 21	б	<0.4	<0.4
Reference	R-1	2019-Sep-	+30 R-1		0.1	<0.1	28.9	28.9	136	101	<0.05	<0.05	2	2.1 (0.7 0.	7 5016	1 4870	0.2	0.2	<0.1 <(9.1 12	21 12	4 261(9 2580	<0.3	<0.3	<0.1	<0.1	0.6	0.1 1	.46 1.	.47 (0.2 0.	1 5	4	<0.4	<0.4
	R-2	2019-Sep-	1-30 R-2		<0.1	<0.1	27.9	28.6	125	106	<0.05	<0.05	2	2 0	0.7 O.	7 478C	4960	0.2	0.2	<0.1 <l< td=""><td>0.1 11</td><td>12 12</td><td>3 252(</td><td>9 2570</td><td><0.3</td><td>< 0.3</td><td>< 0.1</td><td><0.1</td><td>0.3</td><td><0.1 1</td><td>.45 1.</td><td>.45 (</td><td>0.2 0.</td><td>1 4</td><td>8</td><td><0.4</td><td><0.4</td></l<>	0.1 11	12 12	3 252(9 2570	<0.3	< 0.3	< 0.1	<0.1	0.3	<0.1 1	.45 1.	.45 (0.2 0.	1 4	8	<0.4	<0.4
me/L - millieram t	ser litre																																				
ug/L - microgram	per litre																																				
Standard/Guideli	ine Description	ş																																			
 ON PWQO:Onts 	ario Provincial V	Nater Quality	hy Objectiv	'es,																																	
ulv 1994 (and	undates)																																				

Appendix "A" to Report PW19008(g)/LS19004(f) Pageage 212 of 486

Page 2 of 2

SLR Project No.: 209.40666.00000

January 2020

TABLE D-12: SURFACE WATER -NUTRIENTS & BACTERIA

ON PWQO CCME WQG Freshwater Aquatic Life (long term)

Ecological	E. coli	CFU/100mL	100 ^{#3}	
	(Filtered)	mg/L		
	nosilis	mg/L		
	phosphorus (Filtered)	mg/L	$0.01^{#2}$	
	snıoydsoyd	mg/L	$0.01^{#2}$	
cs	orthophosphate (PO4-P)	mg/L		
Inorgani	(N 26) antrite bus ofter (n 20)	mg/L		
	nitrite (as N)	mg/L		0.06
	(N se) ətrətin	mg/L		
	kjeldahl nitrogen total	mg/L		
	(N se) muinomme bne einomme	mg/L		
	einomme	mg/L	0.02 ^{#1}	0 010

	Sample														
Site Area	Location	Sample Date	Sample ID												
C-1	C 1 M/oc+	00 000 000	C-1 West	0.003	0.05	0.6	1.95	0.22	2.17	0.44	0.415	0.401	3.05	2.77	4100
		DC-D2C-CTD7	C-1 West Duplicate	0.0041	0.07	0.6	1.91	0.22	2.13	0.44	0.45	0.41	3.16	2.75	3100
C-3	C-3 Centre	2019-Sep-30	C-3 Centre - G5	0.009	0.62	1.1	1.77	0.11	1.88	0.37	0.371	0.26	3.52	2.78	1700
	C-3 West	2019-Sep-30	C-3 West	0.0092	0.59	1.1	1.8	0.13	1.93	0.38	0.388	0.271	3.62	2.8	1200
C-4	C-4 West	2019-Sep-30	C-4 West	0.0101	0.84	1.4	1.64	0.09	1.73	0.33	0.363	0.217	3.55	2.75	800
C-5	C-5 East	2019-Sep-30	C-5 East - G6	0.0103	1.05	1.5	1.44	0.07	1.51	0.3	0.314	0.166	3.71	2.69	390
G-1	G-1 Comp	2019-Sep-30	G-1 Comp	0.0053	0.07	0.5	1.94	0.2	2.14	0.44	0.428	0.42	3.04	2.68	2800
G-4	G-4 Comp	2019-Sep-30	G-4 Comp	0.0065	0.4	1.2	2.07	0.28	2.35	0.43	0.425	0.343	3.26	2.79	1900
Reference	R-1	2019-Sep-30	R-1	0.0007	0.03	0.3	0.33	<0.05	0.33	<0.05	<0.01	<0.01	3.97	3.8	10
	R-2	2019-Sep-30	R-2	<0.0004	<0.01	<0.2	0.31	<0.05	0.31	<0.05	<0.01	<0.01	3.79	4.41	30

CFU - colony-forming unit

mg/L - milligram per litre

Standard/Guideline Descriptions

ON PWQO: Ontario Provincial Water Quality Objectives, July 1994 (and updates)

• CCME WQG Freshwater Aquatic Life (long term):CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term)

Standard/Guideline Comments

#1:The percentage of un-ionized ammonia in aqueous ammonia solution varies with temperature and pH.

#2:Interim PWQO. Criteria changes with site, most conservative value given

#3:100 E. coli per 100 mL. (based on a geometric mean of at least 5 samples)

SLR

City of Hamilton Ecological Risk Assessment

	Inorganics		
TABLE D-13: POREWATER - INORGANICS		hydrogen sulfide	sulphide
	mg/L	mg/L	mg/L
Reported Detection Limit	2	0.0019	0.0018
ON PWQO		0.002	

	Sample	Well Screen					
Site Area	Location	Depth (mbg)	Sample Date	Sample ID			
C-1	C-1 West	-	2019-Oct-1	C1 WEST-PW	8.5	0.028	0.027
C-3	C-3 West	-	2019-Oct-1	C3 WEST-PW	9.5	0.069	0.065
C-4	C-4 West	-	2019-Oct-1	C4 WEST-PW	31	0.22	0.21
G-4	G-4 Comp	-	2019-Oct-1	G4-PW	14	0.089	0.084
G-5	G-5 Comp	-	2019-Oct-1	C3 CENTRE / G5-PW	6.4	0.027	0.025

Statistical Summary

Number of Results	9	9	9
Number of Detects	7	9	9
Minimum Concentration	<2	0.027	0.025
Minimum Detect	6.4	0.027	0.025
Maximum Concentration	31	0.22	0.21
Maximum Detect	31	0.22	0.21
Average Concentration	11	0.079	0.075
Median Concentration	8.5	0.069	0.065
Standard Deviation	9.3	0.062	0.059
Number of Guideline Exceedances	0	9	0
Number of Guideline Exceedances(Detects Only)	0	9	0

Standard/Guideline Descriptions

• ON PWQO: Ontario Provincial Water Quality Objectives, July 1994

Appendix "A" to Report PW19008(g)/LS19004(f) Page 204 of 416 of 486

APPENDIX E BV Toxicity Report

1

SLR Consulting (Canada) Ltd.

Statistical Analysis Benthic ID Contract 2019

Prepared by:

• tel 905-641-3468

St. Catharines, ON Canada

fax 905-641-5413

L2R 2N6

www.entomogen.ca

info@entomogen.ca

TABLE OF CONTENTS

INTRODUCTION	3
Definitions	3
Objectives	4
MATERIALS AND METHODS	4
SOFTWARE	4
DATA ANALYSIS	4
RESULTS AND INTERPRETATIONS	7
REFERENCES	15

INTRODUCTION

DEFINITIONS

Morisita Horn Similarity Index: A measure of how similar two communities are. The index ranges from 0 (no similarity) to 1 (perfect similarity). The index is calculated as follows:

$$C_D = rac{2\sum_{i=1}^S x_i y_i}{(D_x + D_y)XY}$$

where, xi is the number of times a taxa is represented in the total X of sample 1, yi is the number of times a taxa is represented in the total Y of sample 2, Dx and Dy are the Simpson's Diversity index for samples 1 and 2 respectively, and S is the number of unique taxa.

Principal Components Analysis (PCA): A method to summarize the variance in a data set. PCA provides an overview of linear relationships between the sites, taxa, and explanatory variables (Buttigieg and Ramette 2014).

Rarefaction Curve: A plot of the number of taxa as a function of the number of individual samples.

Redundancy Analysis (RDA): A statistical method to extract and summarise variation in a data set of variables that can be explained by another set of explanatory variables (Gotelli and Colwell, Ch. 4). In this report, the explanatory variables are the data from the sediment analysis.

<u>entomo gen</u>

RDA first involves multiple linear regression on the response variables on multiple variables and the fitted values are then subjected to a principal components analysis (PCA) (Buttigieg and Ramette 2014).

OBJECTIVES

Entomogen Inc. was contracted by SLR Consulting (Canada) Ltd. to analyze benthic identification data. The objectives of this analysis are to (1) calculate the species richness, Shannon diversity, and Simpson diversity, (2) calculate the similarity between all possible pairwise combinations of sites, and (3) identify whether data from the sediment sampling have a strong influence on the explained variance in the data set.

MATERIALS AND METHODS

SOFTWARE

Data were recorded and input into Microsoft Excel 2010 and imported into the statistical computing program R version 6.1 (R Core Team 2019). Various analyses were performed with the following packages all downloaded directly form R: *iNEXT, vegan, stats,* and *SpadeR*. Microsoft PowerPoint was utilized to prepare the figures.

DATA ANALYSIS

We calculated the Hilsenhoff biotic index (HBI), Simpons Diversity Index (1-D), Shannon-Weiner Diversity Index (H), Pielou's eveness (J'), % Chironomidae, and % Ephemeroptera, Plecoptera, Trichoptera (EPT). These equations are found in the Appendix.

<u>entomo gen</u>

We plotted the number of taxa as a function of the number of individuals for each site using the *iNEXT* package (Chao et al. 2016, Hsieh and Chao 2019). We calculated the abundance-based Hill numbers according to Chao et al. (2016) using the combined raw abundance data for all samples (A, B, C).

We calculated the Morisita-Horn indices using the *SpadeR* package using Hellinger-transformed abundance data (Chao et al. 2016). Hellinger transformation was computed with the *vegan* package (Oksanen et al. 2019). We further classified similarity indices as either very low (0.00 - 0.24), low (0.25 - 0.49), moderate (0.50 - 0.74), and high (0.75 - 1.00). These classifications determined the colour of the heat map.

Entomogen Inc. was provided sediment data from SLR Consulting (Canada) Ltd. A summary of these data are observed in Table 1.

Explanatory Variables	Units	Code
Misc. Inorganics		
Available (KCl) Total Kjeldahl	ma/ka	Nitrogen
Nitrogen	mg/kg	
Nutrients		
Available (KCl) Ammonia (N)	mg/kg	Ammonia
Available (NH4F) Phosphorus (P)	mg/kg	Phosphorus
Physical Properties		
% sand by hydrometer	%	Sand
% silt by hydrometer	%	Silt
Clay Content	%	Clay
Gravel	%	Gravel

Table 1. Summary of sediment grain size data.

<u>entomo gen</u>

We set out to test the hypothesis that the explanatory variables had a significant effect on the variance of the data set. We performed a redundancy analyses with the explanatory variables serving as the constrained variables. Raw abundance data were first Hellinger-transformed using the *vegan* package in R (Oksanen et al. 2019). Sites G1 and R1 were omitted from this analysis because sediment data was not recorded. Gravel was removed from the analysis since it was less than 2% for each site. Available (NH4F) Phosphorus (P) for site C1 West was reported as less than 1%. For the statistical analysis we set this value to zero.

RESULTS AND INTERPRETATIONS

We summarize the abundance-based hill numbers species richness (q = 0), Shannon diversity (q = 1) and Simpson diversity (q = 2) in Table 2. Site G4 was observed to have the highest species richness and site C5 the lowest (Table 2). Additional diversity measures and indices are presented in Table 3 (attached excel file).

Site	Species Richness	Shannon Diversity	Simpson Diversity
	(q = 0)	(q = 1)	(q = 2)
G1	8	4.832 ± 1.802	3.206 ± 1.237
C6 East/G7	14	5.058 ± 0.545	3.437 ± 0.372
C3 West	11	3.859 ± 0.612	2.668 ± 0.323
C4 West	13	3.410 ± 0.352	2.327 ± 0.186
G4	22	5.526 ± 0.821	3.093 ± 0.349
C5 East/G6	6	2.522 ± 0.193	1.990 ± 0.134
C1 West	12	2.600 ± 0.104	2.183 ± 0.043
R1	10	3.718 ± 0.393	2.601 ± 0.225
C3 Centre/G5	12	4.828 ± 0.594	3.294 ± 0.364

Table 2. Summary of Abundance-Based Hill Numbers calculated using the *iNEXT* package.

Table 3. Classical diversity measures, indices, % Chironomidae, and % EPT for each sample.

<u>entomo gen</u>

The sample-based rarefaction curves are observed below in Figure 1. The *iNEXT* package interpolates the estimated species diversity given the number of sampled individuals. For example, if we sampled 250 taxa we would expect to identify ~ 20 taxa from site G4 but only 10 taxa from site C1 West. Site C1 West and C5 East/G6 are approaching their asymptote (Figure 1). Therefore, we would not expect to identify more than 6 taxa at site C5 East/G6 and 12 for C1 West. The other sites require more sampling to fully describe the diversity of the aquatic communities. This is noted by the upward trend in the extrapolation curves.

<u>entomo gen</u>

Figure 1. Sample based rarefaction curve. The shade regions represent the 95% CI.

<u>entomo gen</u>

The Morisita Horn similarity indices and number of shared taxa for each pair of sites is presented in Figure 2. The top 3 similar site-pairs were (1) R1 & C6 East/G7, (2) R1 & C4 West, and (3) C4 West & C3 West. The top 3 dis-similar site-pairs were (1) C5 East/G6 & G1, (2) C4 West & G1, (3) and C6 East/G7 & G1 (Figure 2). G1 & C6 East/G7 and G1 and C5 East/G6 shared the least number of taxa (n=2) while C4 West & G4 shared the greatest (n=11) (Figure 2).

		G1	C6 East/G7	C3 West	C4 West	G4	C5 East/G6	C1 West	R1	C3 Centre/G5
	G1	X	0.113	0.137	0.104	0.288	0.071	0.205	0.124	0.697
9	C6 East/G7	2	Х	0.941	0.958	0.641	0.907	0.769	0.951	0.445
Тах	C3 West	3	6	х	0.964	0.788	0.835	0.926	0.999	0.601
red	C4 West	4	8	6	Х	0.620	0.957	0.799	0.988	0.427
Shai	G4	4	9	8	11	х	0.422	0.942	0.714	0.895
of S	C5 East/G6	2	4	5	3	5	Х	0.611	0.891	0.235
ber	C1 West	5	4	6	6	9	4	Х	0.873	0.790
um	R1	3	6	5	7	8	3	5	Х	0.530
Ż	C3 Centre/G5	5	5	5	8	8	3	6	7	х
		1	Number of S 1	hared Taxa 0+		Morisita H 0.	orn Similarit 75 – 1.00	y Index High		
			7	- 9		0.	50-0.74	Modera	te	
			3	- 6		0.	25 – 0.49	Low		
				2		0.	00 - 0.24	Very Lor	w	

Morisita Horn Similarity Indices

Figure 2. Morisita Horn Similarity Indices and number of shared taxa among the sites.

We performed a redundancy analysis in R using the following model:

Model: rda(formula = Hellinger_abundance_data ~ Nitrogen + Ammonia + Phosphorus + Sand + Silt + Clay, data = data.slr)

We performed a permutation test with 999 permutations. We observed that a significant proportion of the variance was explained by the model (F(6, 14) = 2.657, p < 0.001). We performed additional permutation tests on the explanatory variables and axes. A summary of all permutational tests conducted is observed in Table 4. 53.2% of the variance was described by the explanatory variables and 46.8% of the variance was not explained.

Variable	Variance	F statistic	P value
		_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Model	0.136	2.657	< 0.001*
Nitrogen	0.041	4.850	0.004*
Ammonia	0.032	3.776	0.009*
Phosphorus	0.011	1.304	0.223
Sand	0.028	3.270	0.017
Silt	0.012	1.501	0.171
Clay	0.011	1.241	0.244
RDA1	0.081	9.6026	0.002*
RDA2	0.018	2.098	0.560
RDA3	0.014	1.623	0.694
RDA4	0.011	1.363	0.704

Table 4. Summary of permutational tests.

* Indicates significant results at the p = 0.05 level.

Trends in the variance of the data set are visualized in an ordination plot (Figure 3). The x-axis (RDA1) explained 60.2% of the total explained variance and the y-axis (RDA2) explained 13.2% of the total explained variance. The large cluster of taxa in the center of the plot means that these taxa are evenly dispersed among the sites. *Caecidotae* are strongly associated with sites G4, C4 West, and C3 Centre/G5. *Limnodrilus* are strongly associated with sites C5 East/G6 and C4 West. *Chironomus* are strongly associated with sites C3 West and C1 West. *Cryptochironomus* and Naididae: Tubificinae (immature without hairs) are associated with sites C6 East/G7 and C1 West.

<u>entomo gen</u>

Overall the model did not perform well. No single explanatory variable explained more than 5% of the variance (Table 4). Nitrogen, Ammonia, and the first axis were found to contribute to a significant proportion of the variance whereas all other variables were not significant (Table 4). We did not observe strong clustering among the sampling replicates (the A, B and C of each site). This indicates variation in the replicates (A, B, C) regarding both species diversity and abundance. We also observed a high proportion of variation not explained by the explanatory variables in our model (46.8%). These data together suggest that the sediment grain size data are not sufficient to describe variation in taxa at the sites and that other variables may be driving the system.

We performed an additional set of analyses where the A, B, C replicates were combined to yield the total abundance of each taxa. However, this data set did not yield a significant overall global permutation test result (p > 0.05).

REFERENCES

Buttigieg PL, Ramette A (2014) A Guide to Statistical Analysis in Microbial Ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol. 90: 543–550.

Chao, A., K. H. Ma, T. C. Hsieh and Chun-Huo Chiu (2016). SpadeR: Species-Richness Prediction and Diversity Estimation with R. R package version 0.1.1.

Chao, A., Nicholas J. Gotelli, T. C. Hsieh, Elizabeth L. Sander, K. H. Ma, Robert K. Colwell, and Aaron M. Ellison 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84:45-67.

Gotelli and Colwell, Ch. 4. Estimating Species Richness.

http://www.uvm.edu/~ngotelli/manuscriptpdfs/Chapter%204.pdf

Hsieh, T.C., K. H. Ma and Anne Chao. 2019 iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.19 URL: http://chao.stat.nthu.edu.tw/blog/software-download/.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, C. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs and H. Wagner (2019). vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

APPENDIX

Equations and Formulas

HBI= \sum (ni*ai)/N n= number of specimens in taxa i a= tolerance value of taxa i N= total number of specimens in sample

Simpson's 1-D= 1- $[\sum n(n-1)/N(N-1)]$ n= total number of individuals in each taxa N= total number of individuals in all taxa

Shannon's H= -∑ [(pi)*ln(pi)] pi= number of individuals of taxon i/ total # of organisms

J'= H'/H'max H'= Shannon's index value H'max= the maximum value for H' if species were perfectly distributed across the population = ln(S)

S= total richness

Appendix "A" to Report PW19008(g)/LS19004(f) Page 221 of 406 of 486

WOOD: Chedoke Creek, Aquatic Invertebrate Identifications 2018: Raw Data

Waterbody	G1			C6 East/G7			C3 West			C4 West			G4	[]]	
Station	Α	В	С	A	В	С	A	В	С	A	В	С	Α	В	С
DATE	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.
% Subsampled	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
TAXA LIST															
ACADIFORMES.															
						1									
						I									
Limnesia							2	1							1
Linnesite							-								
ANNELIDA:HIRUDINIDA															
ERPOBDELLIDAE		1													
ANNELIDA:OLIGOCHAETA															
ENCHYTRAEIDAE:															
Lumbricillus			1												
NAIDIDAE:NAIDINAE						1								L	
Nais						1						2	1	ļ	
														<u> </u>	
Immoture with heire			-		1					1				<u>⊢</u>	
Immature without hoirs				10	27	10		24	10	1	0	86	11	16	p
Limmodrilus		2		6	21	40		34	2	47	9	11	2	0	2
Lininouritus		2	+	0	U	9			2	10	0	11		3	2
ASELLIDAE:															
Caecidotea	6	2	4									1	1		2
	-														
INSECTA:															
DIPTERA:															
CERATOPOGONIDAE:															
Ceratopogon				2	1	2		1		1	1	2	1		
Culicoides															
CHIRONOMIDAE: CHIRONOMINAE:					3			1			1		2		
Chironomus			3	9	11	8	14	4	9	9	15	17	42	31	15
Cladopelma					1	1				1	2	2	2	2	2
Cladotanytarsus						-									1
Cryptochironomus				15	3	5	1	1						ļ	2
Dicrotendipes								1						<u> </u>	
Glyptotendipes					4										
Microtenaipes pedelius					1										1
Phaenopsectra Baluma dilum													1		
Tanutarus													1		
Tribelos								1							
CHIRONOMIDAE: ORTHOCI ADIINAE:			2				2	1				1	1	2	2
Cricotopus bicinctus			-				-						1		-
Eukiefferiella												1			1
Orthocladius															
CHIRONOMIDAE: TANYPODINAE:							1								
Procladius													1		
Tanypus neopunctipennis				1		_									
Tanypus						2								1	
CULICIDAE:			L												
Culex pipiens												1		ļ	
PSYCHODIDAE:													1	<u> </u>	
			<u> </u>										1	1	
TIPULIDAE:														<u> </u>	4
Limontu			-											<u>⊢</u>	1
PISIDIDAE		1													
i ioioiioiic.		<u> </u>	+							ł					
MOLLUSCA: GASTROPODA															
PHYSIDAE:															
Physella	1	1		1			1	1	1	1					
				1											
NEMATODA:										1			1		
Total Taxa	2	4	4	6	9	10	5	9	3	7	6	10	15	7	12
Total Specimens	7	6	10	43	56	78	20	45	24	70	36	124	69	62	38

Appendix "A" to Report PW19008(g)/LS19004(f) Page 233 of 486

Waterbody	C5 East/G6			C1 West			R1			C3Centre/	G5	
Station	A	В	С	A	В	С	A	В	С	A	В	С
DATE	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.	19.10.
% Subsampled	100	100	100	100	100	100	100	100	100	100	100	100
TAXA LIST												
ACARIFORMES:												
HYDRYPHANTIDAE												
LIMNESIIDAE:												
Limnesia		1	1									
ANNELIDA:HIRUDINIDA												
ERPOBDELLIDAE										L		1
							-					
	-									<u> </u>		
ENGETTRAEIDAE.				2						<u> </u>		
Lumbricitius				2						I		
Nais								1		4		
11000				1						1		
NAIDIDAE:TUBIFICINAE										1		
Immature with hairs								5	2		1	
Immature without hairs	33	60	11	164	82	47	1	56	25	6	6	1
Limnodrilus	22	15	6	3	5	3		7	2	3	1	1
CRUSTACEA: ISOPODA:												
ASELLIDAE:												
Caecidotea				5			1			3		29
INSECTA:												
DIPTERA:												
CERATOPOGONIDAE:												
Ceratopogon												
Culicoides	2											
CHIRONOMIDAE: CHIRONOMINAE:								1	1		1	
Chironomus	2	1	2	156	134	88	14	11	11	24	15	20
Cladopelma										L		
Cladotanytarsus										L		
Cryptochironomus	2		1		1	1	4	2	2	l		
Dicrotenaipes								2	3	<u> </u>		4
Giyptotenalpes										I		
Phaanonsastra										+		
Polynedilum								1		4		
Tanytarsus						1						
Tribelos										1		
CHIRONOMIDAE: ORTHOCLADIINAE:					4	2				1		4
Cricotopus bicinctus												
Eukiefferiella												2
Orthocladius												2
CHIRONOMIDAE: TANYPODINAE:						2						
Procladius												
Tanypus neopunctipennis												
Tanypus												
CULICIDAE:												
Culex pipiens												
PSYCHODIDAE:				1	1	1	1			1		3
Psychoda					1	1				L		
TIPULIDAE:												
Limonia										L		
										L		
										 		
PISIDIIDAE:	-									<u> </u>		
MOLILUSCA:CASTROPODA										l		
MOLLUSCA:GASTROPODA:										l		
PHISIDAE.										l		
rnysenu							-			<u> </u>		
NEMATODA	l			1	1		1			t		
	1			+			t			t	1	
Total Taxa	5	4	5	7	8	9	5	8	6	5	5	10
Total Specimens	61	77	21	332	229	146	18	84	44	37	24	64
rotal oppolitions			21	002	220	140	10			+ <i>"</i>	27	

	Tolerance Values (for HBI)
TAXA LIST	
ACARIFORMES:	
HYDRYPHANTIDAE	6
LIMNESIIDAE:	
Limnesia	6
ANNELIDA:HIRUDINIDA	
ERPOBDELLIDAE	8
ANNELIDA:OLIGOCHAETA	
ENCHYTRAEIDAE:	
Lumbricillus	10
NAIDIDAE:NAIDINAE	8
Nais	8
NAIDIDAE:TUBIFICINAE	
Immature with hairs	10
Immature without hairs	10
Limnodrilus	10
CRUSTACEA:ISOPODA:	
ASELLIDAE:	
Caecidotea	8
INSECTA:	
DIPTERA:	
CERATOPOGONIDAE:	
Ceratopogon	6
Culicoides	10
	6
Chironomus	10
Cladopelma	9
Cladotanytarsus	5
Cryptochironomus	8
Dicrotendines	8
Glyntotendines	10
Microtendines nedellus	6
Phaenonsectra	7
Pohyadilum	6
Tanytarsus	6
Tribalas	7
	5
CHIRONOMIDAE: ORTHOCLADIINA	5 7
Ending Critical La	1
Eukleffertella	4
	0
UNIKUNUMIDAE: TANYPUDINAE:	1
Procladius	9
Tanypus neopunctipennis	10
	10
	0
	8
PSTCHODIDAE:	10
Psychoda	10
TIPULIDAE:	
Limonia	6
MOLLUSCA:BIVALVIA:	~
PISIDIIDAE:	6
MOLLUSCA:GASTROPODA:	
PHYSIDAE:	
Physella	8
NEMATODA:	8
	· · · · · · · · · · · · · · · · · · ·

Summary Statistics	G1		Ö	6 East/G7			C3 West		
Index	A	ш	U	A	ш	U	A	В	ပ
Hilsenhoff biotic index (HBI)	8.000	8.333	8.200	9.116	9.518	9.654	8.850	9.467	10.000
Species Richness (S)	2	4	4	9	6	10	5	6	e
Simpson's Diversity Index (1-D)	0.286	0.867	0.778	0.776	0.714	0.599	0.511	0.427	0.583
Shannon-Wiener Diversity index (H)	0.410	1.330	1.280	1.539	1.551	1.369	1.010	1.019	0.907
Pielou's evenness (J')	0.592	0.959	0.923	0.859	0.706	0.595	0.628	0.464	0.826
% Chironomidae	0.000	0.000	50.000	58.140	33.929	20.513	90.000	20.000	37.500
% EPT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
% EPT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Ŭ	0.000

HBI= ∑(ni*ai)/N

n= number of specimens in taxa i a= tolerance value of taxa i N= total number of specimens in sample Simpson's 1-D= 1- $[\sum n(n-1)/N(N-1)]$ n= total number of individuals in each taxa N= total number of individuals in all taxa Shannon's $H= -\sum [(pi)*ln(pi)]$ pi= number of individuals of taxon i/ total # of organisms

J'= H'/H'max H'= Shannon's index value H'max= the maximum value for H' if species were perfectly distributed across the population = ln(S) S= total richness

	100		D	•		•			
Index A		В	с С	A	В	0	A	В	ပ
Hilsenhoff biotic index (HBI) 9.900	9.900	9.722	9.766	9.522	9.806	8.895	9.934	9.948	9.714
Species Richness (S) 7	7	9	10	15	7	12	5	4	5
Simpson's Diversity Index (1-D) 0.519	0.519	0.730	0.495	0.608	0.671	0.804	0.584	0.359	0.662
Shannon-Wiener Diversity index (H) 1.052	1.052	1.405	1.096	1.516	1.331	1.948	1.036	0.626	1.211
Pielou's evenness (J') 0.541	0.541	0.784	0.476	0.560	0.684	0.784	0.644	0.451	0.752
% Chironomidae 14.286	4.286	50.000	16.935	72.464	58.065	63.158	6.557	1.299	14.286
% EPT 0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

HBI= ∑(ni*ai)/N

n= number of specimens in taxa i a= tolerance value of taxa i N= total number of specimens in sample Simpson's 1-D= 1- $[\sum n(n-1)/N(N-1)]$ n= total number of individuals in each taxa N= total number of individuals in all taxa Shannon's $H= -\sum [(pi)*ln(pi)]$ pi= number of individuals of taxon i/ total # of organisms

J'= H'/H'max H'= Shannon's index value H'max= the maximum value for H' if species were perfectly distributed across the population = ln(S) S= total richness

Summary Statistics	C1 West			R1		0	:3 Centre/G5		
Index	4	В	c	A	В	c	A	В	с
Hilsenhoff biotic index (HBI)	9.964	9.895	9.849	9.778	9.833	9.773	9.838	9.833	8.438
Species Richness (S)	7	ø	6	5 2	ω	9	5 2	5 2	10
Simpson's Diversity Index (1-D)	0.537	0.531	0.536	0.405	0.533	0.620	0.554	0.565	0.699
Shannon-Wiener Diversity index (H)	0.875	0.930	1.004	0.838	1.159	1.218	1.081	1.038	1.515
Pielou's evenness (J')	0.450	0.447	0.457	0.521	0.557	0.680	0.672	0.645	0.658
% Chironomidae	46.988	60.699	64.384	83.333	17.857	34.091	64.865	66.667	45.313
% EPT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

HBI= ∑(ni*ai)/N

n= number of specimens in taxa i a= tolerance value of taxa i N= total number of specimens in sample Simpson's 1-D= 1- $[\sum n(n-1)/N(N-1)]$ n= total number of individuals in each taxa N= total number of individuals in all taxa Shannon's $H= -\sum [(pi)*ln(pi)]$ pi= number of individuals of taxon i/ total # of organisms

J'= H'/H'max H'= Shannon's index value H'max= the maximum value for H' if species were perfectly distributed across the population = ln(S) S= total richness

Site		G1		C	5 East/G7			C3 West	
Index	A	В	С	А	В	С	А	В	С
Hilsenhoff biotic index (HBI)	8.000	8.333	8.200	9.116	9.518	9.654	8.850	9.467	10.000
Species Richness (S)	7	4	4	9	6	10	5	6	ŝ
Simpson's Diversity Index (1-D)	0.286	0.867	0.778	0.776	0.714	0.599	0.511	0.427	0.583
Shannon-Wiener Diversity index (H)	0.410	1.330	1.280	1.539	1.551	1.369	1.010	1.019	0.907
Pielou's evenness (J')	0.592	0.959	0.923	0.859	0.706	0.595	0.628	0.464	0.826
% Chironomidae	0.000	0.000	50.000	58.140	33.929	20.513	90.000	20.000	37.500
% EPT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Index A					5		5		
	A	В	С	А	В	С	А	В	С
Hilsenhoff biotic index (HBI) 9.90	9.900	9.722	9.766	9.522	9.806	8.895	9.934	9.948	9.714
Species Richness (S)	7	9	10	15	L	12	5	4	5
Simpson's Diversity Index (1-D) 0.51	0.519	0.730	0.495	0.608	0.671	0.804	0.584	0.359	0.662
Shannon-Wiener Diversity index (H) 1.05	1.052	1.405	1.096	1.516	1.331	1.948	1.036	0.626	1.211
Pielou's evenness (J') 0.54	0.541	0.784	0.476	0.560	0.684	0.784	0.644	0.451	0.752
% Chironomidae 14.28	4.286	50.000	16.935	72.464	58.065	63.158	6.557	1.299	14.286
% EPT 0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Site)	C1 West			R1		C3	Centre/G5	
Index	А	В	С	А	В	С	А	В	С
Hilsenhoff biotic index (HBI)	9.964	9.895	9.849	9.778	9.833	9.773	9.838	9.833	8.438
Species Richness (S)	7	8	9	5	8	9	5	5	10
Simpson's Diversity Index (1-D)	0.537	0.531	0.536	0.405	0.533	0.620	0.554	0.565	0.699
Shannon-Wiener Diversity index (H)	0.875	0.930	1.004	0.838	1.159	1.218	1.081	1.038	1.515
Pielou's evenness (J')	0.450	0.447	0.457	0.521	0.557	0.680	0.672	0.645	0.658
% Chironomidae	46.988	669.09	64.384	83.333	17.857	34.091	64.865	66.667	45.313
% EPT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

www.bvlabs.com

BUREAU VERITAS LABORATORIES 4606 Canada Way Burnaby, BC, V5G 1K5 Office 604 734 7276 Toll Free 800 665 8566 Fax 604 731 2386

FRESHWATER SEDIMENT TOXICITY TESTING USING CHIRONOMUS DILUTUS AND HYALELLA AZTECA

Prepared for: SLR Consulting Ltd # 200 – 1620 West 8th Ave Vancouver, BC Canada, V6J 1V4

Prepared by: Ecotoxicology Group Bureau Veritas Laboratories

Job #: B985653 November 2019

EXECUTIVE SUMMARY

Freshwater sediment samples were collected between October 1st, 2019 and October 2nd, 2019 for testing. The samples arrived at Bureau Veritas Laboratories, in good condition, on October 3rd, 2019.

The following freshwater sediment toxicity tests were conducted on the samples; a 10 day survival and growth test with the freshwater midge, *Chironomus dilutus*, and a 14 day survival and growth test with the freshwater amphipod, *Hyalella azteca*.

All samples were initiated within their respective hold times with the *Chironomus* test ending on October 28, 2019 and the *Hyalella* test ending on October 31, 2019. The sample results were statistically assessed against the laboratory negative control for both the *Chironomus* test and the *Hyalella* test.

Details regarding the test results, methods, test conditions, organism acclimation, and quality control measures are summarised within the report. All tabulated data, raw data, and associated supporting documents are located within the report appendices.

Each test was considered valid as survival and growth in the negative control(s) met the validity criteria outlined in the associated reference methods.

TABLE OF CONTENTS

1	SEDI	IMENT DESCRIPTION	1
	1.1	Sample Information	1
	1.2	Negative Control Sediment	1
	1.3	Porewater Characterization	2
2	10 D	AY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST	3
	2.1	Test Methods	3
	2.2	Organism Information	4
		2.2.1 Organism Acclimation and Holding Information	4
		2.2.2 Organism Health	4
		2.2.3 Organism Age	4
	2.3	Test Conditions	4
	2.4	Quality Assurance/Quality Control	6
		2.4.1 Reference Toxicant Results	6
		2.4.2 Test Validity Criteria	6
	2.5	Results	6
		2.5.1 Data Analysis	7
	2.6	Deviations and Observations	7
3	14 D	AY HYALELLA AZTECA SURVIVAL AND GROWTH TEST	8
	3.1	Test Methods	8
	3.2	Organism Information	9
		3.2.1 Acclimation and Holding Information	9
		3.2.2 Organism Health	9
		3.2.3 Organism Age	9
	3.3	Test Conditions	9
	3.4	Quality Assurance/Quality Control	10
		3.4.1 Reference Toxicant Results	10
		3.4.2 Test Validity Criteria	11

	3.5	Results	11
		3.5.1 Data Analysis	12
	3.6	Deviations and Observations	12
4	REFE	ERENCES	13
Α		SAMPLE INFORMATION	•••••
В		10-DAY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST	•••••
С		14-DAY HYALELLA AZTECA SURVIVAL AND GROWTH TEST	•••••

LIST OF TABLES

Table 1-1	Physiochemical Characterization of Yaquina Bay Beach Sand	1
Table 2-1	Test Conditions for the 10-day Chironomus dilutus Test	5
Table 2-2	Reference Toxicant Test Result for Chironomus dilutus	6
Table 2-3	Results for Mean Chironomus dilutus Survival and Growth	7
Table 3-1	Test Conditions for the 14-day <i>Hyalella azteca</i> Test	10
Table 3-2	Reference Toxicant Test Results for Hyalella azteca	11
Table 3-3	Results for Mean Hyalella azteca Survival and Growth	12

SECTION

1 SEDIMENT DESCRIPTION

1.1 Sample Information

Freshwater sediment samples were collected between October 1st, 2019 and October 2nd, 2019 for testing. The samples arrived at Bureau Veritas Laboratories, in good condition, on October 3rd, 2019.

Samples were collected separately for grain size, total organic carbon content, and moisture content. The data for these analyses were sent to the client directly and are not part of this report.

All tests were initiated within their respective hold times. Sample information, including sample descriptions, porewater ammonia analyses, and water quality data are located in Appendix A. Upon opening the sample containers, a description of each sample was recorded ("Sediment Sample Descriptions" in Appendix A).

Prior to testing, each sample was homogenized, using a stainless steel spoon. Any headspace in the sample container was purged with nitrogen gas prior to re-sealing it in order to prevent oxidation of the sediment during storage. When not in use, the sediments were stored in the dark at $4 \pm 2^{\circ}$ C.

1.2 Negative Control Sediment

The control sediment (negative control) for the toxicity tests was collected from Yaquina Bay, Newport, Oregon, by staff of Northwestern Aquatic Sciences. This beach sand has been used as a negative control in previous studies within our laboratory, and has been found to be non-toxic to a variety of organisms. It was wet sieved through 500 µm stainless steel mesh and thoroughly washed with the appropriate control water before use in the tests.

Total Organic Carbon	Moisture Content	Sand	Silt	Clay
(mg/kg)	(%)	(%)	(%)	(%)
<500	17	96	2.1	2.0

Table 1-1 Physiochemical Characterization of Yaquina Bay Beach Sand

1.3 Porewater Characterization

On Day -1 of *Chironomus* testing, a seventh replicate of each sample was prepared, filled with reconstituted control water and aerated overnight, along with the test vessels. The following morning, the overlying water in the seventh replicate of each sample was decanted and aliquots of the sediment were distributed into 500 mL polycarbonate bottles. Nitrogen gas was placed over the sediments prior to centrifuging for 20 minutes at ~5,000 rpm. The resulting porewater was carefully decanted and analysed for ammonia, pH, and temperature.

Analysis of ammonia in porewater was performed at the Bureau Veritas Laboratories Inorganic Water Laboratory. The total ammonia concentrations as N (mg/L) in the samples, was measured under basic conditions using the Berthelot reaction in the presence of EDTA. A sample was treated sequentially until a blue indophenol complex formed, which could then be measured photometrically at 660 nm.

Results of the ammonia, temperature, and pH in porewater analyses for each of the test samples are available in Appendix A.

SECTION

2 10 DAY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST

2.1 Test Methods

The survival and growth of *Chironomus dilutus* larvae, when exposed to whole sediment samples for 10 days, was assessed according to the Bureau Veritas Laboratories Standard Operating Procedure: *Chironomus dilutus* 10-Day Survival and Growth Test (BBY2SOP-00010), which is based on the Environment Canada Biological Test Method: Test for Survival and Growth in Sediment Using the Larvae of Freshwater Midges (*Chironomus tentans* or *Chironomus riparius*) (EPS 1/RM/32).

One day prior to test initiation, the samples were homogenized, and a 100 mL aliquot was distributed into a 375 mL labelled test vessel including 2 additional replicates used for water quality and porewater measurements. Reconstituted moderately hard water was then slowly added to the vessel by pouring a stream of water onto a Plexiglas baffle to minimize disturbing the sediment layer. The test vessels were then randomized on the bench top, and airlines and lids were fitted to each test vessel.

The following day, aliquots of overlying water were removed from the test vessels for initial overlying water chemistry. The sixth replicate test vessel was used for water quality measurements for the duration of the test and the seventh replicate was decanted and centrifuged to extract porewater for ammonia, temperature, and pH measurements (see Section 1.3). To initiate the test, ten larval chironomids were randomly selected from their holding containers and directly seeded into the test vessels.

During the test, daily observations and aeration checks were performed. Temperature and dissolved oxygen measurements were taken three times per week in the test vessels designated for water quality measurements. Test vessels were also fed 3.75 mL TetraminTM flakes, prepared as a 4 g dry solids/L slurry, on the days water quality measurements were taken.

At test termination, the contents of each test vessel were sieved through a 500 μ m sieve in order to retrieve the live larval midges. The number of larvae found was recorded along with any other observations made. The organisms were then placed into pre-weighed aluminum weigh boats that were subsequently placed into a ~60°C drying oven for >24 hours. Missing chironomids were presumed to have died and decomposed during the test. Any larval midges that had reached the pupal or adult stage of development were excluded from the dry weight analysis, if applicable.

2.2 Organism Information

2.2.1 Organism Acclimation and Holding Information

One batch of laboratory-reared *Chironomus dilutus* larvae was received from Aquatic Biosystems on October 18, 2019. The midge larvae were shipped in 1L plastic containers filled with unbleached paper towels and overlying moderately hard water. Prior to shipping, the headspace in each container was filled with oxygen gas of a sufficient concentration to maintain adequate saturation levels in the shipping water. They were shipped directly for overnight delivery to Bureau Veritas Laboratories and arrived without incident.

Upon arrival at Bureau Veritas Laboratories, the water quality of the shipping water was measured and compared to the test conditions. Any moribund or deceased larvae were removed and recorded on the acclimation sheet, if applicable (Appendix B).

The chironomid larvae were not fed during the holding period as they were used the same day. Historically at Bureau Veritas Laboratories, it has been determined that little to no acclimation is required as long as the shipping, testing, and supplier laboratory conditions are similar.

2.2.2 Organism Health

The mortality rate during shipping did not exceed 10% overall. Bench sheets with the receiving water quality and observations of the number dead or inactive larvae are available in Appendix B.

2.2.3 Organism Age

At test initiation, 20 representative larvae were euthanized and their head capsule widths were measured to the nearest 0.01 mm, using an inverted microscope outfitted with an ocular micrometer. The average head capsule width of the organism batch was determined to be within the 0.33 - 0.45 mm range (see Table 2-1).

2.3 Test Conditions

See Table 2-1 for a detailed list of the test conditions. All bench sheets used to record raw data are available in Appendix B.

Table 2-1Test Conditions for the 10-day Chironomus dilutus Test

Parameter	Conditions and Methods
Test Type and Duration	10 Day, Static (non-renewal)
Temperature	Average daily temperature 23 \pm 1 °C; instantaneous temperature 23 \pm 3 °C.
Photoperiod and Light Intensity	16 hours light: 8 hours dark. Wide spectrum cool white fluorescent lights used to provide 602-818 lux.
Aeration	< 100 bubbles/ minute. Clean oil-free air supplied to each test vessel via micro-bore plastic tubing.
Test Chamber	375 mL glass jars with plastic lids containing small opening for airline tubing.
Sediment Volume	100 mL of each homogenized field replicate (3-4 cm depth).
Porewater Water Quality	Temperature, pH, and ammonia.
Overlying Water Source and Volume	175 mL (~5-6 cm depth); Reconstituted Moderately Hard Water; warmed to $23 \pm 1^{\circ}$ C and aerated >24 hours before use.
Overlying Water Quality	Temperature, pH, dissolved oxygen, conductance, hardness, alkalinity, and ammonia measurements on Day 0 and Day 10 of the test. Temperature and dissolved oxygen were also measured three times weekly during the test.
Replicates	5 replicates per sample, plus 2 additional replicates for water quality measurements and porewater analyses.
Control Sediment (Negative Control)	Yaquina Bay Beach Sand, rinsed with control water and sieved through a 500 µm stainless steel mesh.
Reference Sediment	None
Feeding	3.75 mL Tetramin [™] flakes as slurry (4g dry solids/L) per vessel, three times weekly.
Organisms/ replicate	10
Organism Source	Aquatic Biosystems, Fort Collins, Colorado.
Mortality during acclimation	0.0%
Mean Head capsule width and organism age	0.44 ± 0.10 mm; 3 rd instar larval midges
Endpoints	Mean Survival and Mean Dry Weight
Test Validity Criteria	≥70% mean survival in the negative controls. >0.6 mg mean dry weight in the negative controls.
Statistical Software	CETIS [™] version 1.9.2.4. Tidepool Scientific Software (Copyright 2009-2016).

2.4 Quality Assurance/Quality Control

2.4.1 Reference Toxicant Results

A 96 hour reference toxicant test, or positive control test, was conducted alongside the sediment test. The water-only test, using copper sulphate ($CuSO_4$), was initiated to aid in the assessment of organism sensitivity and the precision of the results. The resulting LC50 was then compared in a control chart against the results of previous tests. Table 2-2 summarises the result of the reference toxicant test.

The calculated LC50 for the reference toxicant test was within two standard deviations (95%) range of the historic mean LC50. This supports the assumption that the sensitivity of the organism batch was comparable to batches previously test in this laboratory.

A reference toxicant test is only one of the tools used to assess the health of an organism. Natural variability accounts for the spread in reference toxicant LC50s. The method used in preparing the control charts was based on from "Ecotoxicology Control Charting" (COR2WI-00002).

Organism Batch	Test Date	LC50 with 95% Confidence Limits (mg/L Cu ²⁺)	Previous Mean with 2SD (mg/L Cu ²⁺)
AB191118	2019 Oct 18	0.71 (0.47, 0.98)	0.70 (0.38, 1.3)

Table 2-2 Reference Toxicant Test Result for Chironomus dilutus

2.4.2 Test Validity Criteria

The test is considered to be acceptable if the mean percent survival in the negative control is \geq 70%, and the mean dry weight is \geq 0.6 mg. The mean percent survival of the negative controls was 96%, and the mean dry weight was 1.67 mg.

2.5 Results

Total survival and dry weights in each replicate, and mean \pm standard deviation (SD) in the control and test sediments are listed in the "*Chironomus dilutus* Survival and Growth Test - Survival of Larvae" and the "Chironomid Survival and Growth Test - Dry Weights of Larvae" data sheets, respectively. A summary of the test results is presented in Table 2-3.

Total ammonia concentrations, pH, temperature, dissolved oxygen, hardness, conductance, and alkalinity measurements of the overlying water at test initiation (Day 0) and completion (Day 10) are available in Appendix B.

2.5.1 Data Analysis

The survival and dry weight data for both the samples and the negative control were entered into the statistical program "Comprehensive Environmental Toxicity Information System" (CETIS[™], 2009-2016). When determining the appropriate comparison tests to use, the Environment Canada "Guidance Document on Statistical Methods for Environmental Toxicity Tests" (EPS 1/RM/46, 2005) was followed.

See the CETIS[™] Analytical Reports for information on the specific tests used for the mean survival and dry weight comparisons. Analyses between the negative control and samples were conducted as one-tailed comparisons. All analyses were done with the decision level for determining statistical significance set to 0.05 (p value <0.05). No significant difference between the samples versus the negative control was observed.

Table 2-3Results for Mean Chironomus dilutus Survival and Growth

Sample ID	Mean Survival ± SD (%)	Mean Dry Weight ± SD (mg)
Negative Control	96 ± 5	1.67 ± 0.21
C6 East / G7	94 ± 13	2.45 ± 0.26
C5 East / G6	90 ± 10	2.34 ± 0.37
C4 West	78 ± 8	1.94 ± 0.36
C3 West	94 ± 9	2.47 ± 0.29
C3 Centre / G5	86 ± 11	2.53 ± 0.26
G4	84 ± 5	2.49 ± 0.34
C1 West	80 ± 23	2.47 ± 0.38

SD = Standard Deviation

2.6 Deviations and Observations

At test end, one pupated organism was found in replicate C of sample C6 East/G7, replicates A, B & D for sample C3 Centre/G5, and replicate E of sample G4. Pupated organisms were not included in mean dry weight analysis. A strong odour was noted in all replicates of the C4 West sample.
SECTION

3

14 DAY HYALELLA AZTECA SURVIVAL AND GROWTH TEST

3.1 Test Methods

The survival and growth of the freshwater amphipod, *Hyalella azteca*, when exposed to whole sediment samples for 14 days, were assessed according to the Bureau Veritas Laboratories SOP: *Hyalella azteca* 14-Day Survival and Growth Test (BBY2SOP-00011), which is based on the Environment Canada Biological Test Method: Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod *Hyalella azteca* (EPS 1/RM/33).

One day prior to test initiation, the samples were homogenised, and a 100 mL aliquot was distributed into a 375 mL labelled test vessel. A 100 mL portion of the sample was distributed into a sixth replicate test vessel used for water quality measurements. Reconstituted moderately hard water was then slowly added to the vessel by pouring a stream of water onto a Plexiglas baffle to minimize disturbing the sediment layer. The test vessels were then randomized on the bench top, and airlines and lids were fitted to each test vessel.

The following day, aliquots of overlying water were removed from the test vessels for initial overlying water chemistry. The sixth replicate test vessel was used for water quality measurements for the duration of the test. To initiate the test, the amphipods were removed from their holding containers and ten *Hyalella* were randomly selected and placed into plastic cups containing control water. Once enough organisms were collected to start the test, they were seeded into the test vessels.

During the test, daily observations and aeration checks were performed. Temperature and dissolved oxygen measurements were taken three times per week in the test vessel designated for water quality measurements. Test vessels were also fed 340 µL per replicate of a ground Tetramin[™] flake slurry (4 g dry solids/L) and 0.75 mL YCT (yeast, alfalfa flakes, and digested trout chow) daily.

At test termination, the contents of each test vessel were examined, a small portion at a time, in a glass pan on a light table. The live amphipods were collected and counted. The amphipods were then placed into aluminum foil weigh boats that were subsequently placed into a \sim 60°C drying oven for >24 hours. Missing amphipods were presumed to have died and decomposed during the test.

3.2 Organism Information

3.2.1 Acclimation and Holding Information

One batch of *Hyalella azteca* was received from Aquatic Biosystems, Fort Collins, Colorado, USA, on October 15, 2019. Laboratory reared juvenile amphipods were packed into 1L plastic containers, filled with moderately hard water and a few plastic mesh squares. Prior to shipping, the headspace in each container was filled with oxygen gas of a sufficient concentration to maintain adequate saturation levels in the shipping water. They were shipped directly for overnight delivery to Bureau Veritas Laboratories and arrived without incident.

Upon arrival at Bureau Veritas Laboratories, the container contents were carefully poured into glass culture dishes. Gentle aeration was supplied to each culture pan. An aliquot of shipping water from each container was set aside for water quality. It was then ensured that temperature adjustments to the holding water of the amphipods did not exceed 3°C per day.

The organisms were held at Bureau Veritas Laboratories for four days before the test was initiated. The amphipods were fed YCT and Tetramin[™] slurry at organism arrival and daily before test initiation. Datasheets containing the water quality measurements, with observations of number dead or inactive amphipods during the holding period, are available in Appendix C.

3.2.2 Organism Health

The average mortality rate in the culture did not exceed 10%.

3.2.3 Organism Age

At test initiation, the amphipods were 6-8 days old.

3.3 Test Conditions

See Table 3-1 for a detailed list of the test conditions. All bench sheets and raw data are available in Appendix C.

 Table 3-1
 Test Conditions for the 14-day Hyalella azteca Test

Parameter	Conditions and Methods
Test Type and Duration	14 Day; Static (non-renewal)
Temperature	Average daily temperature 23 \pm 1 °C; instantaneous temperature 23 \pm 3 °C.
Photoperiod and Light Intensity	16 hours light: 8 hours dark. Wide spectrum cool white fluorescent lights used to provide 602-818 lux.
Aeration	< 100 bubbles/ minute. Clean oil-free air supplied to each test vessel via micro-bore plastic tubing.
Test Chamber	375 mL glass jars with plastic lids containing small opening for airline tubing.
Sediment Volume	100 mL of each homogenized field replicate (3-4 cm depth).
Overlying Water Volume and Source	175 mL (~5-6 cm depth); Reconstituted water; SAM5 recipe (Borgmann, 1996). Temperature adjusted and aerated >24h before use.
Overlying Water Quality	Temperature, pH, dissolved oxygen, conductance, hardness, alkalinity, and ammonia measurements on Day 0 and Day 14 of the test. Temperature and dissolved oxygen were also measured three times weekly during the test.
Feeding	340 μL of a ground Tetramin™ flake slurry (4g dry solids/mL) and 0.75 mL YCT per vessel, daily.
Replicates	5 replicates per sample, plus an additional replicate for water quality measurements.
Control Sediment	Yaquina Bay Beach Sand, rinsed with control water and sieved through a 500 μm stainless steel mesh.
Reference Sediment	None
Organisms/ Replicate	10
Organism Source and age	Aquatic Biosystems; amphipods aged 6-8 days at test start.
Mortality during acclimation	0.0%
Endpoints	Mean Survival and Mean Dry weight
Test Validity Criteria	≥ 80% mean survival in the controls. ≥0.1 mg/amphipod in the controls.
Statistical Software	CETIS [™] version 1.9.2.4. Tidepool Scientific Software (Copyright 2009-2016).

3.4 Quality Assurance/Quality Control

3.4.1 Reference Toxicant Results

A 96 hour reference toxicant test, or positive control test, was conducted alongside the sediment test. The water-only test, using copper sulphate ($CuSO_4$) was initiated to aid in the assessment of organism sensitivity and the precision of the results. The reference toxicant test LC50 result was

then compared in a control chart against the results of previous tests. Table 3-2 summarises the result of the reference toxicant test.

The calculated LC50 for the reference toxicant test was within two standard deviations (95%) range of the historic mean LC50. This supports the assumption that the sensitivity of the organism batch was comparable to batches previously test in this laboratory.

A reference toxicant test is only one of the tools used to assess the health of an organism. Natural variability accounts for the spread in reference toxicant LC50s. The method used in preparing the control charts was based on from "Ecotoxicology Control Charting" (COR2WI-00002).

Table 3-2 Reference Toxicant Test Results for Hyalella azteca

Organism Batch	Test Date	LC50 with 95% Confidence Limits (µg/L Cu ²⁺)	Previous Mean with 2SD (μg/L Cu ²⁺)
AB191015	2019 Oct 17	224 (185, 271)	228 (144, 361)

3.4.2 Test Validity Criteria

Survival data in the negative control is considered to be acceptable if the mean percent survival in the negative control is \geq 80%, and the mean dry weight in the negative control is \geq 0.1 mg/amphipod. The mean percent survival of the negative control was 98% and the mean dry weight was 0.1 mg/amphipod.

3.5 Results

Total survival and dry weights in each replicate, and mean ± standard deviation (SD) in the control and test sediments are listed in the "*Hyalella azteca* Survival and Growth Test-Survival" and "*Hyalella azteca* Survival and Growth Test- Dry Weights" data sheets, respectively. A summary of the results is located in Table 3-3.

Total ammonia concentrations, pH, temperature, dissolved oxygen, hardness, conductance, and alkalinity measurements in the overlying water at test initiation (Day 0) and completion (Day 14) are available in Appendix C.

3.5.1 Data Analysis

The survival and dry weight data for both the samples and the negative control were entered into the statistical program "Comprehensive Environmental Toxicity Information System" (CETIS[™], 2009-2016). When determining the appropriate comparison tests to use, the Environment Canada "Guidance Document on Statistical Methods for Environmental Toxicity Tests" (EPS 1/RM/46, 2005) was followed.

See the CETIS[™] Analytical Reports for information on the specific tests used for the mean survival and dry weight comparisons. Analyses between the control and samples were conducted as one-tailed comparisons. All analyses were done with the decision level for determining statistical significance set to 0.05 (p value <0.05).

Table 3-3 Results for Mean Hyalella azteca Survival and Growth

Sample ID	Mean Survival ± SD (%)	Mean Dry Weight ± SD (mg)
Negative Control	98 ± 4	0.14 ± 0.02
C6 East / G7	60 ± 19*	$0.04 \pm 0.02^*$
C5 East / G6	38 ± 23*	$0.04 \pm 0.02^{*}$
C4 West	2 ± 4*	0.06 ± N/A*
C3 West	48 ± 13*	0.03 ± 0.01*
C3 Centre / G5	86 ± 15	0.08 ± 0.01*
G4	64 ± 17*	$0.05 \pm 0.03^*$
C1 West	90 ± 17	0.10 ± 0.02*

SD = Standard Deviation N/A = Not Applicable

*Indicates a statistically significant decrease in the sample relative to negative control.

3.6 Deviations and Observations

Strong hydrocarbon order was noticed in all replicates of sample C4 West at test end.

SECTION

4 REFERENCES

- Borgmann, U. 1996. Systematic Analysis of Aqueous Ion Requirements of *Hyalella azteca*: A Standard Artificial Medium Including the Essential Bromide Ion. Archives of Environmental Contamination and Toxicology. 30: 356-363.
- Bureau Veritas Laboratories SOP for the *Chironomus dilutus* 10-Day Survival and Growth Test. BBY2SOP-00010.
- Bureau Veritas Laboratories SOP for the *Hyalella azteca* 14-Day Survival and Growth Test. BBY2SOP-00011.
- Bureau Veritas Laboratories WI for Ecotoxicology Control Charting. COR2 WI-00002.
- Comprehensive Environmental Toxicity Information System (CETIS™). 2009-2016. Tidepool Scientific. LLC. Version 1.9.2.4
- Environment Canada. 1997. Biological Test method: Test for Survival and Growth in Sediment of Freshwater Midges (*Chironomus tentans or Chironomus riparius*). Environmental Protection Publications, Conservation and Protection. Ottawa, Ontario. EPS 1/RM/32.
- Environment Canada. 2005. Guidance Document on Statistical Methods for Environmental Toxicity Tests. Environmental Protection Publications. Conservation and Protection. Ottawa, Ontario. EPS 1/RM/46.
- Environment Canada. 2013. Biological Test method: Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod *Hyalella azteca*. Environmental Protection Publications, Conservation and Protection. Ottawa, Ontario. EPS 1/RM/33.

Freshwater Sediment Toxicity Testing using Chironomus dilutus and Hyalella azteca

APPENDICES

APPENDIX

A SAMPLE INFORMATION

SEDIMENT SAMPLE DESCRIPTIONS ECOTOXICOLOGY

ち SVSV Ł MIM R S Analyst Z 8 na NS AV DU 90 42 42 Additional Comments/Observations Hydrachon -like Hydrocarbon -In Ke ADA ONON OC 30900TH 6 Hydrocarbon Hydro-coubort like Like B985653 n'a 01 Odour AN AN Removed Endemic KN nla Animals lob #: D A. 24 NIG de la Novok Type of Debris Removed (e.g. rock, wood, plant, etc...) **NA** 000 NA plu NQ nla 5 HIOR ŝ n bound phocun Muddy Brown hoppnul muoldy UMAIG Brown Ka muddy Boun Grain Size & 2004 OFTLA Brown Muddiy Colour 717080C 2019.007 16 201900716 ZO1406-17 2019104 17 [] to blac ZOPIOCY 17 L'Hapar Date Homogenised / Subsampled BROCK JOIG OCHIG PORATIL JUA OCTIA JI HODHOE C6 EAST/G7 C5 EAST/G6 Client Sample Name CENTRE/G5 C4 WEST C3 WEST C1 WEST SLR G4 3 WQ6245 WQ6252 WQ6246 WQ6249 Client # / Name: 1776 WQ6247 WQ6250 WQ6251 Sample # Maxxam Sample Name C6 EAST/G7 C5 EAST/G6 C3 CENTRE/G5 C1 WEST C4 WEST C3 WEST G4

135

14

ų.

Appendix "A" to Report PW19008(g)/LS19004(f) Page 250 of 486

3

3

M Qame BBY2FCD-00136/3*

Page 1 of 1

ECOTOXICOLOGY

BBY2FCD-00134/4

FRESHWATER SEDIMENT TESTS - POREWATER MEASUREMENTS

Page 1 of 1

Client Name: 1776 SLR CONSULTING

Date Measured: 2019 OCT 18

Method for Porewater Collection:

Collected sediments from vessels, spin in centrifudge bottle for Zo min at 5000 pm. 4 °C

collected porewater for analysis afterwards

Sample ID	Temperature (°C)	рН	Ammonia (mg/L)
1776 Control	11.2	@-7.77.8	0.32
C4 West ~	11.2	マ・マ	55
CS EASTIGE	11.5	7.2	29
C3 West	12.3	7.3	14
C3 Centre G+5	11.2	7.4	1.3
CIWest	12.1	7.7	0.64
G 4 - ~	t1.5	7.3	11
C6 EAST 1G7 /	11.8	7,2	21
			26
		2019 Nov	
Analyst	VS	¥5	DML
Date	2019 001 18	201900718	2019 NOOD 5

Comments:

A WE YS 2019 DUT 18

Bureau Veritas Laboratories (TOX Internal) Client Project #: B985653 Sampler Initials: YS

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID			WS9519			WS9520		WS9521	
Sampling Date			2019/10/18			2019/10/18		2019/10/18	
COC Number			18218			18218		18218	
		UNITS	1776 Control P Chiron	w	RDL	1776 C6 East P Chiron	w	1776 C5 East PW Chiron	RDL
Nutrients									
Total Ammonia (N)		mg/L	0.32		0.015	21 (1)		29 (1)	0.38
(1) Detection limits BV Labs ID	raised due	to dilutic	on to bring analyte WS9522	within	the ca	librated range. WS9523		W\$9524	
Sampling Date			2019/10/18	-		2019/10/18		2019/10/18	
COC Number			18218			18218		18218	
	UNITS	17	76 C4 West PW Chiron	RDL	. 1	776 C3 West PW Chiron	RDL	1776 C3 Center PV Chiron	V RDL
Nutrients									
Total Ammonia (N)	mg/L		55 (1)	0.75	5	14 (1)	0.15	1.3	0.015
				110					

RDL = Reportable Detection Limit

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

Bureau Veritas Laboratories (TOX Internal) Client Project #: B985653 Sampler Initials: YS

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		W\$9525		WS9526		WS9527	WS9528	
Sampling Date		2019/10/18		2019/10/18		2019/10/18	2019/10/18	
COC Number		18218		18218		18218	18218	
	UNITS	1776 G4 PW Chiron	RDL	1776 C1 West PW Chiron	RDL	1776 Control Overy Day 0 Chiron	1776 C6 East Overy Day 0 Chiron	RDL
Misc. Inorganics								
pН	pH					7.64	7.88	N/A
Anions								
Alkalinity (PP as CaCO3)	mg/L					<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	16.0.00 - 10.00 - 20.00 - 20.00				60	97	1.0
Bicarbonate (HCO3)	mg/L					73	120	1.0
Carbonate (CO3)	mg/L					<1.0	<1.0	1.0
Hydroxide (OH)	mg/L			2011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		<1.0	<1.0	1.0
Nutrients	5							
Total Ammonia (N)	mg/L	11 (1)	0.15	0.64	0.015	0.074	0.13	0.015

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs ID		WS9529	WS9530	WS9531	WS9532	
Sampling Date		2019/10/18	2019/10/18	2019/10/18	2019/10/18	
COC Number		18218	18218	18218	18218	
	UNITS	1776 C5 East Overy Day 0 Chiron	1776 C4 West Overy Day 0 Chiron	1776 C3 West Overy Day 0 Chiron	1776 C3 Center Overy Day 0 Chiron	RDL
Misc. Inorganics						
pН	pН	7.99	7.99	8.01	7.93	N/A
Anions					1/2.002	1
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	120	130	100	93	1.0
Bicarbonate (HCO3)	mg/L	150	160	120	110	1.0
Carbonate (CO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Nutrients						-
Total Ammonia (N)	mg/L	0.32	1.3	0.48	0.17	0.015
RDL = Reportable Detection N/A = Not Applicable	Limit					

Bureau Veritas Laboratories (TOX Internal) Client Project #: B985653 Sampler Initials: YS

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID	-	WS9533	WS9534	
Sampling Date		2019/10/18	2019/10/18	
COC Number		18218	18218	
	UNITS	1776 G4 Overy Day 0 Chiron	1776 C1 West Overy Day OChiron	RDL
Misc. Inorganics				
pН	pH	7.90	7.77	N/A
Anions				
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	100	93	1.0
Bicarbonate (HCO3)	mg/L	130	110	1.0
Carbonate (CO3)	mg/L	<1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	<1.0	1.0
Nutrients				
Total Ammonia (N)	mg/L	0.14	0.11	0.015
RDL = Reportable Detection N/A = Not Applicable	Limit			

							1							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Append	4" xib	Α" to	o Re	port	PW	'190 []	08(9 Pag	g)/L 9₽₽	S190	104(1 26	(f) 18 c	of 48	36
G141143	and Time (TAT) Required	r (Most analyses)	VANCE NUTLEE FOR ROSH PROJECTS (Surcharges will be applied)	Days	sion to		Regulatory Criteria	BC CSR	T YK CSR	M come	T Detaktion Water		M other Apple ONNO	" Sediment annum	Special Instructions	BAD is prewater		THE PARAMETERS	KN XXXX	WINN WINN	1 Lod at a horizon			03-Oct-19 16:09	Ronklin Gracian		B9R8283	WVL ENV-593
	Turnaroi	5 - 7 Days Regula	ASE PROVIDE AD Rush TAT	Same Day	equired:	onfirmation #:							VILSE SIC	AUTS BIS	NOL WICK	XXX	XXX	XXX	XXX	XXXX	XXX XX	XXX		XXX	OUT RETTS WINNI WAS			
RECORD		X	b16	8	Date R	Rush C		(12) (12)	MM?	vod)	r	Pig	dys AND	1150	DIANT IN TOXIC	X MM	XX	××××	XXX	イント	XX	XX		XX	t and acceptance or	(hh:mm):	F	81
8				Wer COUX	2		Requested		otendi OD Malinity	×□ ×□	ţA geob	epine Muchvi		<u>]</u>	Z ^{bH} J ^{L22} J ^{CP[oug6}	X	XX	XX	メン	×)> ×)	×× ×>	47		XX	Is acknowledgemen	/dd): Time	5 110.	52 12:
HERE AND				ch. Tolo	hedd	L	Analysis	21	aynaea	served?	ld Pres	L Fiel Field Field	A Litte	tonty tals Mercut	Dissolves SM IstoTX SM IstoTX		XX	XX	XX		×7 2>	47 2×		XX	f Custody document	Date (yvyy/mm	0/01/6104	2019/10/10
A Contraction of the		COC COC		8	ion:	Br: KA		15	eseuver - F4 H	м / на	эн / н	red?	H3T	2679M 1	Dissolved Hga Apph		××	×	X	×		× >	4	X	gning of this Chain of	e/ Print)	CURITINO	C Chanine a Vio
			000	Project #:	Site Locat	Sampled			38.	X\EJ W	: \ 816 \bH] 18 / 20A [Hd SJa	of Contain BTEXS / V	1	-6					_			3 Conditions. 5	(Signatur	OLENE	OFF
Toll Free (833) ⁻ 25 658 Toll Free	(minimi	Din Montel		PC:											Matrix	Serlint	Cediment	within							s' standard Terms and	Received by:	funit- a	MEDE
iby, BC V5G 1K5 1, Victoria, BC V8	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	on (it differs tr						+ Parantion		HER					Time Sampled (hhann)	19.7 17	VII CU	19/201	1:45	CA: 30	1:4	10:18	12:50	No:20	alect to Burday Varita	ne (hh:mm):	0'. K0 L	
606 Canada Way, Burna 0 Tennyson Place, Unit		Report Informati	ontact Name:	ddress;	hone/Fax:	imail:	opies:	Viny		男子面			Ur		Date Sampled (vvvy/mm/dd)	amo li ala	Date 1 Parte	209/10/01	200110101	20/9/10/01	20/01/10/02	201/10/02	70/01/107	201 ail via	within 60 Grain be Guatodig is suit	(yyyy/mm/dd): Tin	19/10/03 14	
BOD Urmaby 460	DVIabs.com	ntormation	ame: Coline lothwarth a	Suite 200-1020	west of - 318 - 5294 "	ctoman stranding an	MIMPERUA ASK	A Property Use O View Cooler to	Seal Prosent V Temp 3 (101 04	aling Metter	VIS (NO GOODETD	seal transit where the board of	DOINT HERE NO COOLINE REPER DA	Seat Presenti Seat Intack Yemp	ooling Media Sample Identification		Boat Lawren	COERSI JAT		Dind Districto	C3 NGT	C3 Centre / 65	Gt	-61 N MAZZ	Underwise acreat to in wriding, work solomited on	Relinquished by: (Signature/ Print) Date (Vi. hallenteller 30	KIMBLELLEY TASKER
	CONTRACTOR OF THE OWNER	nvolce Infe	Company : Contact Nar	Address:	Phone/Fax:	Email:	Copies:		Seal	Coolir		SS G	Cool	S.	Cool		5	2	4 4	- No	9	2	10	6			ß	X

APPENDIX

B 10-DAY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST

Appendix "A" to Report PW19008(g)/LS19004(f) Page 257 of 496 of 486

CETIS Ana	alytical Re	port					Repo	ort Date: Code:	14 CT-17	Nov-19 14 76-0119 I	16-1846-9023
Chironomus	10-d Survival	and Gro	wth Sedime	nt Test					Bureau	u Veritas I	Laboratories
Analysis ID: Analyzed:	20-4584-591 14 Nov-19 1	2 1:45	Endpoint: Analysis:	Survival R	ate Contingency Tab	oles	CET	S Version:	CETISv' Yes	1.9.2	
Batch ID:	02-9389-9538	3	Test Type:	Survival-A	F Growth		Anal	vst:			
Start Date:	18 Oct-19 17	:00	Protocol:	EC/EPS 1/	/RM/32		Dilue	ent: Reco	onstituted \	Water	
Ending Date:	28 Oct-19 12:	:00	Species:	Chironomu	is dilutus		Brine	e Not	Applicable	i vator	
Duration:	9d 19h		Source:	Aquatic Bio	osystems, CO		Age:		.ppnouble		
Fisher Exact/	Bonferroni-Ho	olm Test			1						
Sample I	vs Sampl	e II	Test S	Stat P-Tvp	e P-Value	Decision	n(a:5%)				
Control	C6 Eas	st/G7	0.500	0 Exact	1.0000	Non-Sigr	nificant Effect				
	C5 Eas	st / G6	0.218	0 Exact	0.6540	Non-Siar	nificant Effect				
	C4 We	st	0.007	3 Exact	0.0514	Non-Siar	nificant Effect				
	C3 We	st	0.500	D Exact	1.0000	Non-Sigr	nificant Effect				
	C3 Cer	ntre / G5	0.0798	B Exact	0.3190	Non-Sigr	nificant Effect				
	G4		0.0458	B Exact	0.2291	Non-Sigr	nificant Effect				
	C1 We	st	0.0139	9 Exact	0.0832	Non-Sigr	nificant Effect				
Auxiliary Tests	S										
Attribute	Test				Test Stat	Critical	P-Value	Decision(c	:5%)		
Extreme Value	Grubbs	Extreme	Value Test		3.142	3.036	0.0313	Outlier Det	ected		
Data Summary	y	5									
Sample	Code	NR	R	NR + I	R Prop NR	Prop R	%Effect				
Control		48	2	50	0.96	0.04	0.0%				
C6 East / G7		47	3	50	0.94	0.06	2.08%				
C5 East / G6		45	5	50	0.9	0.1	6.25%				
C4 West		39	11	50	0.78	0.22	18.75%				
C3 West		47	3	50	0.94	0.06	2.08%				
C3 Centre / G5		43	7	50	0.86	0.14	10.42%				
G4		42	8	50	0.84	0.16	12.5%				
C1 West		40	10	50	0.8	0.2	16.67%				
Survival Rate I	Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
Control		1.0000	1.0000	0.9000	0.9000	1.0000					
C6 East / G7		1.0000	1.0000	1.0000	0.7000	1.0000					
C5 East / G6		1.0000	0.8000	1.0000	0.9000	0.8000					
C4 West		0.7000	0.8000	0.8000	0.7000	0.9000					
C3 West		0.8000	0.9000	1.0000	1.0000	1.0000					
C3 Centre / G5		0.9000	0.8000	1.0000	0.9000	0.7000					
G4		0.8000	0.8000	0.8000	0.9000	0.9000					
C1 West		0.8000	0.9000	0,4000	0.9000	1.0000					

Appendix "A" to Report PW19008(g)/LS19004(f) Page 269 of 486

CETIS Analytical Report Report Date: 14 Nov-19 14:24 (p 2 of 2) Test Code: CT-1776-0119 | 16-1846-9023 Chironomus 10-d Survival and Growth Sediment Test **Bureau Veritas Laboratories** Analysis ID: 20-4584-5912 Endpoint: Survival Rate CETISv1.9.2 **CETIS Version:** Analyzed: 14 Nov-19 11:45 Analysis: STP 2xK Contingency Tables Official Results: Yes

Appendix "A" to Report PW19008(g)/LS19004(f) PagPage 270 of 486

												' ^{ay} page	270 of 4
CETIS Ana	alyti	cal Rep	oort						Rep Tes	ort Date: t Code:	14 CT-17	Nov-19 14	:24 (p 1 of 2
Chironomus	10-d \$	Survival a	and Grov	wth Sedime	nt Test						Burea	u Veritas L	aboratories
Analysis ID:	01-3	3230-7964	1	Endpoint:	Mean Drv We	iaht			CET	IS Versio	n: CETISV	192	
Analyzed:	14	Nov-19 11	:45	Analysis:	Parametric-Tv	vo Sampl	le		Offi	cial Resu	Its: Yes	1.0.2	
Batch ID:	02-9	389-9538		Test Type:	Survival-AF G	rowth			Ana	lyst:			
Start Date:	18 O	ct-19 17:0	00	Protocol:	EC/EPS 1/RM	1/32			Dilu	ent: R	econstituted	Water	
Ending Date:	28 O	ct-19 12:0	00	Species:	Chironomus d	ilutus			Brin	e: N	lot Applicable		
Duration:	9d 1	9h		Source:	Aquatic Biosys	stems, C	0		Age	:			
Data Transfor	m		Alt H	јур					Compari	son Resu	lt		PMSD
Untransformed	ł		C > T						C6 East /	G7 passe	ed mean dry v	veight	21.35%
									C5 East /	G6 passe	ed mean dry w	veight	21.35%
									C4 West	passed m	ean dry weigh	nt	21.35%
									C3 West	passed m	ean dry weigł	nt	21.35%
									C3 Centre	e / G5 pas	sed mean dry	weight	21.35%
									G4 passe	d mean d	ry weight		21.35%
									C1 West	passed m	ean dry weigh	nt	21.35%
Equal Varianc	e t Tv	wo-Samp	le Test										
Sample I	VS	Sample	11	Test S	Stat Critical	MSD	DF	P-Type	P-Value	Decisio	on(α:5%)		
Control		C6 East	/ G7	-5.221	1.86	0.279	8	CDF	0.9996	Non-Sig	nificant Effec	:t	
		C5 East	/ G6	-3.559	1.86	0.349	8	CDF	0.9963	Non-Sig	nificant Effec	t	
		C4 West		-1.476	1.86	0.344	8	CDF	0.9108	Non-Sig	nificant Effec	ŧ	
		C3 West		-5.066	1.86	0.295	8	CDF	0.9995	Non-Sig	nificant Effec	t	
		C3 Centr	e / G5	-5.752	1.86	0.277	8	CDF	0.9998	Non-Sig	nificant Effec	t	
		G4		-4.623	1.86	0.328	8	CDF	0.9991	Non-Sig	inificant Effec	t	
		CTWest		-4.180	1.80	0.357	8	CDF	0.9985	Non-Sig	Inificant Effec	t	
Auxiliary Tests	S												
Attribute		Test	E. due une e	Value Test		Test S	tat	Critical	P-Value	Decisio	n(α:5%)		
Extreme Value	-	Grubbs	Extreme	Value Test		1.708		3.036	1.0000	No Outl	iers Detected		
ANOVA Table													
Source		Sum Squ	lares	Mean	Square	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between		3.46596		0.4951	38	7		5.064	6.0E-04	Significa	ant Effect		
Error		3.12858		0.0977	682	32		_					
Iotai		6.59455				39		9					
Distributional	Tests	-											
Attribute		Deatlett				Test S	tat	Critical	P-Value	Decisio	n(α:1%)		
Variances Distribution		Shapiro-V	quality of	Variance To	est +	2.118		18.48	0.9530	Equal V	ariances Distribution		
Mean Dry Weir	aht S	ummary	- 111 - 111	onnunty 165	•	0.0004		0.0200	0.1000	Normal			
Sample	gint Of	Code	Count	Mean	95% I CI	95% 11	CI	Median	Min	Max	Std Frr	CV%	%Effect
Control			5	1.672	1.417	1,927	-	1.633	1.399	1.957	0.09186	12 29%	0.00%
C6 East / G7			5	2.454	2.125	2.782		2.356	2,157	2 823	0 1184	10 79%	-46 80%
C5 East / G6			5	2.34	1.885	2.794		2.511	1.903	2.67	0 1637	15 64%	-39.96%
C4 West			5	1.945	1.498	2.391		2.031	1.544	2.423	0.1608	18.49%	-16.35%
C3 West			5	2.474	2.116	2.833		2.603	2.007	2.735	0.1291	11.67%	-48,02%
C3 Centre / G5			5	2.527	2.202	2.852		2.421	2.233	2.91	0.117	10.35%	-51.18%
G4			5	2.486	2.069	2.903		2.449	2.1	2.946	0.1503	13.52%	-48.71%
C1 West			5	2.475	2.007	2.943		2.47	1.999	2.959	0.1685	15.22%	-48.06%

Appendix "A" to Report PW19008(g)/LS19004(f) Page 271 of 486

CETIS Analytical Report

14 Nov-19 14:24 (p 2 of 2) Report Date: Test Code: CT-1776-0119 | 16-1846-9023 Chironomus 10-d Survival and Growth Sediment Test **Bureau Veritas Laboratories** Analysis ID: 01-3230-7964 Endpoint: Mean Dry Weight **CETIS Version:** CETISv1.9.2 Analyzed: 14 Nov-19 11:45 Parametric-Two Sample Analysis: **Official Results:** Yes Mean Dry Weight Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Control 1.399 1.609 1.633 1.957 1.76 C6 East / G7 2.823 2.316 2.157 2.356 2.618 C5 East / G6 1.987 2.511 1.903 2.67 2.626 C4 West 2.095 2.423 2.031 1.544 1.631 C3 West 2.396 2.603 2.63 2.735 2.007 C3 Centre / G5 2.233 2.416 2.656 2.421 2.91 G4 2.1 2.946 2.678 2.449 2.256 C1 West 2.959 1.999 2.705 2.47 2.242

Graphics

ECOTOXICOLOGY

Chironomus dilutus Survival and Growth Test Survival of Larvae

Page 261 of 2472 of 486 May im A Bureau Veritas Group Company

Client # & Name: SLR

BBY2FCD-00271/3 Start Date and Time: 2019 Oct 18

Page 1 of 1

Job # B985653

End Date: 2019 Oct 28

Organism Lot #: AB191018

Analysts: P. Howes, S. Gupta, K. Tamaki, Y. Su

Sample	Rep	Initial #	Final #	%	Surv	ival
		Larvae	Larvae	Survived	Mean %	SD %
Control	A	10	10	100	96	5
	В	10	10	100		
	С	10	9	90		
	D	10	9	90		
	E	10	10	100		
C6 East / G7	A	10	10	100	94	13
	В	10	10	100		
	С	10	10	100		
	D	10	7	70		
	E	10	10	100		
C5 East / G6	A	10	10	100	90	10
	В	10	8	80		
	C	10	10	100		
	D	10	9	90		
	E	10	8	80		
C4 West	А	10	7	70	78	8
	В	10	8	80		0
	С	10	8	80		
	D	10	7	70		
	E	10	9	90		
C3 West	А	10	8	80	94	9
	В	10	9	90		
	С	10	10	100		
	D	10	10	100		
	E	10	10	100		
C3 Centre / G5	А	10	9	90	86	11
	В	10	8	80		
	С	10	10	100		
	D	10	9	90		
	E	10	7	70		
G4	А	10	8	80	84	5
	В	10	8	80		
	С	10	8	80		
[D	10	9	90		
	E	10	9	90		

ECOTOXICOLOGY

Chironomus dilutus Survival and Growth Test Survival of Larvae

Page 262 of 486

BBY2FCD-00271/3 Page 1 of 1

Client # & Name: SLR

Start Date and Time: 2019 Oct 18

Job # B985653

End Date: 2019 Oct 28

Organism Lot #: AB191018

Analysts: P. Howes, S. Gupta, K. Tamaki, Y. Su

Sample	Rep	Initial #	Final #	%	Surv	ival
		Larvae	Larvae	Survived	Mean %	SD %
C1 West	A	10	8	80	80	23
	В	10	9	90		
	С	10	4	40		
	D	10	9	90		
	E	10	10	100		

Proofed By: Mares 2019 Nov15

Appendix "A" to Report PW19008(g)/LS19004(f) Page 263 of 496 of 486

Chironomid Survival and Growth Test	

ECOTOXICOLOGY

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

C5 EAST/G6

C4 WEST

C3 WEST

C3 CENTRE/G5

				Dr	y Weights of L	arvae		BBY2FCD-00 Page of	231/3 f_ 2 _
	Client #	# & Name:	1776 SLF	3		Start	Date and Time:	2019 OCT 18	
	В	alance ID:	BBY2-02	60			End Date:	2019 OCT 28	
		Job #	B985653	3		١	Weighing Dates:	2019 Oct 31	
[Drying Tempera	ature (°C):	60				Drying Time (h)	>24 h	
	,	Analyst(s):	L. Nichol	ls	D. Lai				
Boat #	Sample ID	Replicate	# Worms	Boat Wt. (g)	Boat & Worms Wt. (g)	Worm Wt. (mg)	Mean Wt. /Worm (mg)	Mean Wt. /Sample (mg)	SD
556		A	10	1.10871	1.12270	13.99	1.40	1.67	0.21
557		В	10	1.09457	1.11066	16.09	1.61		
558	CONTROL	С	9	1.09082	1.10552	14.70	1.63		
559		D	9	1.09488	1.11249	17.61	1.96		
560		E	10	1.12393	1.14153	17.60	1.76		
561		A	10	1.10362	1.13185	28.23	2.82	2.45	0.26
562		В	10	1.12019	1.14335	23.16	2.32		
563	C6 EAST/G7	C*	9	1.11899	1.13840	19.41	2.16		
564		D	7	1.10809	1.12458	16.49	2.36		
565		E	10	1.10258	1.12876	26.18	2.62		
566		А	10	1.10960	1.12947	19.87	1.99	2.34	0.37
567		В	8	1.11065	1.13074	20.09	2.51		
			A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O		A CONTRACT OF A DESCRIPTION OF A DESCRIP				

1.12915

1.12896

1.11254

1.12313

1.12539

1.12128

1.12277

1.15687

1.12108

1.11769

1.13069

1.14159

1.13564

1.12704

1.13509

1.13900

1.12697

1.12997

DL

19.03

24.03

21.01

16.96

16.76

16.25

10.81

14.68

19.17

23.43

26.30

27.35

20.07

17.86

16.91

26.56

19.37

20.37

1.90

2.67

2.63

2.42

2.09

2.03

1.54

1.63

2.40

2.60

2.63

2.74

2.01

2.23

2.42

2.66

2.42

2.91

1.94

2.47

2.53

0.36

0.29

0.26

LN The average dry weight for the replicate controls must be >0.6 mg, for the test to be valid.

10

9

8

7

8

8

7

9

8

9

10

10

10

8

7

10

8

7

С

D

Е

А

В

С

D

Е

А

В

С

D

Ε

A*

B*

С

D*

Ε

Analyst:

1.11012

1.10493

1.09153

1.10617

1.10863

1.10503

1.11196

1.14219

1.10191

1.09426

1.10439

1.11424

1.11557

1.10918

1.11818

1.11244

1.10760

1.10960

Notes:*Pupated organism discovered at test end. Pupated organism removed from mean dry weight analysis.

ECOT	OXICOLOG	Ŷ	, < 1 1 1	Chironom Di	id Survival and ry Weights of L	Appendix d Growth Te arvae	"A" to Report PV	V19008(g)/LS1900 Page 264 of Mage 264 of BBY2FCD-00	4(f) 475 of 48 231/3
	Client	# & Name	: 1776 SL	R		Star	t Date and Time:	2019 OCT 18	
		Balance ID	: BBY2-02	260			End Date:	2019 OCT 28	
Job # B985653							Weighing Dates:	2019 Oct 21	
Drving Temperature (°C): 60							Draing Time (h)	2019 000 51	
	, , , , , , , , ,	Analyst(s)	: L. Nicho	lls			Drying Time (n)	>24 h	
Boat #	Sample ID	Replicate	e # Worms	Boat Wt. (g)	Boat & Worms Wt. (g)	Worm Wt.	Mean Wt.	Mean Wt.	SD
586		A	8	1.09798	1.11478	16.80	2.10	2 49	0.34
587		В	8	1.09878	1.12235	23.57	2.95	2.45	0.54
588	G4	С	8	1.10970	1.13112	21.42	2.68		
589		D	9	1.11976	1.14180	22.04	2.45		
590		E*	8	1.13771	1.15576	18.05	2.26		
591		A	8	1.10993	1.13360	23.67	2.96	2.47	0.38
592		В	9	1.13653	1.15452	17.99	2.00		
593	C1 WEST	С	4	1.10844	1.11926	10.82	2.70		
594		D	9	1.11702	1.13925	22.23	2.47		
595	A State State State State	E	10	1.11038	1.13280	22.42	2.24		
596		QA/QC		1.10077	1.10079	-		-	-
597		QA/QC		1.11999	1.11993	-	(<u>=</u>)	-	-
586		0-A	8	1.09790	1 11458	16.68			

LN The average dry weight for the replicate controls must be >0.6 mg, for the test to be valid.

Analyst:

Notes:*Pupated organism discovered at test end. Pupated organism removed from mean dry weight analysis.

DML

Proofed By: PHaves 2019 Nov 15

Page 265 of 486

Maxxam

ECOTOXICOLOGY

CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST - TEST INFORMATION

BBY2FCD-00138/3

Page 1 of 1

1776 SLR CONSULTING Client # & Name: B985653 Job #: YuSu October 18, 2019 @ 17:00 **Test Initiation Date & Time:** Analyst: **Test Completion Date:** October 28, 2019 Analyst(s) - maintenance 4,54 Tamara and test completion: S-GNDta 20191016 **Control Water Batch:** yaquina sceliment, 2019 OCT 04 **Control Sediment:** 2019 NOVOG AB 191018 **Organism Lot:** WEDML QUA NOODE Age at Start of Test: se coud star ador Feeding Regime: 3.75 mL Tetrafin slurry (4 g/L) per replicate 3x weekly 10 Food Preparation Date: INB **Balance ID:** 3812-0260 **Drying Oven ID:** 38-12-0278 BBV2-0366 WQ Instrument ID: BBY2-0352 Additional Comments: NA Ĺ son 2019 Dood

	RATION CHECKS
	TEST – AE
	GROWTH
	AND
GΥ	SURVIVAL
COTOXICOLO	HIRONOMID

N 🌾 🛶 Page 1 of 1 BBY2FCD-00137/2

Client # & Name: 1776 SLR CONSULTING

Start Date & Time: 2019 OcT 18

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

ay -1	Day 0	-	2	ŝ	4	5	9	7	∞	6	10
2019 17	20190U	2019	2019 00420	20121	2019 00723	2017	2019	2019	20196	Xelg oct 27	2019
λĄ	s	26	sç	f	R	£	Z;	k s	<i>ys</i>	Sy	SY
NA	E.	7	22	h	Z	z	<i>V</i> s	Z	Z	SGI	4N
<i>vs</i>	z	2	2 <i>5</i>	Y	Ł	Z	15	Ł	Z	59	44

Comments:

Page 267 of 486

ECOTOXICOLOGY CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID:	CONTROL	Start Date:	2019 OCT 18
Sample Date:	NA	End Date:	2019 OCT 28
Sample Received:	NA	Job/Sample #:	B985653

		Measureme	nts				Sample	es Taken	
р	Н	Hard	ness	Condu	ictance	Alk	alinity	Amm	ionia
		(mg/L	CaCO₃)	(μS	/cm)	(mg/I	L CaCO ₃)	(mg	g/L)
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
8.1	8,3	97	137	371	550	60	140	0.074	6.6

Initial overlyi	ng WQ measur	ements:	
Analyst	ys	Date	201900718

Final overlying WQ measurements:AnalystVSDate201900728

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (ºC)	z3, 1	23.6	22.9	22,6	22.9
D.O. (mg/L)	8.2	8.6	8.8	8.3	8.6
Feeding	NA	VX		\checkmark	
Analyst	ys .	X	<i>Y5</i>	VS	УS
		0			
Replicate	А	В	C	D	E
# Surviving	10	10	9	9	10
Analyst	PH	(X)	64	59	GG

Date	Replicate	Comments	Analyst
			_
		1	
		or , a pour	
		2011	
*.			

Page 268 of 499 of 486

ECOTOXICOLOGY CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID:	C6 EAST/G7
Sample Date:	2019 OCT 01 @ 10:55

Sample Received: ____2019 OCT 23 @ 18:00

 Start Date:
 2019 OCT 18

 End Date:
 2019 OCT 28

 Job/Sample #:
 B985653

Measurements							Sample	es Taken	
p	H	Hard	dness	Conductance		Alkalinity		Ammonia	
		(mg/L CaCO ₃)		(µS/cm)		(mg/L CaCO ₃)		(mg/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
8.1	8.3	176	352	598	977	97	130	0.13	0.11

Initial overlying WQ measurements:								
Analyst	NS	÷	Date	201900718				

Final overlying WQ measurements:Analyst15Date201900028

Day	Friday	Monday	Wednesday	Friday	Monday	
	Day 0	Day 3	Day 5	Day 7	Day 10	_
Temp. (ºC)	22.9	23.7	23,0	22.4	23.1	-
D.O. (mg/L)	8,3	8.6	8.7	8.6	8.5	
Feeding	~ Kt	VX	~	~		
Analyst	Jes	Y	85	1/5	YS	-
		0				
Replicate	А	В	С	D	E]
# Surviving	10	10	A910	7	10	
Analyst	IC	Kł	Kł	PH	R	Brue 6725140028

Date	Replicate	Comments	Analyst
201900+28	C	1 pupated. Notincluded in weighboat	Kt
		D'ada bas	
		10.	
/		¢	

Pagp 269 of 486 of 486

ECOTOXICOLOGY

CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

C5 EAST/G6	Sample ID:
2019 OCT 01 @ 13:35	Sample Date:
2019 OCT 01 @ 13:35	Sample Date:

 Start Date:
 2019 OCT 18

 End Date:
 2019 OCT 28

Sample Received: 2019 OCT 23 @ 18:00

Job/Sample #: B985653

	Measurements						Sample	es Taken	
p	рН		Hardness		Conductance		Alkalinity		monia
	ř.	(mg/L CaCO ₃)		(µS/cm)		(mg/L CaCO ₃)		(mg/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
7.9	8.1	199	756	677	913	120	97	032	0.10

Initial overlyin	g WQ measure	ements:	
Analyst	45	Date	2019 OCT 18

Final	overlying	WQ me	asuremen	ts:
Analy	/st	¥5	Date	2019000

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (ºC)	73.0	23.6	22.8	ZZ,6	23.0
D.O. (mg/L)	8.1	8.5	8.4	8.5	8.4
Feeding	~ Kt	VY		i/	
Analyst	VS	7	ys	VS	145
		0			
Replicate	А	В	C	D	E
# Surviving	\mathcal{O}	Ą	0)	9	B
Analyst	Kł	54	* K4	PA	54.

Date	Replicate	Comments	Analyst
		and the second sec	
• •			
		a bouly	
		She gover '	
/			

Pagp 2700 281 of 486

ECOTOXICOLOGY

CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID:	C4 WEST
Sample Date:	2019 OCT 01 @ 11:45

Sample Received: 2019 OCT 23 @ 18:00

 Start Date:
 2019 OCT 18

 End Date:
 2019 OCT 28

 Job/Sample #:
 B985653

Measurements						Samples Taken				
pH	рH		Hardness		Conductance		Alkalinity		monia	
		(mg/L	CaCO ₃)	(μS/	cm)	(mg/	L CaCO ₃)	(m	ig/L)	
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	
8.2	8.2	197	264	662	854	80	110	1.3	0.12	

Initial overly	ying WQ meas	urements:	
Analyst	ys.	Date	201900718

Final overly	ying WQ me	asurements:
Analyst	VS	Date 201900720

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (ºC)	22.9	23.6	23,2	22.7	22.9
D.O. (mg/L)	8.2	8.4	8.6	8.6	8.4
Feeding	VKt	17		~	
Analyst	JPS	4	¥5	VS	ÿs
		0			
Replicate	· A	В	С	D	E
# Surviving	7	8	8	7	9
Analyst	A	PH	Kł	PH	Kt

Date	Replicate	Comments	Analyst
201900128	All	strong odour	PH
	2		
		2019 JUNIT	
		Due 192	
-			

Page 271e 282 of 486

ECOTOXICOLOGY

CHIRONOMUS DILUTUS TEST DATA SHEET

Sample Received:

BBY2FCD-00140/3

Page 1 of 1

 Sample ID:
 C3 WEST

 Sample Date:
 2019 OCT 02 @ 11:45

2019 OCT 23 @ 18:00

 Start Date:
 2019 OCT 18

 End Date:
 2019 OCT 28

 Job/Sample #:
 B985653

Measurements Samples Taken pH Hardness Conductance Alkalinity Ammonia (mg/L CaCO₃) (µS/cm) (mg/L CaCO₃) (mg/L)Initial Final Initial Final Initial Final Initial Final Initial Final 320 812 8.3 513 792 164 200 150 0.48 0,090

Initial overlying WQ me	asurements:
Analyst ys	Date 201900718

Final overlying WQ measurements: Analyst VS Date 20190728

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (ºC)	22.9	23.6	23,3	22.9	22.9
D.O. (mg/L)	8,3	8.6	8.6	8.4	8.4
Feeding	VILL	17		~	
Analyst	¥5	2	<i>ys</i>	YS	ys
		0			
Replicate	A	В	С	D	E
# Surviving	8	9	10	10	10
Analyst	Qq	¥5	YS	Kt	PH

Date	Replicate	Comments	Analyst
9 4			
		Smoold up	
		×102101	
0	4	10-	

Pagpage 272 of 499 of 486

ECOTOXICOLOGY

CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

 Sample ID:
 C3 CENTRE/G5

 Sample Date:
 2019 OCT 02 @ 10:18

Sample Received: 2019 OCT 23 @ 18:00

 Start Date:
 2019 OCT 18

 End Date:
 2019 OCT 28

 Job/Sample #:
 B985653

Measurements						Sample	es Taken		
рН		Hard	Hardness		Conductance		alinity	Ammonia	
		(mg/L	CaCO ₃)	(μS/	'cm)	(mg/l	CaCO ₃)	(m	ng/L)
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
8.2	8.4	154	276	489	761	93	50	0.17	0.578

Initial over	lying WQ mea	surements:	
Analyst	Y5	Date 2019 Oct.	18

Final overlying WQ m	easurements:
Analyst 95	Date 201900728

Day	Friday	Monday	Wednesday	Friday	Monday	
	Day 0	Day 3	Day 5	Day 7	Day 10	
Temp. (ºC)	22.9	23.6	Z3.Z	22.8	22.9	
D.O. (mg/L)	8.3	8.6	8.7	8.5	8.4	
Feeding	VKt	18	V	\checkmark		
Analyst	15	Y	¥5	JUS -	ys	
		0				
Replicate	А	в 🛪	С	D	E	
# Surviving	91	8	10	9 🕅	7	
Analyst	PH	45	Y5	Kł	PH	

Date	Replicate	Comments	Analyst
201900728	Ð	I pupated chironamid-not included in weighboat	Kt
201900728	В	I pupated chironomial - not included in the woighboat	YS
2019.0ct 28	A	I pipated chironomia, not included in weighboat	PH
	ţ		
		and the second second second second second second second second second second second second second second second	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Om Would	
	•	govi s	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 273 م جماع المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحافظة المحاف

Page 27305 284 of 486

# ECOTOXICOLOGY

CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3 Page 1 of 1

Sampl	e ID:	G4	

Sample Date: 2019 OCT 02 @ 12:50

 Start Date:
 2019 OCT 18

 End Date:
 2019 OCT 28

 Job/Sample #:
 B985653

Sample Received: 2019 OCT 23 @ 18:00

Measurements							Sample	es Taken	
р	Н	Hard	ness	Condu	ctance	Alk	alinity	Am	monia
		(mg/L	CaCO ₃ )	(μS/	cm)	(mg/l	CaCO ₃ )	(m	ng/L)
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
8.1	8.3	161	797	507	8:04	100	160	6.14	0.10

Initial overly	ing WQ meas	urements:	
Analyst	JS S	Date	201900718

Final overlying WQ measurements:Analyst $\frac{1}{5}$ Date201900735

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (ºC)	23,1	23.4	23.4	22.9	22.9
D.O. (mg/L)	8.1	8.5	8.5	8.6	8.4
Feeding	VKt	VY		~	
Analyst	YS	1	¥5	45	¥5
1		0			
Replicate	А	В	С	D	E
# Surviving	8	8	8	9.	9
Analyst	Kt	<i>ys</i>	Kt	PH	K7

Date	Replicate	Comments	Analyst
201900+28	Ē	I pupated organism. Not included in weighboat	14-
		· · · · · · · · · · · · · · · · · · ·	
•			
		OM ODA NOULY	

Page 274 of 285 of 486

### ECOTOXICOLOGY

CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

 Sample ID:
 C1 WEST

 Sample Date:
 2019 OCT 02 @ 16:20

Sample Received: 2019 OCT 23 @ 18:00

 Start Date:
 2019 OCT 18

 End Date:
 2019 OCT 28

 Job/Sample #:
 B985653

Measurements Samples Taken pH Hardness Conductance Alkalinity Ammonia (mg/L CaCO₃) (µS/cm) (mg/L CaCO₃) (mg/L)Initial Final Initial Final Initial Final Initial Final Initial Final 312 8.4 1175 8.0 181 627 93 0.11 170 0.11

Initial overly	ing WQ measu	rements:		
Analyst	ys	Date	2019 OCT 1	8

Final ove	rlying WQ m	easurements:
Analyst	¥5	Date 2019 OCT 28

Day	Friday	Monday	Wednesday	Friday	Monday
	Day 0	Day 3	Day 5	Day 7	Day 10
Temp. (ºC)	23.1	23.7	23.3	23.2	22.9
D.O. (mg/L)	7.8	8.5	8.6	8.5	8.4
Feeding	VKt	SY		V	
Analyst	ys	X	15	¥5	¥5
		U			
Replicate	А	В	С	D	E
# Surviving	Q.	9	ч	9	10
Analyst	54	Kt	59	59	y5

Date	Replicate	Comments	Analyst
2019at18	Measure	No of chironomids = 10 WB gnittal = 1.103289	sy
1			
		Sm allelle	
		2019 Nov 19	
/			

Appendix "A" to Report PW19008(g)/LS19004(f) Page 275 of 486

### ECOTOXICOLOGY

# Reconstitued Water Recipe for Chironomus

Max am BBY2FCD-00141/2

Page 1 of 1

BATCH ID : (Date Hardened)

00+16 2019

Chironomus dilutus H₂O Hardness Adjustment (Environment Canada 1997) (For water hardness 90 - 100 mg/L)

Chemical W	/eights	CaCl ₂ X2H ₂ O		MgSO₄ (g)	CaSO ₄ (g)	NaHCO ₃ (g)	KCI (g)
	Brand	Ashes		fishen	Alsen	Richen	fishen
	Lot #	184678		183674	2098068	187508	172053
	Calculated	3.97		1.80	3.00	5.76	0.24
	Actual	3.9703		1.8000	3.0004	5.7602	0.2402
Balance ID:	BBY2	-0260			- 1		
Analyst:	a Mo	-Mary		2	Add to	Type 3 DI (L):	60
Water Use:	60L				DI Machine ID:	0542-0	160
Date: _	2019	Dct 16			-		
Water Qua	lity:				-		
Temp:	22.9		рН:_	8.3	Hardness	100	
Cond.:	361		00:_	8.4	Alkalinity:		
Analyst:	Y.Su				Date:	2019 OCT 1	7
Comments:							
					and a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of		

CaCl2 x 2H2O (Calcium Chloride - dihydrous)

MgSO4 (Magnesium Sulphate - anhydrous)

CaSO₄ (g) (Calcium Sulphate- anhydrous)

NaHCO3 (Sodium Bicarbonate)

KCI (Potassium Chloride)

Recipe: 0.45mM CaCl2: 0.37mM CaSO4: 0.25mM MgSO4: 1.14mM NaHCO3: 0.05mM KCl

Appendix "A" to Report PW19008(g)/LS19004(f) Page 276 of 486

### ECOTOXICOLOGY

## Chironomus dilutus (Formerly C. tentans) Measurements of Head Capsule Widths

Max/am BBY2FCD-00247/1 Page 1 of 1

Client # & Name: SLR

Start Date and Time: 2019 Oct 18

End Date: 2019 Oct 28

Organism Lot #: AB191018

Chironomid #	Head Width (mm)			
1	0.35			
2	0.65			
3	0.34			
4	0.38			
5	0.41			
6	0.40			
7	0.40			
8	0.66			
9	0.37			
10	0.45 0.46 0.37			
11				
12				
13	0.34			
14	0.45			
15	0.62			
16	0.36			
17	0.39			
18	0.40			
19	0.50			
20	0.55			
Average	0.44			
SD	0.10			
Analyst	DML			

Head Widths at Beginning of Test

Average must be 0.33-0.45 mm (Environment Canada 1998) 1 mm=40 units on micrometer

### ECOTOXICOLOGY

# Chironomus-dilutus (Formerly C. tentans) Measurements of Head Capsule Widths

Client # & Name: 1776, 254, 4737 

Start Date and Time: 2019 OCTVS

End Date: 2019 00+28

Organism Lot #: ABIGIOIS

### Head Widths at Beginning of Test

Chironomid #	Head Width (mm)
1	0.35
2	065
3	0.34
4	0.38
5	041
6	0.40
7	0.40
8	066
9	0.37
10	0.45
11	0.46
12	0.37
13	0.34
14	0.45
15	0.62
16	0.26
17	0.39
18	0.40
19	0.50
20	0.55
Average	#DIV/0!
SD	#DIV/0!
Analyst	DML

Average must be 0.33-0.45 mm (Environment Canada 1998) 1 mm=40 units on micrometer

Maxxam BBY2FCD-00247/1 Page 1 of 1

diam'
Appendix "A" to Report PW19008(g)/LS19004(f) Page 278 of 289 of 486

Toll Free: 800/331-5916



1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

AB191018

# **ORGANISM HISTORY**

900	ORGANISM HISTORY
+145+30	
1490 T. DATE:	10/17/2019
	Christel House Loss (1997)
SPECIES:	Chironomus dilutus (formerly C. tentans)
AGE:	Deposited 10/7/2019
LIFE STAGE:	Second Instar 10/16/2019
HATCH DATE:	Emergent date 10/28/2019
BEGAN FEEDING:	Immediately
FOOD:	Raphidocelis subcapitata.*, Flake slurry

Water Chemistry Record:	Current	Range
TEMPERATURE:	24°C	24-26°C
SALINITY/CONDUCTIVITY:		
TOTAL HARDNESS (as CaCO ₃ ):	146 mg/l	100-180 mg/l
TOTAL ALKALINITY (as CaCO3):	80 mg/l	50-90 mg/l
pH:	7.61	7.58-8.30

**Comments:** 

*

Formerly known as Psuedokirschneriella subcapitata and Selenastrum capricornutum

Facility Supervisor

COTOXICOLO	θGY		ACCLIN	OR MATION AN	GANISMS - D HOLDING	CONDITION	IS		ge 290 of 4
								BBY2F	CD-00070/5
					-7/		0	Page	of
	С	lient #'s :	2541	473-7/1-	Date & Tin	ne of Arrival:	20196	01180	12:00
	Organi	sm Lot #:	AB191	018	Age	upon Arrival:	3rd	instar	
Water (L)	per Ship	ping Bag:	500,	мр	-	Organism:	Chi rol	romus di	lutus
Number	of Shipp	ing Bags:	11		#of Organis	ms Ordered:	1490+	-145+300	2
					Light In	tensity (lux):	602-0	818	
Arrival Conditio	ons			Cond	11				
Bag ID		# Dead	% Dead	(µS/cm)/ Salinity	Temp (°C)	DO ( mg/L)	рН	Feeding	Analyst
	1	Ø	Ø	474	21.5	14.1	7.0	1	ys
	2	Ø	0	471	21.7	19.1	7.0		ys
	3	0	0	469	2/16	20.5	7.0		<u> </u>
	4	0	0	475	097521.5	18:19	7.0	10	<u> </u>
	5	0	0	440	2/11	1410	710	214	<u> </u>
	6	0	5	475	21.8	12.8	7.0	Stal	W/S
	8	0	0	478	21.4	17.4	6.9	asit	YS
	9	0	0	470	21.9	19.4	7.0	10001	¥5
	10	Ø	0	481	21.9	1918	7.0		24
Daily Condition	[] S During	Ø Holding/	<i>O</i> Acclimation	519	21.8	19.0	7.0	MA	15
Daily condition	15 During	Morta	lities		١	Nater Quality	1		
Date		# Dead	% Dead	Cond (µS/cm)/ Salinity (ppt)	Temp (°C)	DO (mg/L)	рН	Feeding	Analyst
								1	
				~	-				
					RE				
			g	20					
					i octai	$\sim$	-		
Total Mortaliti	es								
Fauinme	nt ID:	EDV2.	- 0408	1					
Commonts la s	feedin	a times an	d quantitie	s: fish hehavi	our. acclimati	on condition	s):		Analyst
did wo	Not C	reality	opor	astival.	used	short	y ast	er	DM
		1					<u> </u>		
				the second second second second second second second second second second second second second second second se					
					Du	2019/10	106		

Page 280 of 496 of 486

BBY2FCD-00438/2

ECOTOXICOLOGY

#### **Randomization Chart**

Tab: Sediment Tests

Pg: 1 of 1

Test: CHIRONOMUS

Start Date: 2019 OCT 18

Client # & Name: 1776 SLR CONSULTING LTD

Back Wall		<b>Position</b> Map	)
6	12	18	
5	11	17	3
4	10	16	
3	9	15	
2	8	14	
1	7	13	etc.

Front of Counter

Position #	Sample ID	Replicate	Colour
35	1	A	2
6		В	
40	CONTROL	C	Red
19	CONTROL	D	nea
14		E	
42		Measure	
33		A	
37		В	
23	CC FAST/CZ	С	Orange
7	C6 EAST/G/	D	Orange
22		E	
24		Measure	
48		A	
10	125	В	
41	OF FACTION	С	Vellow
21	C5 EASI/G6	D	Tenow
43		E	
9		Measure	
28		A	
45		В	
8	CANALECT	С	Green
29	C4 VVEST	D	Green
3		E	
26		Measure	
11		A	
31		В	
38		С	Dark Green
12	C3 WEST	D	Dark Green
30		E	
44		Measure	
20		А	
18		В	
27	COCENTRE /CE	С	Blue
15	C3CENTRE/G5	D	Blue
46		E	
32		Measure	

Position #	Sample ID	Replicate	Colour	
5		А		
13		В		
34	<b>C</b> 1	С	Purnle	
16	64	D	rupic	
39		E		
1		Measure		
47	1000 - E 14 - 1	A		
4		В		
25	C1 WEST	С	Pink	
36	CI WEST	D		
17		E		
2		Measure		
49		A		
50		В		
51		С	Light Blue	
52		D	LIGHT DIGC	
53		E		
54		Measure		
55		A		
56		В		
57		С	Light Green	
58		D		
59		E		
60		Measure		
61		A		
62		В		
63		С	Pink/Vellow	
64		D	T may renow	
65		E		
66		Measure		
67		А		
68		В		
69		С	Red/Green	
70		D	neu/oreen	
71		E	24	
72		Measure		



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

BV Labs ID	Labs ID WS9519			WS9520	WS9521	
Sampling Date	2019/10/18			2019/10/18	2019/10/18	
COC Number		18218		18218	18218	
	UNITS	1776 Control PW Chiron	RDL	1776 C6 East PW Chiron	1776 C5 East PW Chiron	RDL
Nutrients		<i>#</i>				
Total Ammonia (N)	mg/L	0.32	0.015	21 (1)	29 (1)	0.38
RDL = Reportable Detec (1) Detection limits raise	tion Limit ed due to dilutio	on to bring analyte with	nin the cali	brated range.		<u>.  </u>

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs ID		WS9522		WS9523		WS9524	
Sampling Date		2019/10/18		2019/10/18		2019/10/18	
COC Number		18218		18218		18218	
	UNITS	1776 C4 West PW Chiron	RDL	1776 C3 West PW Chiron	RDL	1776 C3 Center PW Chiron	RDL
Nutrients							
Total Ammonia (N)	mg/L	55 (1)	0.75	14 (1)	0.15	1.3	0.015



#### RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID	100/0	WS9525		WS9526		WS9527	WS9528	
Sampling Date		2019/10/18		2019/10/18		2019/10/18	2019/10/18	
COC Number		18218		18218		18218	18218	
	UNITS	1776 G4 PW Chiron	RDL	1776 C1 West PW Chiron	RDL	1776 Control Overy Day 0 Chiron	1776 C6 East Overy Day 0 Chiron	RDL
Misc. Inorganics								
pН	pН					7.64	7.88	N/A
Anions				6 (m 1 2)				
Alkalinity (PP as CaCO3)	mg/L					<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L					60	97	1.0
Bicarbonate (HCO3)	mg/L					73	120	1.0
Carbonate (CO3)	mg/L					<1.0	<1.0	1.0
Hydroxide (OH)	mg/L					<1.0	<1.0	1.0
Nutrients								
Total Ammonia (N)	mg/L	11 (1)	0.15	0.64	0.015	0.074	0.13	0.015
RDL = Reportable Detection	Limit							

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs ID		WS9529	WS9530	WS9531	WS9532	
Sampling Date		2019/10/18	2019/10/18	2019/10/18	2019/10/18	
COC Number		18218	18218	18218	18218	
	UNITS	1776 C5 East Overy Day 0 Chiron	1776 C4 West Overy Day 0 Chiron	1776 C3 West Overy Day 0 Chiron	1776 C3 Center Overy Day 0 Chiron	RDL
Misc. Inorganics						
рН	pH	7.99	7.99	8.01	7.93	N/A
Anions						
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	120	130	100	93	1.0
Bicarbonate (HCO3)	mg/L	150	160	120	110	1.0
Carbonate (CO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Nutrients						
Total Ammonia (N)	mg/L	0.32	1.3	0.48	0.17	0.015



#### RESULTS OF CHEMICAL ANALYSES OF WATER

	2010/10/18	2010/10/10	
	2019/10/10	2019/10/18	
	18218	18218	
JNITS	1776 G4 Overy Day 0 Chiron	1776 C1 West Overy Day OChiron	RDL
pН	7.90	7.77	N/A
mg/L	<1.0	<1.0	1.0
mg/L	100	93	1.0
mg/L	130	110	1.0
mg/L	<1.0	<1.0	1.0
mg/L	<1.0	<1.0	1.0
mg/L	0.14	0.11	0.015
	pH mg/L mg/L mg/L mg/L mg/L mg/L	18218       JNITS     1776 G4 Overy Day 0 Chiron       pH     7.90       mg/L     <1.0	18218     18218       JNITS     1776 G4 Overy Day 0 Chiron     1776 C1 West Overy Day 0 Chiron       pH     7.90     7.77       mg/L     <1.0



Bureau Veritas Laboratories (TOX Internal) Sampler Initials: YS

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

BV Labs ID		WU6782		WU6783	WU6784	WU6785	
Sampling Date		2019/10/28		2019/10/28	2019/10/28	2019/10/28	
COC Number		18571		18571	18571	18571	
	UNITS	1776 Ch Day 10 Control	RDL	1776 Ch Day 10 C4 West	1776 Ch Day 10 C5 East/G6	1776 Ch Day 10 C3 West	RDL
Misc. Inorganics							
pH	pH	8.14	N/A	7.93	7.89	8.13	N/A
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	140	1.0	110	97	150	1.0
Bicarbonate (HCO3)	mg/L	180	1.0	130	120	190	1.0
Carbonate (CO3)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Nutrients		5					
Total Ammonia (N)	mg/L	6.6 (1)	0.075	0.12	0.10	0.090	0.015
RDL = Reportable Detection	Limit						

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs ID		WU6786	WU6787	WU6788	WU6789	
Sampling Date		2019/10/28	2019/10/28	2019/10/28	2019/10/28	
COC Number	18 C	18571	18571	18571	18571	
	UNITS	1776 Ch Day 10 C3 Centre G5	1776 Ch Day 10 C1 West	1776 Ch Day 10 G4	1776 Ch Day 10 C6EAST/G7	RDL
Misc. Inorganics						
рН	pH	8.19	8.19	8.16	8.09	N/A
Anions						
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	150	170	160	130	1.0
Bicarbonate (HCO3)	mg/L	190	200	190	160	1.0
Carbonate (CO3)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
Nutrients						
Total Ammonia (N)	mg/L	0.078	0.11	0.10	0.11	0.015
RDL = Reportable Detection N/A = Not Applicable	Limit					

## APPENDIX

C 14-DAY HYALELLA AZTECA SURVIVAL AND GROWTH TEST

BUREAU VERITAS LABORATORIES

Appendix "A" to Report PW19008(g)/LS19004(f) Page 286 of 297 of 486

#### **CETIS Analytical Report**

Report Date: 14 Nov-19 11:43 (p 1 of 2) Test Code: HA-1776-0119 | 03-5566-2885 Hyalella 14-d Survival and Growth Sediment Test **Bureau Veritas Laboratories** Analysis ID: 08-9493-9909 Endpoint: Survival Rate **CETIS Version:** CETISv1.9.2 Analyzed: STP 2xK Contingency Tables 14 Nov-19 11:43 Analysis: **Official Results:** Yes Batch ID: 16-9287-0172 Test Type: Survival-Growth Analyst: Start Date: 17 Oct-19 16:34 Protocol: EC/EPS 1/RM/33 Diluent: **Reconstituted Water** Ending Date: 31 Oct-19 12:00 Species: Hyalella azteca Brine: Not Applicable Duration: 13d 19h Source: Aquatic Biosystems, CO Age: Fisher Exact/Bonferroni-Holm Test Sample I VS Sample II Test Stat P-Type P-Value Decision(a:5%) Control C6 East / G7* 0.0000 Exact 4.7E-06 Significant Effect C5 East / G6* 0.0000 Exact 6.5E-11 Significant Effect C4 West* 0.0000 Exact 1.7E-25 Significant Effect C3 West* 0.0000 Exact 1.6E-08 Significant Effect C3 Centre / G5 0.0297 Exact 0.0594 Non-Significant Effect G4* 0.0000 Exact 2.1E-05 Significant Effect C1 West 0.1022 Exact 0.1022 Non-Significant Effect **Auxiliary Tests** Attribute Test **Test Stat** Critical **P-Value** Decision(a:5%) Extreme Value Grubbs Extreme Value Test 2.899 3.036 0.0882 No Outliers Detected Data Summary Sample Code NR R NR + R Prop NR Prop R %Effect Control 49 50 1 0.98 0.02 0.0% C6 East / G7 30 20 50 0.6 0.4 38.78% C5 East / G6 19 31 50 0.38 0.62 61.22% C4 West 1 49 50 0.02 0.98 97.96% C3 West 24 26 50 0.48 0.52 51.02% C3 Centre / G5 43 7 50 0.86 0.14 12.24% G4 32 18 50 0.64 0.36 34.69% C1 West 45 5 50 0.9 0.1 8.16% Survival Rate Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Control 1.0000 1.0000 1.0000 1.0000 0.9000 C6 East / G7 0.5000 0.5000 0.8000 0.4000 0.8000 C5 East / G6 0.5000 0.4000 0.4000 0.6000 0.0000 C4 West 0.0000 0.0000 0.0000 0.0000 0.1000 C3 West 0.5000 0.7000 0.4000 0.4000 0.4000 C3 Centre / G5 0.9000 1.0000 0.9000 0.6000 0.9000 G4 0.6000 0.8000 0.6000 0.8000 0.4000 C1 West 0.9000 1.0000 1.0000 1.0000 0.6000



#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 298 of 486

#### **CETIS Analytical Report**

14 Nov-19 11:43 (p 2 of 2) Report Date: Test Code: HA-1776-0119 | 03-5566-2885 Hyalella 14-d Survival and Growth Sediment Test **Bureau Veritas Laboratories** 08-9493-9909 Analysis ID: Endpoint: Survival Rate **CETIS Version:** CETISv1.9.2 Analyzed: 14 Nov-19 11:43 Analysis: STP 2xK Contingency Tables Official Results: Yes





## Appendix "A" to Report PW19008(g)/LS19004(f) Page 288 of 499 of 486

CETIS Ana	alytical I	Report	i Refer e		0 f -		Rep Tes	oort Date: t Code:	14 HA-17	14 Nov-19 11:43 (p 1 of 2) HA-1776-0119   03-5566-2885		
Hyalella 14-d	Survival a	nd Growth S	ediment Tes	st					Burea	u Veritas L	aboratories	
Analysis ID: Analyzed:	14-4476-8 14 Nov-1	3468 9 11:43	Endpoint: Analysis:	Mean Dry We Parametric-Tv	ight-mg vo Sample		CE ⁻ Offi	FIS Version cial Result	: CETISv s: Yes	1.9.2		
Batch ID: Start Date: Ending Date: Duration:	16-9287-0 17 Oct-19 31 Oct-19 13d 19h	172 16:34 12:00	Test Type: Protocol: Species: Source:	Survival-Grow EC/EPS 1/RM Hyalella aztec Aquatic Biosy	rth I/33 a stems, CO		Ana Dilu Brir Age	ilyst: ient: Re ne: No ::	constituted t t Applicable	Water		
Data Transfor	m	Alt H	dvp .				Compari	son Result			PMSD	
Untransformed	1	C > T					C6 East	G7 failed n	nean dry we	iaht-ma	14 18%	
							C5 East C4 West C3 West C3 Centr G4 failed	/ G6 failed n failed mean failed mean e / G5 failed mean dry w	nean dry we dry weight- dry weight- mean dry v reight-mg	ight-mg mg mg veight-mg	14.18% 14.18% 14.18% 14.18% 14.18%	
							C1 West	failed mean	dry weight-	mg	14.18%	
Equal Varianc	e t Two-Sa	mple Test										
Sample I	vs Sam	ple II	Test S	tat Critical	MSD F		P-Value	Decision	(a: E%)			
Control	C6 E	ast / G7*	9.529	1.86	0.019 8	CDF	6 1E-06	Significar	(u.5%)			
	C5 E	ast / G6*	8.422	1.895	0.022 7	CDF	3.3E-05	Significar	t Effect			
	C4 W	/est*	4.297	2.132	0.040 4	CDF	0.0063	Significar	t Effect			
	C3 W	/est*	13.48	1.86	0.015 8	CDF	4.4E-07	Significar	t Effect			
	C3 C	entre / G5*	7.181	1.86	0.017 8	CDF	4.7E-05	Significar	t Effect			
	G4*		6.139	1.86	0.027 8	CDF	1.4E-04	Significar	t Effect			
0	C1 W	/est*	3.64	1.86	0.020 8	CDF	0.0033	Significan	t Effect			
Auxiliary Tests	5											
Attribute	Test				Test Sta	t Critical	P-Value	Decision	(a:5%)			
Extreme Value	Grub	bs Extreme	Value Test		2.971	2.978	0.0516	No Outlie	rs Detected			
ANOVA Table												
Source	Sum	Squares	Mean S	quare	DF	F Stat	P-Value	Decision	(a:5%)			
Between	0.047	2032	0.00674	133	7	23.34	<1.0E-37	Significan	t Effect	-		
Error	0.007	8016	0.00028	389	27			eiginioun	( Liloot			
Total	0.055	0048			34							
Distributional	Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decision	α:1%)			
Variances	Leven	e Equality of	Variance Te	st	1.253	3.388	0.3101	Equal Var	iances			
Distribution	Shapi	ro-Wilk W N	ormality Test		0.9727	0.9146	0.5210	Normal Di	stribution			
Mean Dry Weig	ght-mg Sun	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
Control		5	0.1415	0.12	0.163	0.134	0.1256	0.166	0.007743	12.24%	0.00%	
C6 East / G7		5	0.04305	0.02406	0.06204	0.045	0.024	0.06	0.006841	35.53%	69.58%	
C5 East / G6		4	0.04383	0.01638	0.07129	0.04667	0.022	0.06	0.008627	39.36%	69.02%	
C4 West		1	0.06			0.06	0.06	0.06	0	0.00%	57.60%	
C3 West		5	0.02939	0.02093	0.03784	0.028	0.0225	0.04	0.003045	23.17%	79.23%	
C3 Centre / G5		5	0.07627	0.06307	0.08947	0.08167	0.05889	0.08444	0.004754	13.94%	46.11%	
G4		5	0.0525	0.01846	0.08654	0.05	0.02333	0.0975	0.01226	52.21%	62.90%	
C1 West		5	0.1022	0.08135	0.1231	0.09667	0.08444	0.121	0.007518	16.45%	27.76%	



# Appendix "A" to Report PW19008(g)/LS19004(f) Page 289 of 486

#### **CETIS Analytical Report**

CETIS Ana	lytical Rep	oort					Report Date:	14 Nov-19 11:43 (p 2 of 2)
							Test Code:	HA-1776-0119   03-5566-2885
Hyalella 14-d	Survival and C	Frowth Sec	diment Test					Bureau Veritas Laboratories
Analysis ID:	14-4476-8468	B E	ndpoint: M	ean Dry Wei	ght-mg		CETIS Version:	CETISv1.9.2
Analyzed:	14 Nov-19 11	:43 Ai	nalysis: Pa	arametric-Tw	o Sample		Official Results:	Yes
Mean Dry Wei	ght-mg Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control		0.129	0.153	0.166	0.134	0.1256		
C6 East / G7		0.024	0.06	0.03125	0.055	0.045		
C5 East / G6		0.022	0.055	0.06	0.03833			
C4 West		0.06						
C3 West		0.028	0.03143	0.04	0.025	0.0225		
C3 Centre / G5	(	0.07333	0.083	0.05889	0.08167	0.08444		
G4		0.04167	0.05	0.02333	0.05	0.0975		
C1 West		0.08444	0.119	0.121	0.09	0.09667		

Graphics







ECOTOXICOLOGY

## Hyalella azteca Survival and Growth Test -

Page age 30 f 486

Survival

BBY2FCD-00275/4

Page _____of ____

Client # & Name: SLR

Job # B985653

Start Date and Time: 2019 Oct 17 @ 16:34

End Date: 2019 Oct 31

Organism Lot #: AB191015

Analysts: M. Hamad, Y. Su, N. Shergill, S. Gupta, L. Nicholls, G. Matharu

Sample	Rep	Initial #	Final #	%	Surv	ival
		Hyalella	Hyalella	Survived	Mean %	SD %
Control	А	10	10	100	98	4
	В	10	10	100		
	С	10	10	100		
	D	10	10	100		
	E	10	9	90		
C6 East / G7	А	10	5	50	60	19
	В	10	5	50		
	С	10	8	80		
	D	10	. 4	40		
복용하는 영상	E	10	8	80		
C5 East / G6	А	10	5	50	38	23
	В	10	4	40		
	С	10	4	40		
	D	10	6	60		
	E	10	0	0		
C4 West	А	10	0	0	2	4
	В	10	0	0		
1996年1998	С	10	0	0		
	D	10	0	0		
	E	10	1	10		
C3 West	А	10	5	50	48	13
	В	10	7	70		
1992 - 4997	С	10	4	40		
	D	10	4	40		
	E	10	4	40		
C3 Centre / G5	А	10	9	90	86	15
1. 1. 1. 1. 1.	В	10	10	100		
	С	10	9	90		
	D	10	6	60		
	E	10	9	90		
G4	А	10	6	60	64	17
	В	10	8	80		
	С	10	6	60		
	D	10	8	80		
	E	10	4	40		

Appendix "A" to Report PW19008(g)/LS19004(f) Page 302 of 486

Hyalella azteca Survival and Growth Test -

Maxxam

Survival

ECOTOXICOLOGY

BBY2FCD-00275/4 Page 0 of 2

Client # & Name: SLR

Start Date and Time: 2019 Oct 17 @ 16:34

Job # B985653

Organism Lot #: AB191015

End Date: 2019 Oct 31

Analysts: M. Hamad, Y. Su, N. Shergill, S. Gupta, L. Nicholls, G. Matharu

Sample	Rep	Initial #	Final #	%	Survi	ival
		Hyalella	Hyalella	Survived	Mean %	SD %
C1 West	А	10	9	90	90	17
1.1.1.1.1.1.1	В	10	10	100		
10.000	С	10	10	100		
	D	10	10	100		
	E	10	6	60		

Proofed By: Phaves 2019Novis

Appendix "A" to Report PW19008(g)/LS19004(f) Page 202 of 405 of 486 ECOTOXICOLOGY Hyalella azteca Survival and Growth Test a xam **Dry Weights** BBY2FCD-00129/5 Page 1 of 1 Client # & Name: 1776 SLR CONSULTING LTD Start Date and Time: 2019 OCT 17 @ 16:34 Job/Sample #: B985653 End Date: 2019 Oct 31 Organism Lot #: AB191015 Drying Temperature (°C): 60 Weighing Dates: 2019 Nov 12 Drying Time (h): >24 Analysts: Y. Su Boat Sample # Rep Hyalella Hyalella Wt. Mean Wt./Hyalella Mean Wt./Sample SD # Hyalella Wt.(g) (mg) (mg) (mg) 41 CONTROL A 10 0.00129 1.29 0.13 0.14 0.02 42 В 10 0.00153 1.53 0.15 43 C 10 0.00166 1.66 0.17 44 D 10 0.00134 1.34 0.13 45 Е 9 0.00113 1.13 0.13 46 C6 EAST / G7 5 А 0.00012 0.12 0.02 0.04 0.02 47 В 5 0.00030 0.30 0.06 48 С 8 0.00025 0.25 0.03 49 D 4 0.00022 0.22 0.06 50 Ε 8 0.00036 0.36 0.05 51 C5 EAST / G6 5 A 0.00011 0.11 0.02 0.04 0.02 52 В 4 0.00022 0.22 0.06 53 C* 1 0.00006 0.06 0.06 54 D 6 0.00023 0.23 0.04 55 Ε 0 --56 C4 WEST A 0 0.06 -#DIV/0! 57 0 В .... -58 С 0 --59 D 0 4 ..... 60 Е 1 0.00006 0.06 0.06 61 C3 WEST 5 А 0.00014 0.14 0.03 0.03 0.01 62 7 В 0.00022 0.22 0.03 С 63 4 0.00016 0.16 0.04 64 4 D 0.00010 0.10 0.03 65 Е 4 0.00009 0.09 0.02 66 C3 CENTRE/ G5 A 9 0.00066 0.66 0.07 0.08 0.01 67 10 В 0.00083 0.83 0.08 С 68 9 0.00053 0.53 0.06 69 D 6 0.00049 0.49 0.08 70 Ε 9 0.00076 0.76 0.08 71 G4 A 6 0.00025 0.25 0.04 0.05 0.03 72 В 8 0.00040 0.40 0.05 73 С 6 0.00014 0.14 0.02 74 8 D 0.00040 0.40 0.05 75 Е 4 0.00039 0.39 0.10

The average dry weight for the replicate controls must be  $\geq 0.1$  mg, for the test to be valid.

0.00012

0.00128

YS

QA/QC

0 - A

Analyst:

5

10

46

41

Notes: * 3 missing organism discovered during dry weigh process. Mean dry weight adjsuted for missing organisms

0.12

1.28

0.02

0.13

					A	opendix "A" to Repo	ndix "A" to Report PW19008(g)/LS19004(f)				
ECOTOXICOLOGY		Hyalel	<i>la azteca</i> S Dr	urvival an y Weights	d Gro	wth Test -		Page 203 of 404 of 486			
								BBY2FCD-00129/5 Page 1 of 1			
Client # & Name:	1776 SLR C	ONSULTI	NG LTD		S	tart Date and Time	2019 0	CT 17 @ 16:34			
Job/Sample #:	B985653					End Date	2019 0	ct 31			
Organism Lot #:	AB191015				Dryin	g Temperature (°C)	60				
Weighing Dates:	2019 Nov 1	2				Drying Time (h)	>24				
Analysts:	Y. Su										
Boat Sample	Ren	#	Hyalella	Huglel	a W+	Moon W/t /Unalella	Magn	Alt /Comple CD			

#	bumpic	ПСР	" Hyalella	Wt.(g)	(mg)	(mg)	(mg)	30
76	C1 WEST	A	9	0.00076	0.76	0.08	0.10	0.02
77		В	10	0.00119	1.19	0.12		
78		С	10	0.00121	1.21	0.12		
79		D	10	0.00090	0.90	0.09		
80		E	6	0.00058	0.58	0.10		
76		0 - A	9	0.00073	0.73	0.08		
		Analyst:		YS				

The average dry weight for the replicate controls must be  $\geq 0.1$  mg, for the test to be valid. Notes:

Proofed By: Mars 2019 Nov15

Page 305 of 486

Max kam A Bureau Veritas Group Company

#### ECOTOXICOLOGY

-1884

HYALELLA AZTECA SURVIVAL AND GROWTH TEST - TEST INFORMATION

BBY2FCD-00144/5

Page 1 of 1

Client # & Name:	1776 SLR CONSULTING LTD
Job #:	B985653
Test Initiation Date & Time:	2019 OCT 17 @ 16:34
Test Completion Date:	2019 OCT 31 @ 18 235
Room #:	103
Analyst(s):	M. O'Toole, Monson, Y. Su
	NShergill, S-Gupter
Control Water Batch:	20191015
<b>Control Sediment:</b>	yaquina control sediments 201900004
	Smillin Novac
Organism Lot:	AB191015
Age at Start of Test:	6-8 days
Feeding Regime:	1.75mL YCT & 800 $\mu$ L tetramin slurry (4g/L) per replicate 3x weekly
	0.75 mL YCT & 340 $\mu\text{L}$ tetramin slurry (4g/L) per replicate daily feeding
YCT Batch Number:	20191002
Tetramin Preparation Date:	201900718
Balance ID:	3312-0260
Drying Oven ID:	3842-0278
WQ Instrument ID:	BBY2-0352, BBY2-0366
Additional Comments:	
	- Ski

Appendix "A" to Report PW19008(g)/LS19004(f) Page 295 of 486

ECOTOXICOLOGY

BBY2FCD-00142/2

#### HYALELLA AZTECA SURVIVAL AND GROWTH TEST - AERATION CHECKS

Page 1 of 1

Client # & Name: 1776 SLR CONSULTING Start Date: 2019 OCT 17

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

	Day -1	Day 0	1	2	3	4	5	6
Date	Z019 OCT 16	2019 007 17	2019 OCT 18	2019,9	2019 oct20	2019	2019 OCT 7:	2 00723
Early AM	NA	VS	¥5	1	UB	Y	ys	¥5
Mid-day	NA	ys	45	1	54	X	ys	45
Late PM	ps	ys	ys	Y	34	ł	45	YS
				Ŵ				
	Day 7	8	9	10	11	12	13	14
Date	2014 00724	2019 OCT25	2019 0426	2019 oct	2019	2019	2819 0430	2019
Early AM	( AAK	45	УS	54	ys	ys	Y	NS
Mid-day	A HAYS	ys.	M	59	45	¥5	Y)	Der .
Late PM	@ #s ys	ss	ys	sy	H	YS	Y	Seel

Comments:

JAN DONA Nova Nova	
Jun 2019 Nove	/
Dry Dry Dry Doug Nove	
Dry Dry Dry Dry Nova Nova	
Jrn 2019 Novab	
Dry Dug Nove	
JADONA Nova Nova	
Jrn Jourg Nova Nova	
JAN JOUG NOUCH	
Jun Jorg Nova Nova	
JADONA NOVA	
A DOUN NOVD	Ar a
Nova	
	612300
	10
	/
AIWEVS JOIG DIT 26	AWEVS 2019 DUT 25

Page 296 of 109 of 486

### ECOTOXICOLOGY HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Control

Sample ID: CONTROL

Start Date: October 17, 2019

Job #: B985653

End Date: October 31, 2019

		Measu	irements		Samples Taken						
		Har	dness	Condu	ctance	Alka	alinity	Amn	nonia		
р	рН		. CaCO ₃ )	(μS/	cm)	(mg/L	. CaCO ₃ )	(mg/L)			
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final		
B8:28.1	8.5	112	152	458	596	47	150	0.04	6.6		

Initial overlyi	ng WQ measur	ements:			Final overly	ing WQ n	neasu	rements:			
Analyst	mo	Date 20	0190417		Analyst	NS 10		© 201 Date 2019	10ch7	31	
Day	Thursday Day 0 22	Sunday	Tuesday Day 5	Thursday Day 7	Sunday Day 10	Tuesda Day 1	ay L <b>2</b>	Thursday Day 14			
Temp. (ºC)	25.20	23.1	22.8	22.6	22.9	22	3	22.1			
D.O. (mg/L)	B8.48.	6 8.5	8.2	8.3	Q. 8	8,	5	8.8			
Subsampled fo ammonia (√)	r J							]			
Analyst	moly	s 3G	75	ys	SG DC	195		NS			
Feeding–Day:	0 1	2	3 4	5	6 7	8	9	10	11	12	13
Analyst	ys y	5 7	34 4	45 1	p ys	¥5	Ð.	3 39.	ys	ys	ys
Replicate	A	B	C ↓	D	E	]	AL	NF mo 20	nam	617	
# Surviving	(0	10	10	10	9		0.			WEND	20190ct1
Analyst	MIM	¥5	NS	MIM	sq.		B	WE, 45	20190	CT 17	[~
Date	Replicate	Comments a	nd/or addition	al WQ mea	surements:		0	JOLA NOVI	S	An	alyst

SMU NOUTH ADA NOUTH

Appendix "A" to Re	port PW19008(a)/LS19004(f)

Page age 308 of 486

### ECOTOXICOLOGY HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

TI

Sample ID: C6 EAST / G7

Job #/Sample #: B985653

Start Date: October 17, 2019

-

End Date: October 31, 2019

			Measu	rements								Sample	s Take	en		
nH			Hard	Iness		Condu	ucta	ance		Alk	alini	ty		Amn	noni	а
pii			(mg/L	CaCO ₃ )		(μS	/cn	n)		(mg/	L Ca	CO ₃ )		(m	g/L)	
Initial	Final	_	Initial	Final		Initial		Final	Init	ial	,	Final	In	itial	1	Final
8.4	8.4	۱	72	12.411		16617		1219	100			900	7.	5	0,0	598
Initial overlyir	ng WQ mea	asure	ments:			NEmo20	nac	つけい Final over	lying W	Q me	asur	ements:			]	
Analyst Y	$\sim$		Date 2	140001	7	]		Analyst	NS		1	Date 20	190	£Э		
Dav	Thursda	iy	Sunday	Tuesday		Thursday		Sunday	Tu	esday		Thursday				
Day	Day 0		Day 3	Day 5		Day 7	_	Day 10	Da	y 12		Day 14				
Temp. (ºC)	22.	6	23.4	23,	0	22.8	*	22.8	20	7.7		22.2	<u>.</u>			
D.O. (mg/L)	85	5	8.3	810	3	8.4		8.5	8	.6		8.6				
Subsampled for ammonia (√)	7	and the second second									•	/				
Analyst	mo		S4	¥5		<i>ys</i>		94	Y	5		NS				
Feeding–Day:	0	1	2	3	4	5	6	7	8		9	10	11	1	2	13
Analyst	y	ys	X	34 1		YS .	Y	n yrs	V S	1	VS	SI	· 85	y	p	ys
Replicate	Α		B	C C		D		E								
# Surviving	5		5	8		4		8								$\psi_{ii}$
Analyst	NS		ys	17Hz	1	w.		MHM								
											_					

Date	Replicate	Comments and/or additional WQ measurements:	Analyst
201900731	В	a red worm was found in the soumple	Jes
	1-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Caller
		Ohi DIA NOUS	
		10	
		12	

Page age 309 of 486

#### ECOTOXICOLOGY HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

Sample ID: C5 EAST / G6

B985653

Start Date: October 17, 2019

End Date: October 31, 2019

		Measu	rements				Sample	s Taken	
	Hardness				uctance	Alka	alinity	Ammonia	
рп		(mg/L CaCO ₃ )		(μS	i/cm)	(mg/L CaCO ₃ )		(m	g/L)
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
8.5	8.3	168	300	682	1106	120	110	IV.	0.16

Initial overlying WQ measurements:

MITM

Job #/Sample #:

Analyst mo

Analyst

Date 2019 OCH )

MHM

MITM

Analyst NS Date 2019.043

Final overlying WQ measurements:

Dav	Thursday	Sunday	Tuesday	Thursday	Sunday	Tuesday	Thursday
Day	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (ºC)	22.6	23.2	22.9	22.9	22.9	22.8	22,5
D.O. (mg/L)	8.5	8.4	8.4	2.8	8.6	8.7	8.5
Subsampled for ammonia (V)	$\checkmark$						~
Analyst	mo	59	<i>ys</i>	jes.	<u>S9</u>	VS	

Feeding–Day:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Analyst	YS	ys	7	SGI	1	ys	ys	ÿ	¥5	VS	54.	¥S	ys	<i>Ys</i>
Replicate	A		B		c	D		E	]					
# Surviving	S		4	4		6		0	]					

MHM

YS

Date	Replicate	Comments and/or additional WQ measurements:	Analyst
		Start mate	
		2019 NOUS	
/			

Page age 310 of 486 am

## ECOTOXICOLOGY HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

12

12

Form: Sample

Sample ID: C4 WEST

Job #/Sample #: B985653

Start Date: October 17, 2019

End Date: October 31, 2019

		Measu	irements				Sample	s Taken				
	рН Н		dness	Condu	uctance	Alka	linity	Ammonia				
ł	/11	(mg/L	CaCO ₃ )	(µS/cm)		) (mg/L CaCO ₃ ) (mg/l			(mg/L CaCO ₃ )		CO ₃ ) (mg/l	
Initial	Final	Initial	Final	Initial	Final	Initial	, Final	Initial	/Final			
8.4	8.3	168	226	687	1009	. 140	180	20	010			

Initial overlying WQ measurements:

mo

Analyst

Date 201906117

Final overlying WQ measurements: Date 2019 00+31 Analyst NS

Dav	Thursday	Sunday	Tuesday	Thursday	Sunday	Tuesday	Thursday
Day	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (ºC)	22.7	23.2	22.9	22.9	22.8	22.7	22.5
D.O. (mg/L)	8.5	8.4	8.3	8.4	8.6	8.5	.8.5
Subsampled for ammonia (v)	7						$\checkmark$
Analyst	mo	SG	¥5	48	59	¥5	

		-			-		U	· ·	0	5	10	11	12	12
Analyst	n	y	7	54	4	ys	YS	y5	¥5	YS	SU	ys	ys	H
Replicate	А		B	(	: V	D		E	]					
# Surviving	0	-	$\mathcal{O}$	C		O		1						-* -
Analyst	La		las.	y	5	MHM		VS						

Analyst	-00,		
Date	Replicate	Comments and/or additional WO measurements:	Analys
2014 DC131	D	Sample is thick shorry with hydrorarbon odor	MIL
20190031	E,C	strong hydrocarbon odor several red worms were found	in
01906/31	B,A	Strang hydrocarbon sclar	h
	,		
		Smoold NOUS.	
	/	6	

Page 300 of 406 of 486 kam

## ECOTOXICOLOGY HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

Sample ID: C3 WEST

Job #/Sample #: B985653

Start Date: October 17, 2019

End Date: October 31, 2019

		Meas	urements			Samples Taken					
	На		dness	Cond	luctance	Alk	alinity	Am	monia		
рн		(mg/L CaCO ₃ )		(μ	S/cm)	(mg/L CaCO ₃ )		(m	ng/L)		
Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final		
8.4	8.2	180	400	578	936	110	190	5.9	0.16		

Initial overlying WQ	measurements:
----------------------	---------------

mo

Analyst

Date 20190017

Analyst INS Date 20190731

Final overlying WQ measurements:

Dav	Thursday	Sunday	Tuesday	Thursday	Sunday	Tuesday	Thursday
Day	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14
Temp. (ºC)	22.4	23.2	22.9	22.9	22.8	22.8	22.5
D.O. (mg/L)	8.6	8.5	8.2	8.4	8.4	8.5	, 8.4
Subsampled for ammonia (√)	5						/
Analyst	mo	34	¥5	¥5	59	¥5	

Feeding–Day:	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Analyst	45	YS	Y	Sy	X	ys	ys	ys,	45	VS	59	WS	ys	ys
Replicate	А		B		c	D		E	]					
			A CONTINUES			1.00								

# Surviving	5		4	4	4
Analyst	as	as	es	YS	0

Date	Replicate	Comments and/or additional WQ measurements:	Analyst
201900731	D	The ed worms was Found	45
190031	-E-	several red worms were found.	ys
			and and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
		Smarly Novily	
		-	

A WE & 2019017 51

Appendix "A" to Report PW19008(g)/LS19004(f) Page 301 of 496

ECOTOXICOLOGY

HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

xam

Sample ID: C3 CENTRE / G5

Job #/Sample #: B985653

End Date: October 31, 2019

Start Date: October 17, 2019

		Measu	rements		Sample	s Taken			
<b></b>		Hard	iness	Cond	uctance	Alk	alinity	Ammonia (mg/L)	
ŀ	'n	(mg/L	CaCO ₃ )	(μ	S/cm)	(mg/L CaCO ₃ )			
Initial	Final	Initial	Final	Initial	Final	Initial	, Final	Initial	/ Final
8.4	8.5	152	344	521	935	86	200	23	0.054

Initial overlying WQ measurements:	
------------------------------------	--

m

Analyst

Date 20190017

Final overlying WQ measurements: Analyst NE

Date 2019 00+31

Davi	Thursday	Sunday	Tuesday	Thursday	Sunday	Tuesday	Thursday	
Day	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14	
Temp. (ºC)	22.6	23.3	22.9	23,0	22,8	22.7	22.6	
D.O. (mg/L)	8,6	8.4	8.4	8.5	8-3	8.4	,8.4	
Subsampled for ammonia (√)	L							
Analyst	mo	54	¥5	45	39	¥5		

recuiling buy.	-	~ /	3	4	5	6	/ /	8	9	10	11	12	13
Analyst yr	ys	X	54	X	ys	ys	ys	VS	43	SG	SUS .	YS	ys

Analyst	YS	MHM	MHM	Lor.	59.
# Surviving	9	16	9	6	\$9
Replicate	A	В	C	D	E

Date	Replicate	Comments and/or additional WQ measurements:	Analyst
20190(f31	D	Found 7 indigenous worms in scuple.	
		mar anoth	
		SUZDIA NOON	

Appendix "A" to	Report PW	/19008(q)/LS19004(f)	

Page 302 of 406 of 486

Maxxam

#### ECOTOXICOLOGY HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

13 13

Sample ID: G4

141

End Date: October 31, 2019

Start Date: October 17, 2019

Job #/Sample #: B985653

Ln,

Analyst

as

Measurements Samples Taken Hardness Conductance Alkalinity Ammonia pH (mg/L CaCO₃) (µS/cm) (mg/L CaCO₃) (mg/L)Final Initial Initial Final Initial Final Initial Final Initial /Final 553 8.2 8.3 365 1009 94 160 3.6 0.17 81

Initial overlying	g WQ me	asur	emer	nts:				Fi	nal overly	ing WQ	measui	ements:		
Analyst	mo			Date 20	190	пhи		A	nalyst N	6		Date 20	01900	+31
Day	Thursd Day (	ay D	S	unday Dav 3	Tu	esday	Thursday	/	Sunday	Tueso	day	Thursday		
Temp. (ºC)	22.	1	23	,0 ,0	0	22.7	23,0	2 2	2.8	ZZ.	7	22.L		
D.O. (mg/L)	8,5	5	8.	S		8.5	8.4	1	8.5	8.	6	8.5		÷
Subsampled for ammonia (√)	7								0					
Analyst	m	>	Y	(		85	Ys.		54	¥5	s			
Feeding–Day:	0	1		2	3	4	5	6	7	8	9	10	11	12
Analyst	YS	¥	1	X	54	1	ys	'ys	ys	45	ys	54	ys	ys
Replicate	А		XX	B		c	D		E	]		,		
# Surviving	5		2	8		6	8		4					

as

39

3

Date	Replicate	Comments and/or additional WQ measurements:	Analyst
201900731	E	Many Red worma found in the Sarple	ser
		0	_
		Drive Nouly	
		Jose, ,	
		•	
/			t
/			

Page 303 of 486

## Maxxam

ECOTOXICOLOGY	- 57						
HYALELLA AZTECA	SURVI	VAL	AND	GROWTH	TEST -	DATA	SHEET

BBY2FCD-00143/6

Form: Sample

Sample ID: C1 WEST

Job #/Sample #: B985653

Start Date: October 17, 2019 End Date: October 31, 2019

Measurements Samples Taken Hardness Conductance Alkalinity Ammonia pH (mg/L CaCO₃) (µS/cm) (mg/L CaCO₃) (mg/L)Initial Final Initial Final Initial Final Initial Final Initial Final 8.4 0,12 8.2 176 420 349 84 0.72 11 110

Initial overl	ying WQ measu	rements:
Analyst	mo	Date 20190017

Final overlying WQ measurements:

Analyst	nalyst MO		0190917		Analyst N	Date ZO19 Oct 3		
Davi	Thursday	Sunday	Tuesday	Thursday	Sunday	Tuesday	Thursday	
Day	Day 0	Day 3	Day 5	Day 7	Day 10	Day 12	Day 14	
Temp. (ºC)	22.S	23.1	マス・チ	23,0	22.9	22.7	22.5	
D.O. (mg/L)	8.5	8.3	8.5	8.5	8.6	8.5	8.5	
Subsampled for ammonia (√)	7						V	
Analyst	mo	59	45	45	54	VS		

Feeding–Day:	0	1	2	/ 3	4	5	6	7	8	9	10	11	12	13
Analyst	ys	ys	Y	54	1	ys	y	ys	45	45	SĘ	ys	ys	ys
Replicate	٨	1		1		D		F	1					

# Surviving	9	10	10	10	6
Analyst	54	Mitm	ys	¥5	LN.

Replicate	Comments and/or additional WQ measurements:	Analyst
	on hiarly	
	S DON 1	
	*	
	Replicate	Replicate Comments and/or additional WQ measurements:

ECOTOXIC	OLOGY
----------	-------

#### BUREAU VERITAS LABORATORIES

BBY2FCD-00133/3

Page 1 of 1

SAM-5S Water Recipe for Hyalella

BATCH ID: 2019 OCT 15

(Date Hardened)

SAM-5S Reconstituted Water Recipe for Hyalella azteca as per Borgmann 1996 (For water hardness ~125 mg/L)

Chemical We	ights	CaCl ₂ X2H ₂ O	MgSO ₄ (g)	NaBr (g)	NaHCO₃ (g)	KCI (g)
	Brand	Fisher	Fisher	@Fisher	Fisher	Fisher
	Lot #	184678	183674	(2) <del>187782</del>	187782	195613
	Calculated	8.82	1.81	0.06	5.04	0.22
	Actual	8.8249	1,8135	0.0612	5.0430	0.2219
Balance ID:	BB42-	0260				
Analyst:	YuSu			Add to Ty	pe 3 DI (L):	60
Water Use:	60 L			DI Machine ID:	BB12-0	160
Date:	201900	15				
Water Quality	:					
Temp (°C):	23.0	pH:	8.0 1	Hardness (mg/L)	Ĩ 36	
Cond (µs/cm):	383	DO (mg/L):	8.3	Alkalinity (mg/L):	NIA	2
Analyst:	YuSu			Date:	2019 OUT 1	6
Comments:						
NaUCO2 (Sodiu	m Ricarbonat					

NaHCO3 (Sodium Bicarbonate)

NaBr (Sodium Bromide)

CaCl2 x 2H2O (Calcium Chloride - dihydrous)

MgSO4 (Magnesium Sulfate (anhydrous)

KCI (Potassium Chloride)

SAM-5S Recipe = 1 mM CaCl2, 1 mM NaHCO3, 0.01 mM NaBr, 0.05 mM KCl, and 0.25 mM MgSO4

Borgmann, U. 1996. Systematic analysis of aqueous ion requirements of *Hyalella azteca*: A standard artificial medium including the essential bromide ion. *Archives of Environmental Contamination and Toxicology*. 30: 356-363.

@ WE, YS 2019 OCT 15

Appendix "A" to Report PW19008(g)/LS19004(f) Page 305 of 406 of 486

Toll Free: 800/331-5916

1

Tel: 970/484-5091 Fax: 970/484-2514

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

AB191015

# # 1370+135

## ORGANISM HISTORY

NC

n

DATE:	10/14/2019	÷
	с.	
SPECIES:	Hyalella azteca	
AGE:	3-5 day	
LIFE STAGE:	Juvenile	
HATCH DATE:	Variable	
BEGAN FEEDING:	Immediately	
FOOD:	Flake slurry	

C

### Water Chemistry Record:

· · · · · · · · · · · · · · · · · · ·	Current	Range
TEMPERATURE: [#]	25°C	23-26°C
SALINITY/CONDUCTIVITY:		
TOTAL HARDNESS (as CaCO ₃ ):	178 mg/l	118-200 mg/l
TOTAL ALKALINITY (as CaCO ₃ ):	85 mg/l	50-90 mg/l
pH:	8.03	7.56-8.20

urront

Dana

**Comments:** 

Facility Supervisor

ECOTOXICOLOGY	Client #'s :	ACCL 254	OR IMATION AN , 1176, 47	GANISMS - ID HOLDING 3 Date & T	Appendix "A' G CONDITION	' to Report <u>S</u> <i>Z019 (</i>	PW19008(g)/LS Pagp 3 M agp 3 BBY2F Page D 0 15 (9)	19004(f) 1907317 of 48 200707 of 48 2007070/5 0 of 13 : 0 0
Or	ganism Lot #:	AB19	1015	_ Age	upon Arrival:	4-6	Days	
Water (L) per S	Shipping Bag:	16		-	Organism:	Hyal	ella aztei	ca
Number of Sl	nipping Bags:	3		#of Organi	sms Ordered:	1370	+ 135	ē.
Arrival Conditions				Light I	ntensity (lux): _	600	7 ~ 818	
Bag ID	# Dead	% Dead	Cond (µS/cm)/ Salinity (ppt)	Temp (°C)	DO ( mg/L)	рН	Feeding	Analyst
/	0	0	1421	20.5	8.1	7.6	Sm1+sml	45
2	0	θ	1409	2017	8.1	7.5	57~ +57~	45
3	0	0	1405	20.1	8.2	7.5	5ml+5ml	ys
			-5	Jorg .	Decel			
						-		
Daily Conditions Du	ring Holding/	Acclimatio	n					
	Morta	alities			Water Quality			
Date	# Dead	% Dead	Cond (µS/cm)/ Salinity (ppt) زطر	Temp (°C) ୦୨୨	DO (mg/L)	рН	Feeding	Analyst
201900716	Ø	0	ATGH	23.6	かえ	8.2	Smf + 5ml	WS .
JOIGOCTIG	0	0	1402	2315	8-1	8.1	10m +10m	45
								CARL COMMAND AND COMMAND AND AND AND AND AND AND AND AND AND

	Mort	alities			Water Quality	y		
Date	# Dead	% Dead	Cond (µS/cm)/ Salinity (ppt) १४९	Temp (°C) ୨୩	DO (mg/L)	рН	Feeding	Analyst
20190cT16	Ø	0	ATGH	23.6	8.2	8.2	sml+sml	M
2019OCTIB	0	0	1402	2315	8.1	8.1	ION +ION	ys
								~
				and	/			
				Dia.	219	1		
				む	De	>		
					Dog			
/								
Fotal Mortalities								

Comments (e.g. feeding times an	quantities; fish behaviour, acclimation conditions):	Analyst
recieved organisms	did WTR quality, stoled who I diff sizes of	pyres dishes ys
-> 2019 OCT (6: die	I WTR gichneges, wTR gualities, feeding.	ys

@ WE1 93 2019 00716



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

BV Labs ID		WS4947		WS4948		WS4949	
Sampling Date		2019/10/17		2019/10/17		2019/10/17	
COC Number		18213		18213		18213	
	UNITS	1776 Control Day 0 Hy Overly	RDL	1776 C6 East Day 0 Hy Overly	RDL	1776 C5 East Day 0 Hy Overly	RDL
Misc. Inorganics						9	
рН	pН	7.11	N/A	7.99	N/A	8.06	N/A
Anions					le		
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	<1.0	1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	47	1.0	100	1.0	120	1.0
Bicarbonate (HCO3)	mg/L	57	1.0	130	1.0	140	1.0
Carbonate (CO3)	mg/L	<1.0	1.0	<1.0	1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	1.0	<1.0	1.0	<1.0	1.0
Nutrients							-
Total Ammonia (N)	mg/L	0.040	0.015	7.5 (1)	0.075	11 (1)	0.15
RDL = Reportable Detection	Limit		11-				1

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs ID		WS4950		WS4951	WS4952	WS4953	
Sampling Date		2019/10/17		2019/10/17	2019/10/17	2019/10/17	-
COC Number		18213		18213	18213	18213	-
	UNITS	1776 C4 West Day 0 Hy Overly	RDL	1776 C3 West Day 0 Hy Overly	1776 C3 Center Day 0 Hy Overly	1776 G4 Day 0 Hy Overly	RDL
Misc. Inorganics							_
pН	pН	8.12	N/A	7.97	7.77	7.86	N/A
Anions							<u> </u>
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	140	1.0	110	86	94	1.0
Bicarbonate (HCO3)	mg/L	170	1.0	130	110	110	1.0
Carbonate (CO3)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Nutrients							_
Total Ammonia (N)	mg/L	20 (1)	0.30	5.9 (1)	2.3 (1)	3.6 (1)	0.075
RDL = Reportable Detection	Limit						_

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

BV Labs ID	Sec. 1	WS4954	
Sampling Date		2019/10/17	
COC Number		18213	
	UNITS	1776 C1 West Day 0 Hy Overly	RDL
Misc. Inorganics			
рН	pH	7.70	N/A
Anions			-
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	84	1.0
Bicarbonate (HCO3)	mg/L	100	1.0
Carbonate (CO3)	mg/L	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	1.0
Nutrients			
Total Ammonia (N)	mg/L	0.72	0.015
RDL = Reportable Detection N/A = Not Applicable	Limit		



BURLEAU Vennes BV Labs Job #: B993764 Report Date: 2019/11/06

Bureau Veritas Laboratories (TOX Internal) Sampler Initials: YS

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

BV Labs ID		WV1542		WV1543	WV1544	WV1545	
Sampling Date		2019/10/31 19:19		2019/10/31 19:19	2019/10/31 19:19	2019/10/31 19:19	
COC Number		18574		18574	18574	18574	
	UNITS	1776 Hy Day 14 Control	RDL	1776 Hy Day 14 C4 West	1776 Hy Day 14 C5 East/G6	1776 Hy Day 14 C3 West	RDL
Misc. Inorganics							
pН	pН	8.12	N/A	8.26	7.97	8.23	N/A
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Alkalinity (Total as CaCO3)	mg/L	150	1.0	180	110	180	1.0
Bicarbonate (HCO3)	mg/L	180	1.0	220	130	220	1.0
Carbonate (CO3)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Hydroxide (OH)	mg/L	<1.0	1.0	<1.0	<1.0	<1.0	1.0
Nutrients					· · · · · · · · · · · · · · · · · · ·		
Total Ammonia (N)	mg/L	6.6 (1)	0.075	0.10	0.16	0.16	0.015
RDL = Reportable Detection	Limit						-

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

0/31 19 74 Day 14 177 re G5 4	2019/10/31 19:19 18574 6 Hy Day 14 C1 West 7.92	2019/10/31 19:19 18574 1776 Hy Day 14 G4 7.88	2019/10/31 19:19 18574 1776 Hy Day 14 C6West/G7 8.33	RDL
74 Day 14 177 re G5 4	18574 6 Hy Day 14 C1 West 7.92	18574 1776 Hy Day 14 G4 7.88	18574 1776 Hy Day 14 C6West/G7 8.33	RDL
Day 14 177 rre G5 4	6 Hy Day 14 C1 West 7.92	1776 Hy Day 14 G4 7.88	1776 Hy Day 14 C6West/G7 8.33	RDL
4	7.92	7.88	8.33	N/A
4	7.92	7.88	8.33	N/A
,	.1.0			
,	.1.0			
	<1.0	<1.0	1.4	1.0
2	110	87	200	1.0
D	130	110	250	1.0
	<1.0	<1.0	1.6	1.0
0	<1.0	<1.0	<1.0	1.0
				_
4	0.12	0.17	0.098	0.015
	0 54	<1.0	<1.0	<1.0     <1.0     1.6       0     <1.0

Page 310 5129 of 486

BBY2FCD-00438/2

**Randomization Chart** 

Tab: Sediment Tests

Pg: 1 of 1

Test: HYALELLA Start Date: 2019 OCT 17 Client # & Name: 1776 SLR CONSULTING LTD **Position Map** Back Wall 12 18 6 5 17 11 4 10 16 3 9 15 2 8 14 13 1 7 etc. Front of Counter

ECOTOXICOLOGY

Position #	Sample ID	Replicate	Colour		
2		A			
17		В			
36	CONTROL	С	Rod		
25	CONTROL	D	Reu		
4		E			
47		Measure			
1		A			
39	2 8 ²⁰ - 12	В			
16	CE EAST/G7	С	Orange		
34	C0 EA31/07	D	Orange		
13		E			
5		Measure			
32		A			
46		В			
15	CE EAST/GE	С	Vellow		
27	CJ EA31700	D	Tenow		
18		E			
20		Measure			
44		A			
30		В			
12	CAWEST	С	Green		
38	C4 VVEST	D	Green		
31		E			
11		Measure			
26		A			
3		В			
29	C3 W/EST	С	Dark Green		
8	CS WEST	D	Dark Green		
45		E			
28		Measure			
9		А			
43		В			
21	C3CENTRE/CE	С	Blue		
41	CSCENTRE/GS	D	blue		
10		E			
48		Measure			

Position #	Position # Sample ID		Colour
24		А	
22		В	
7	C4	С	Purple
23	64	D	Fuiple
37		E	
33	경험 관계되지.	Measure	
42	1.26	A	
14		В	
19	C1 WEST	С	Pink
40	CI WEST	D	FILIK
6		E	
35	35		
49	· · · · ·	А	
50		В	
51		С	Light Blue
52		D	Light blue
53		E	
54		Measure	
55		A	
56		В	
57		С	Light Green
58		D	Light Green
59		E	
60		Measure	
61		А	
62		В	
63		C	Pink/Vellow
64		D	FILK/TEHOW
65		E	
66		Measure	
67		А	
68		В	
69		С	Pod/Groop
70		D	Neu/Green
71		E	
72		Measure	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 3110 of 422 of 486

# APPENDIX F ProUCL Outputs

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

	A	В	С	D E	F	G	Н		J	K	L
1				Nonparametric UC	L Statistics	for Data Set	ts with No	on-Detects			
2											
3		User Sele	cted Options								
4	Date	/Time of Co	omputation	ProUCL 5.112/31/2019	3:58:18 PM						
5			From File	SED 0-0.15mbg Chemis	stry_input_v5	.xls					
6		Ful	II Precision	OFF							
7	C	Confidence Coefficient 95%									
, ,	Number of	lumber of Bootstrap Operations 2000									
9		-									
11	aluminum										
12											
12					General	Statistics					
14			Total	Number of Observations	6			Numb	er of Distinct Ob	servations	6
14								Numb	er of Missing Ob	servations	17
16				Minimum	9030					Mean	10842
10				Maximum	13200					Median	10600
17				SD	1603				Std. Erro	or of Mean	654.4
18				Coefficient of Variation	0.148					Skewness	0.492
19				Mean of logged Data	9.282				SD of loo	aged Data	0.146
20				moun of logged Data	0.202					Jgcu Dulu	0.140
21		Note: Sample size is small (e.g. <10) if data are collected using ISM approach									
22	vou may want to use Chebyshey [10] to getimate EPC (ITRC 2012)										
23		you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).									
24		Chebyshev UCL can be computed using the Nonparametric and All UCL Options.									
25				Nannanan	atula Distriku	tion Free LI					
26		Nonparametric Distribution Free UCL Statistics									
27		Data appear Normal Distributed at 5% Significance Level									
28											
29			050( )	As	suming Nor	nai Distribu	uon	0/ 1101 - /A d			
30			95% N		10100		9	5% UCLS (Ad	justed for Skew	ness)	10050
31				95% Student's-t UCL	12160			95% Adjust		nen-1995)	12059
32								95% WOOI	nea-t UCL (John	son-1978)	12182
33				News							
34					rametric Dis		eUCLS		05% 1 1		10100
35			0.50/	95% CLT UCL	11918				95% Jack	Knife UCL	12160
36			95%	Standard Bootstrap UCL	11830				95% BOOts	trap-t UCL	12/15
37			9	5% Hall's Bootstrap UCL	13362			95%	Percentile Boot	strap UCL	11820
38			ç	95% BCA Bootstrap UCL	11987						
39			90% Ch	ebyshev(Mean, Sd) UCL	12805			95% C	hebyshev(Mean	, Sd) UCL	13694
40			97.5% Ch	ebyshev(Mean, Sd) UCL	14928			99% C	hebyshev(Mean	, Sd) UCL	17353
41											
42					Suggested	UCL to Use	•				
43				Data appear No	rmal, May w	ant to try No	ormal Dis	tribution			
44											
45	No	ote: Sugges	stions regard	ing the selection of a 95%	6 UCL are pr	ovided to he	Ip the use	r to select the	most appropriat	e 95% UCI	L.
46			F	Recommendations are based	sed upon dat	a size, data	distributio	n, and skewn	ess.		
47	Т	hese recor	nmendations	are based upon the resu	ults of the sin	nulation stud	ies summ	arized in Sing	h, Maichle, and I	Lee (2006)	-
48	How	vever, simu	lations result	s will not cover all Real W	/orld data se	ts; for additio	onal insigh	nt the user ma	y want to consul	t a statistici	ian.
49											
50	antimony										
51											
52					General	Statistics					
53			Total	Number of Observations	22			Numb	er of Distinct Ob	servations	7
54								Numb	er of Missing Ob	servations	1
55				Number of Detects	7				Number of No	on-Detects	15
56			N	umber of Distinct Detects	6			Numb	per of Distinct No	on-Detects	1
57	1			Minimum Detect	0.53				Minimum N	Ion-Detect	0.8
				Maximum Detect	1.54				Maximum N	Ion-Detect	0.8
58											

SLR Project No.: 209.40666 January 2020

	А	В	С	D	E	F	G	Н		J	K		L	
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects					
2														
3	3 User Selected Options													
4	Dat	12/31/2019 3	3:58:18 PM											
5			From File	mbg Chemis	try_input_v5	.xls								
6														
7		Confidence	Coefficient	95%										
8														
10				М	ean Detects	0.997					SD Detects	0	).352	
60	Median Detects					0.92			CV Detects 0.353					
61	Skewness Detects					0.257			Kurtosis Detects -0.651					
62	Mean of Logged Detects					-0.0598			SD of Logged Detects 0.372					
63														
64	Nonparametric Distribution Free UCL Statistics													
60	Detected Data appear Normal Distributed at 5% Significance Level													
67														
69			Kaplan-I	Meier (KM) S	Statistics usir	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs				
60			-		Mean	0.723 Standard Error of Mean 0.0714								
70	SD					0.268	95% KM (BCA) UCL						).932	
70	95% KM (t) UCL					0.846		95% KM (Percentile Bootstrap) UCL					).892	
72	95% KM (z) UCL					0.84				95% KM Boo	tstrap t UCL	0	).87	
72	90% KM Chebyshev UCL					0.937			ç	5% KM Chel	byshev UCL	1	1.034	
73	97.5% KM Chebyshev UCL					1.169			ç	9% KM Chel	byshev UCL	1	1.434	
74														
76			Statis	tics using KI	V estimates	on Logged I	Data and As	suming Log	normal Dist	ribution				
77	KM SD (logged)					0.305		95% Critical H Value (KM-Log)					.842	
78	KM Mean (logged)					-0.377				KN	/ Geo Mean	0	).686	
79			KM Standar	d Error of Me	ean (logged)	0.0929				95% H-UC	L (KM -Log)	0	).812	
80														
81	Suggested UCL to Use													
82	Data appear Normal, May want to try Normal Distribution.													
83	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
84	Recommendations are based upon data size, data distribution, and skewness.													
85		These recor	nmendations	are based u	pon the resu	Its of the sin	nulation stud	ies summari:	zed in Singh	, Maichle, and	d Lee (2006)			
86	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	onal insight t	ne user may	want to cons	sult a statistic	ian.		
87														
88														
89	arsenic													
90														
91						General	Statistics							
92			Total	Number of C	observations	22			Numbe	r of Distinct C	observations	19	9	
93						0			Number	r of Missing C	bservations	1		
94					Minimum	3					Mean	4	4.551	
95	Maximum				12	Mediar					4	+		
96	SD Coefficient of Variation				1.82	Std. Error of Mean						1.388		
97				Mean of		1.469				00 -41	Skewness	3	1.000	
98				wear of	logged Data	1.408				5D 01	logged Data		1.203	
99					Nornara	tric Distrik	tion Erec 14	CI Statiation						
100					Nonparame		emible Dict	de Judiistics	5)					
101		Data do not follow a Discernible Distribution (0.05)												
102		A seconda a Marco - Potentituatore												
103			OEO/ NA	armal LICI	AS	summy NON				ietad for Ska	wnoec)			
104			90% NG	05% Ctm	dent'e_t LICI	5 210		90%	95% Adjusto		Chen-100E	E	5 502	
105				5570 GIU		5.213			95% Modifi		1050n-1072	1	5 268	
106									5576 MOUIIR				,.200	
107														
# Appendix "A" to Report PW19008(g)/LS19004(f) Page 314 of 325 of 486

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects			
2				1								
3		User Se	lected Options									
4	Date	e/Time of	Computation	ProUCL 5.1	12/31/2019 :	3:58:18 PM						
5			From File	SED 0-0.15	mbg Chemis	try_input_v5	.xls					
6		F	-ull Precision	OFF								
7	(	Confidenc	e Coefficient	95%								
8	Number of	r Bootstra	p Operations	2000								
īŪ					Nonna	rametric Dis	tribution Fre	e UCI e				
108				95		5 189		0 0 0 2 3		95% Jac	ckknife UCI	5 2 1 9
109			95%	Standard Bo	otstrap UCL	5.171				95% Boot	strap-t UCL	6.013
110				5% Hall's Bo	otstrap UCL	7.679			95%	Percentile Boo	otstrap UCL	5.244
111				95% BCA Bo	otstrap UCL	5.517						
112			90% Cł	ebvshev(Mea	an. Sd) UCL	5.715			95% Ch	ebvshev(Mea	an, Sd) UCL	6.243
113			97.5% Cł	ebvshev(Mea	an. Sd) UCL	6.975			99% Ch	ebvshev(Mea	an, Sd) UCL	8.413
114					,,						, ,	
115						Suggested	UCL to Use	•				
116				95% Stud	dent's-t UCL	5.219				or 95% Mo	dified-t UCL	5.268
117												
118	N	ote: Suaa	estions regard	lina the selec	tion of a 95%	UCL are pr	ovided to he	lp the user to	o select the r	nost appropria	ate 95% UCI	
119			,	Recommenda	tions are bas	sed upon dat	a size, data	distribution,	and skewne	SS.		
120		These rec	commendation	s are based u	pon the resu	Its of the sin	ulation studi	ies summari	zed in Sinah	. Maichle, and	Lee (2006).	
121	Но	wever. sin	nulations resul	ts will not cov	er all Real W	/orld data se	ts: for additio	onal insight t	he user mav	want to consu	ult a statistici	an.
122	-	, -					-,	5	,			-
123												
124	barium											
125												
126						General	Statistics					
127			Tota	Number of C	bservations	22			Numbe	r of Distinct O	bservations	19
128									Numbe	r of Missing O	bservations	1
129					Minimum	69				0	Mean	103.8
130					Maximum	210					Median	95.5
131					SD	32.69				Std. Er	ror of Mean	6.969
132				Coefficient	of Variation	0.315					Skewness	1.703
133				Mean of	logged Data	4.603				SD of l	ogged Data	0.279
134											00	
135					Nonparame	tric Distribu	tion Free UC	CL Statistics	3			
130				Data appea	ar Approxima	ate Normal I	Distributed a	t 5% Sianifi	cance Leve			
137												
138					As	suming Nor	mal Distribut	tion				
140			95% N	ormal UCL				95%	UCLs (Adju	usted for Skev	wness)	
140				95% Stud	dent's-t UCL	115.8			95% Adjuste	d-CLT UCL (	, Chen-1995)	118
141									95% Modifie	ed-t UCL (Joh	, inson-1978)	116.2
142						I	I				,	
143					Nonpa	rametric Dis	tribution Fre	e UCLs				
144				95	% CLT UCL	115.3				95% Jac	ckknife UCL	115.8
140			95%	Standard Bo	otstrap UCL	115				95% Boot	strap-t UCL	118.6
140			ç	5% Hall's Bo	otstrap UCL	125.6			95%	Percentile Boo	otstrap UCL	115
14/				95% BCA Bo	otstrap UCL	117.9						
140			90% Cł	ebyshev(Mea	an, Sd) UCL	124.7			95% Ch	ebyshev(Mea	an, Sd) UCL	134.2
149			97.5% Ch	ebyshev(Mea	an, Sd) UCL	147.4			99% Ch	ebyshev(Mea	an, Sd) UCL	173.2
150				, , , , , , , , , , , , , , , , , , , ,	, ,		I			,	. ,	
151						Suggested	UCL to Use	1				
152				Data	appear No	rmal, Mav w	ant to try No	ormal Distrib	oution			
153												
154												

	A	В	С	D	E	F	G	Н			J	K	L	
1				Nonparamo	etric UCI	L Statistics	for Data Set	s with I	Non-D	Detects				
2														
3		User Sele	ected Options											
4	[	Date/Time of C	computation	ProUCL 5.112/3	1/2019 3	:58:18 PM								
5			From File	SED 0-0.15mbg	Chemist	try_input_v5	.xls							
5		Fu	ull Precision	OFF										
0		Confidence	Coefficient	95%										
7	Numbe		Operations	2000										
8	Numbe		Operations	2000										
10		Note: Sugge	estions regard	ing the selection (	of a 95%	LICL are pr	ovided to he	In the u	ser to	select the r	nost annronri	iate 95% LICI		
155								distribu	tion a	nd skowno				
156		Those reco	mmondations		the recul		a size, data		moriz		Majahla an	d Loo (2006)		
157				are based upon			to: for odditio	nol inci						
158		nowever, simi	ulations result	s will not cover al	Real Wo	onu uata se	ts, for additio	marins	ignt th	e user may	want to cons	suit a statisticia	an.	
159														
160														
161	beryllium	1												
162														
163						General	Statistics							
164			Total	Number of Obser	vations	22				Numbe	r of Distinct C	Observations	19	
165										Number	of Missing C	Observations	1	
166				Μ	linimum	0.28						Mean	0.44	
167				Ma	aximum	0.67						Median	0.425	
160					SD	0.1					Std. E	rror of Mean	0.0213	
108				Coefficient of V	ariation	0.227						Skewness	0.645	
169				Mean of logg	ed Data	-0 844					SD of	logged Data	0.222	
170				mean or logge	bu Dulu	0.011					00 01	logged Data	0.222	
171		Nonparametric Distribution Free UCL Statistics												
172		Nonparametric Distribution Free UCL Statistics												
173				Data app	ear Non	mai Distribu	ited at 5% 5	Ignifica	INCE L	.evei				
174														
175					Ass	suming Nor	mal Distribut	tion						
176			95% No	ormal UCL					95%	UCLs (Adju	isted for Ske	wness)		
177		Nonparametric Distribution Free UCL Statistics         Data appear Normal Distributed at 5% Significance Level         Assuming Normal Distribution         95% Normal UCL       95% UCLs (Adjusted for Skewness)         95% Student's-t UCL       0.477       95% Adjusted-CLT UCL (Chen-1995)												
178									1	95% Modifie	ed-t UCL (Joh	nnson-1978)	0.478	
179														
180					Nonpara	ametric Dis	tribution Fre	e UCL	5					
181				95% CI	LT UCL	0.476					95% Ja	ckknife UCL	0.477	
182			95%	Standard Bootstra	ap UCL	0.475					95% Boo	tstrap-t UCL	0.483	
183			9	5% Hall's Bootstra	ap UCL	0.481				95% F	Percentile Bo	otstrap UCL	0.475	
100			ç	95% BCA Bootstra	ap UCL	0.477								
104			90% Ch	ebyshev(Mean, S	d) UCL	0.504				95% Ch	ebyshev(Mea	an, Sd) UCL	0.533	
100			97.5% Ch	ebyshev(Mean_S	d) UCL	0.574				99% Ch	ebyshev(Mea	an, Sd) UCL	0.653	
186				, . ,, 0	, - ,-						,	,		
187						Suggested	UCL to Use							
188				Data and	near Nor	mal Mey	ant to the Mo	n Iema	jetrih:	ution				
189				Dara aht					Jouin	44011				
190		Note: C	otions '	ing the cole -ti-	of a 050		ovided to b	In the ·	0011	coloct 4	nont and			
191		Note: Sugge	suons regard	ing the selection of	Ji a 95%	UCL are pr	ovided to hel	ip the u	ser to	select the r	nost appropri	iale 95% UCL		
192		-	F	ecommendations	are bas	ea upon dal	a size, data	uistribu	uon, a	Ind skewne	55.	11 (00000)		
193		I hese reco	mmendations	are based upon	tne resul	ts of the sin	nulation studi	es sum	mariz	ed in Singh	, Maichle, and	a Lee (2006).		
194		However, simi	ulations result	s will not cover al	I Real W	orld data se	ts; for additio	onal insi	ight th	e user may	want to cons	ult a statisticia	an.	
195														
196														
197	boron													
198														
199						General	Statistics							
200			Total	Number of Obser	vations	15				Numbe	r of Distinct C	Observations	11	
201										Number	of Missing C	Observations	8	
201				M	inimum	11					-	Mean	17.35	
202				Ma	aximum	23.5						Median	17	
203														

	A	В	С	D	E	F	G	Н		J	K		L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects	·	·		
2													
3		User Sele	cted Options										
4	Dat	e/Time of Co	omputation	ProUCL 5.1	12/31/2019 3	3:58:18 PM							
5			From File	SED 0-0.15	mbg Chemis	try_input_v5	.xls						
6		Fu	II Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number o	f Bootstrap	Operations	2000									
9													
204					SD	3.981				Std. E	rror of Mean		1.028
205				Coefficient	of Variation	0.229					Skewness	1	0.358
206				Mean of I	ogged Data	2.829				SD of	logged Data		0.23
207													
208					Nonparame	tric Distribu	tion Free U	CL Statistics	;				
209				Data	appear Nor	mal Distribu	ited at 5% S	Significance	Level				
210													
211					As	suming Nor	mal Distribu	tion					
212			95% No	ormal UCL				95%	UCLs (Adju	usted for Ske	wness)		
213				95% Stud	lent's-t UCL	19.16			95% Adjuste	d-CLT UCL (	(Chen-1995)		19.14
214									95% Modifie	ed-t UCL (Jol	hnson-1978)		19.17
214											-		
210					Nonpai	ametric Dis	tribution Fre	e UCLs					
210				95	% CLT UCL	19.04				95% Ja	ckknife UCL		19.16
217			95%	Standard Bo	otstrap UCL	19.01				95% Boo	tstrap-t UCL		19.34
218			9	5% Hall's Bo	otstrap UCL	19.02			95%	Percentile Bo	otstrap UCL	<u> </u>	18.96
219			9	5% BCA Bo	otstrap UCL	19						-	
220			90% Ch	ebvshev(Mea	an. Sd) UCL	20.43			95% Ch	ebvshev(Me	an, Sd) UCL		21.83
221			97 5% Ch	ebyshev(Mea	an Sd) UCI	23.77			99% Ch	ebyshev(Me	an, Sd) UCL		27.57
222			07.070 010	obyone v(mee		20.77			0070 01				
223						Suggested							
224				Data	annear No	mai Mavw	ant to try No	, ormal Distrib	ution				
225				Dut		mai, may w						-	
226	N	lote: Sugge	stions regardi	ng the select	tion of a 95%		ovided to be	In the user to	select the r	nost annronr	iate 95% LIC	<u>'</u>	
227		oto: ouggot	B	ecommenda	tions are has			distribution	and skewne	ee			
228		These recor	mmendations	are based u	non the resu	Its of the sin	ulation stud	ies summari	zed in Singh	Maichle an	d Lee (2006)	)	
229	Но	wever simu	lations result	s will not cov	er all Real W	lorld data se	ts: for addition	nal insight t	he user may	want to cons	sult a statistic	rian	
230	110	wever, sinta	ilations result	3 Will Hot COV			13, 101 addite	ina magne a	ie user may	want to cons		,an.	
231													
232	cadmium												
233	ouumum												
234						General	Statistics						
235			Total	Number of (	beenvations	22	Statistics		Numbo	r of Distinct (	heanvations		20
236			TUIAI		Jose valuuris	22			Numbe	r of Mieeina	hservations		1
237					Minimum	0.27			Number		Moon	-	1 25/
238					Maximum	0.27					Median		0.616
239					waximum	0.0				044 5	ivieulari		0.010
240				0	SD	2.041				Sta. E	rror or iviean	_	0.435
241				Coefficient	or variation	1.507				<u> </u>	Skewness	⊢	2.883
242				Mean of I	ogged Data	-0.217				SD of	logged Data		0.867
243					Mari	A							
244				-	Nonparame	aric Distribu	uon Free U	L Statistics					
245				C	ata do not f	ollow a Disc	ernible Dist	ribution (0.0	5)				
246													
247					As	suming Nor	mal Distribu	tion					
248			95% No	ormal UCL				95%	UCLs (Adju	usted for Ske	wness)		
249				95% Stud	lent's-t UCL	2.103			95% Adjuste	d-CLT UCL (	(Chen-1995)		2.356
250									95% Modifie	ed-t UCL (Joł	nnson-1978)		2.147
251												_	

# Appendix "A" to Report PW19008(g)/LS19004(f) Pagp 317eo 5496 of 486

	A	В	С	D	E	F	G	Н		J	K	l	L
1				Nonpa	rametric UC	L Statistics i	for Data Set	ts with Non-	Detects				
2		I Iser Solo	cted Ontions										
3	Dat			ProLICI 5 1	12/31/2010 3	3-58-18 DM							
4	Dat		From File	SED 0-0 15	mba Chemis	try input v5	xls						
5		Fu	Il Precision	OFF									
ט 7		Confidence	Coefficient	95%									
8	Number o	f Bootstrap	Operations	2000									
9				L									
252					Nonpar	rametric Dist	ribution Fre	e UCLs				-	
253			050/	95	% CLT UCL	2.07				95% Jac	kknife UCL	2.	103
254			95%	Standard Bo	otstrap UCL	2.049			0.59/	95% BOOts	strap-t UCL	3.	112
255			9	5% BCA Bo	otstrap UCL	2 427			95%	Percentile 600	istrap UCL	Ζ.	113
256			90% Ch	ebvshev(Me	an. Sd) UCL	2.66			95% Ch	nebvshev(Mea	n. Sd) UCL	3.	251
257			97.5% Ch	ebyshev(Me	an, Sd) UCL	4.072			99% Ch	nebyshev(Mear	n, Sd) UCL	5.	684
258				, ,	. ,						, ,		
260	L					Suggested	UCL to Use	)					
261			95% Che	byshev (Me	an, Sd) UCL	3.251							
262													
263	Ν	lote: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to he	Ip the user to	select the r	most appropria	ate 95% UC	L.	
264			F	ecommenda	tions are bas	sed upon dat	a size, data	distribution,	and skewne	SS.			
265		These recor	nmendations	are based u	pon the resu	Its of the sim	ulation stud	ies summariz	zed in Singh	, Maichle, and	Lee (2006	).	
266	Но	wever, simu	lations result	s will not cov	er all Real W	orid data set	s; tor additio	onal insight th	ne user may	want to consu	ut a statistic	an.	
267													
268	chromium (III+VI)												
269	chromium (III+VI)												
270 271						General	Statistics						
272			Total	Number of C	bservations	22			Numbe	er of Distinct Ob	oservations	16	
273									Numbe	r of Missing Ob	oservations	1	
274					Minimum	16					Mean	24	.88
275					Maximum	41					Median	22	
276					SD	6.79				Std. Err	ror of Mean	1.	448
277				Coefficient	of Variation	0.273				00 ()	Skewness	1.	077
278				iviean of	logged Data	3.182				SD of lo	ogged Data	0.	252
279					Nonnerame	tric Dietribut	tion Free !!!	CI Statistics					
280					Data do not fe	ollow a Disc	ernible Dist	ribution (0.0	5)				
281				•					1				
282 283					As	suming Norr	nal Distribu	tion					
284	L		95% No	ormal UCL				95%	UCLs (Adju	usted for Skew	vness)		
285				95% Stu	dent's-t UCL	27.37		!	95% Adjuste	ed-CLT UCL (C	Chen-1995)	27	.61
286									95% Modifi	ed-t UCL (Johr	nson-1978)	27	.42
287													
288					Nonpar	ametric Dist	ribution Fre	e UCLs					
289			0.50	95	% CLT UCL	27.26				95% Jac	kknife UCL	27	.37
290			95%	Standard Bo	otstrap UCL	27.18			050/	95% Boots	strap-t UCL	27	.89
291			9		otstrap UCL	27.45			95%	rercentile B00	istrap UCL	27	.23
292			90% Ch	ebyshev(Me	an, Sd) UCL	29.22			95% CH	ebvshev(Mea	n, Sd) UCI	.31	.19
293			97.5% Ch	ebyshev(Me	an, Sd) UCL	33.92			99% Ch	nebyshev(Mear	n, Sd) UCL	39	.28
294				, , , , , ,	. ,	-					. ,		
295						Suggested	UCL to Use	)					
297	L			95% Stu	dent's-t UCL	27.37				or 95% Mod	lified-t UCL	27	.42
298													
299	N	lote: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to he	lp the user to	select the r	most appropria	ate 95% UC	L	
300			F	ecommenda	tions are bas	sed upon dat	a size, data	distribution,	and skewne	SS.			

	A	В	С	D	E	F	G	Н		J	К	L		
1				Nonparar	metric UC	L Statistics	for Data Set	s with Non-	Detects					
2														
3		User Sele	ected Options											
4	Dat	te/Time of C	omputation	ProUCL 5.112	/31/2019 3	8:58:18 PM								
5			From File	SED 0-0.15mb	g Chemis	try_input_v5	xls							
6		Fu	III Precision	OFF										
7		Confidence	Coefficient	95%										
	Number of	of Bootstrap	Operations	2000										
8 9			•											
301		These reco	mmendations	are based upo	n the resu	Its of the sin	nulation stud	ies summari:	zed in Singh	, Maichle, and L	ee (2006)			
302	Ho	owever, simu	lations result	s will not cover	all Real W	orld data se	ts; for additio	onal insight t	ne user may	want to consult	a statistic	ian.		
202														
204														
304	copper													
305														
306						General	Statistics							
307			Total	Number of Obs	envations	22			Numbe	r of Distinct Obs	envations	22		
308			Total		civations	22			Numbo	r of Missing Obs		0		
309					Minimaruna	20			Numbe	I OI WISSING ODS	Maan	76.20		
310					winimum	170					Madian	70.29		
311				ſ	viaximum	170					Median	64.5		
312					SD	36.81				Std. Erro	r of Mean	7.847		
313				Coefficient of	Variation	0.482				5	Skewness	1.266		
314				Mean of log	ged Data	4.237				SD of log	ged Data	0.443		
315														
316	Nonparametric Distribution Free UCL Statistics Data appear Gamma Distributed at 5% Significance Level													
317	Nonparametric Distribution Free UCL Statistics Data appear Gamma Distributed at 5% Significance Level													
318	Data appear Gamma Distributed at 5% Significance Level													
319					As	suming Nor	mal Distribu	tion						
320	Nonparametric Distribution Free UCL Statistics         Data appear Gamma Distributed at 5% Significance Level         Assuming Normal Distribution         95% Normal UCL       95% UCLs (Adjusted for Skewness)													
321				95% Studer	nt's-t UCL	89.79			95% Adjuste	ed-CLT UCL (Ch	nen-1995)	91.46		
327									95% Modifie	ed-t UCL (Johns	son-1978)	90.15		
222														
323					Nonpar	ametric Dis	tribution Fre	e UCLs						
324				95%	CLT UCL	89.2				95% Jack	knife UCL	89.79		
325			95%	Standard Boots	trap UCL	88.8				95% Bootst	rap-t UCL	93.53		
326			9	5% Hall's Boots	trap UCL	91.71			95%	Percentile Boots	strap UCL	89.32		
327				5% BCA Boots	tran LICI	91.01								
328			00% Ch	ebysbey(Mean		01.01			05% Ch	obysboy(Moon	S4) 11CI	110.5		
329			97.5% Ch	ebyshev(Mean,	Sd) UCL	125.3			00% Ch	ebyshev(Mean,	Sd) UCL	154.4		
330			57.570 OII	ebysnev(mean,	00) 00L	120.0			33 /0 01	iebysnev(wear),	, 00) 002	104.4		
331						Oursested								
332				D-1		Suggested	UCL IO USE	Distri						
333				Data ap	pear Gan	nma, may w	ant to try Ga	amma Distri	bution					
334									1		050/			
335	1	vote: Sugge	stions regard	ing the selectior	n of a 95%	UCL are pr	ovided to he	ip the user to	o select the r	nost appropriate	95% UC	L.		
336			R	lecommendation	ns are bas	ed upon da	ta size, data	distribution,	and skewne	SS.				
337		These reco	mmendations	are based upo	n the resu	Its of the sin	nulation stud	ies summari:	zed in Singh	, Maichle, and L	.ee (2006)			
338	Ho	owever, simu	lations result	s will not cover	all Real W	orld data se	ts; for additio	onal insight t	ne user may	want to consult	a statistic	ian.		
339	-													
341	Iron													
342														
343						General	Statistics							
344			Total	Number of Obs	ervations	6			Numbe	r of Distinct Obs	servations	6		
345									Numbe	r of Missing Obs	servations	17		
346					Minimum	18800					Mean	22650		
347				I	Maximum	25600					Median	22800		
348					SD	2477				Std. Erro	r of Mean	1011		
3/10				Coefficient of	Variation	0.109				S	Skewness	-0.496		
349				Mean of loa	ged Data	10.02				SD of loc	ged Data	0.112		
350					0							=		

	A	В	С	D	E	F	G	Н		I		J		К		L
1				Nonpar	ametric UC	L Statistics	for Data Set	ts with I	Non-L	Detects						
2				1												
3		User Sele	ected Options													
4	Dat	e/Time of C	computation	ProUCL 5.11	2/31/2019 3	3:58:18 PM										
5			From File	SED 0-0.15n	nbg Chemis	try_input_v5	.xls									
6		FL	Ill Precision	OFF												
7		Confidence	Coefficient	95%												
8	Number c	of Bootstrap	Operations	2000												
10																
351			No	te: Sample siz	ze is small (	(e.a. <10) i	f data are o	ollected	Lusin	a ISM an	nroa	ch				
352			110	vou mav wa	ant to use C	hebyshev l	JCL to estim	nate EP		RC. 2012	2).					
353			Che	byshev UCL (	can be com	puted using	the Nonpar	ametric	and	All UCL	Optic	ons.				
354				-,		ra										
355					Nonparame	tric Distribu	tion Free U	CL Stat	istics							
356				Data	appear Nor	mal Distribu	ited at 5% S	Significa	ince L	evel						
357																
358					As	suming Nor	mal Distribu	tion								
359			95% No	ormal UCL		•			95%	UCLs (A	djusi	ted for S	kewne	ess)		
261				95% Stud	ent's-t UCL	24688			ç	5% Adju	sted-	CLT UC	L (Che	en-1995)	240	94
262										95% Mod	dified	-t UCL (	Johnso	on-1978)	246	53
363															L	
364					Nonpar	ametric Dis	tribution Fre	e UCLs	S							
365				95%	6 CLT UCL	24313						95%	Jackki	nife UCL	246	88
366			95%	Standard Boo	tstrap UCL	24180						95% B	ootstra	ap-t UCL	245	72
367			9	5% Hall's Boo	tstrap UCL	24307				959	% Pe	ercentile	Bootst	rap UCL	241	67
368			(	95% BCA Boo	tstrap UCL	23967										
369			90% Ch	ebyshev(Mea	n, Sd) UCL	25684				95%	Chel	byshev(N	Nean, S	Sd) UCL	270	58
370			97.5% Ch	ebyshev(Mea	n, Sd) UCL	28965				99%	Chel	byshev(N	Nean, S	Sd) UCL	327	11
371															1	
372						Suggested	UCL to Use	)								
373				Data	appear Noi	rmal, May w	ant to try No	ormal D	istrib	ution						
374																
375	١	lote: Sugge	estions regard	ing the selecti	on of a 95%	UCL are pr	ovided to he	lp the u	ser to	select th	ne mo	ost appro	priate	95% UC	L.	
376			F	lecommendat	ions are bas	sed upon da	ta size, data	distribu	tion, a	and skew	ness					
377		These reco	mmendations	are based up	on the resu	Its of the sin	nulation stud	ies sum	mariz	ed in Sin	igh, N	Maichle,	and Le	e (2006)	1.	
378	Ho	wever, sim	ulations result	s will not cove	er all Real W	orld data se	ts; for additio	onal insi	ight th	ie user m	nay w	ant to co	onsult a	a statistic	ian.	
379																
380		Note: For	highly negat	ively-skewed	data, confic	lence limits	(e.g., Chen	, Johns	on, Lo	ognorma	l, and	d Gamm	a) ma	y not be		
381			reliable. C	Chen's and Jo	ohnson's me	ethods provi	de adjustme	ents for	posit	vely skev	wed	data set	s.			
382																
383	lead															
384	DB9I															
385						0	Otetiet's s									
386			<del>.</del>	Number (C)		General	Statistics					4 D:	4 01			
387			I otal	INUTION OF OF OF	servations	22				Num	ber c	of Miccie		nvations	2	י ר
388					Minimum	13				num	nel 0	n iviissin	y Obse	Moor		/ 05
389					Maximum	145								Median	44	1.30
390						28.85						644	Error	of Mean	4	3 15
391				Coefficient	of Variation	0.642						310	. בווטו 		2	2 16
392				Mean of k	aged Data	3 649						SD	of loan	ied Data		).562
393					- <del>3</del> 900 Data	0.040						50	J. 1096	,		
394					Nonparame	tric Distribu	tion Free I I	CL Stat	istics							
395				Data	appear Gan	nma Distrib	uted at 5% S		ance	Level						
396				Data												
397																

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 320 of 406 Page 331 of 486

	A	В	С	D	E	F	G	Н		J	К	L		
1				Nonpa	rametric UC	L Statistics	for Data Set	s with Non-	Detects					
2														
3		User Selec	cted Options											
4	Dat	te/Time of Co	omputation	ProUCL 5.1	12/31/2019	3:58:18 PM								
5			From File	SED 0-0.15	mbg Chemis	try_input_v5	.xls							
6		Ful	Il Precision	OFF										
7		Confidence	Coefficient	95%										
8	Number of	of Bootstrap (	Operations	2000										
ŤŪ					٨٥	suming Nor	nal Distribut	ion						
398			95% Nr	ormal LICI	7.3	suming Non		95%	UCIs (Adiu	isted for Skew	(ness)			
399				95% Stu	lent's-t UCI	55 54			95% Adjuste		hen-1995)	58 1		
400						00.04			95% Modifie	ed-t UCL (John	1978)	56.01		
401														
402					Nonpai	ametric Dis	tribution Fre	e UCLs						
403				95	% CLT UCL	55.07				95% Jack	kknife UCL	55.54		
404			95%	Standard Bo	otstrap UCL	54.62				95% Boots	strap-t UCL	61.18		
405			9	5% Hall's Bo	otstrap UCL	102.2			95% F	Percentile Boot	tstrap UCL	55.5		
400			ć	95% BCA Bo	otstrap UCL	57.9								
407			90% Ch	ebyshev(Mea	an, Sd) UCL	63.4			95% Ch	ebyshev(Mear	n, Sd) UCL	71.76		
400			97.5% Ch	ebyshev(Mea	an, Sd) UCL	83.36			99% Ch	ebyshev(Mear	n, Sd) UCL	106.1		
409														
410						Suggested	UCL to Use							
412				bution										
413	Data appear Gamma, May want to try Gamma Distribution Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
414	Data appear Gamma, May want to try Gamma Distribution           Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.           Becommendations are based upon data size, data distribution, and skewness													
415	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.													
416		These recor	nmendations	are based u	pon the resu	Its of the sin	ulation studi	es summariz	zed in Singh	, Maichle, and	Lee (2006).			
417	Ho	owever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additic	onal insight t	he user may	want to consu	lt a statistici	an.		
418														
419														
420	manganes	8												
421														
422				Numbers		General	Statistics		Niccostra			6		
423			TOLAI	Number of C	DServations	0			Number	of Missing Ob	servations	17		
424					Minimum	200			Number		Moon	551 9		
425					Movimum	590					Modion	551.0		
426						83.12				Std Em	or of Mean	33.03		
427				Coefficient	of Variation	0.151				Old. Elli	Skownoss	-1.96		
428				Mean of I		6 302				SD of lo	aged Data	0.17		
429				mean on		0.002					ggeu Duiu	0.17		
430			No	te: Sample s	ize is small (	(e.a., <10), i	f data are co	ollected usin	o ISM appro	bach				
431				vou may w	ant to use C	hebyshev l	JCL to estim	ate EPC (IT	RC, 2012).					
432			Che	byshev UCL	can be com	puted using	the Nonpar	ametric and	All UCL On	tions.				
433				,										
434					Nonparame	tric Distribu	tion Free U	CL Statistics	;					
435				C	)ata do not f	ollow a Disc	ernible Dist	ibution (0.0	5)					
430								-	-					
438					As	suming Nor	mal Distribut	ion						
430			95% No	ormal UCL		-		95%	UCLs (Adju	isted for Skew	/ness)			
440				95% Stud	dent's-t UCL	620.2			95% Adjuste	d-CLT UCL (C	chen-1995)	578.6		
441									95% Modifie	ed-t UCL (John	ison-1978)	615.7		
442						I	1							
443					Nonpai	ametric Dis	tribution Fre	e UCLs						
444				95	% CLT UCL	607.6				95% Jack	kknife UCL	620.2		
445			95%	Standard Bo	otstrap UCL	603.4				95% Boots	strap-t UCL	603.2		
116			9	5% Hall's Bo	otstrap UCL	584.9			95% F	Percentile Boot	tstrap UCL	595.3		

	A	В	С	D	E	F	G	Н		J	K	L			
1				Nonpa	rametric UC	L Statistics	for Data Set	s with Non-	Detects						
2															
3		User Sele	ected Options	-											
4	Dat	te/Time of C	omputation	ProUCL 5.1	12/31/2019 3	3:58:18 PM									
5			From File	SED 0-0.15	mbg Chemis	try_input_v5	.xls								
6		Confidence	Coofficient												
7	Number	of Bootstran		2000											
8	Tumber o	n bootstrap	Operations	2000											
447			ç	5% BCA Bo	otstrap UCL	589									
448			90% Ch	ebyshev(Mea	an, Sd) UCL	653.6			95% Cł	ebyshev(Mea	n, Sd) UCL	699.7			
449			97.5% Ch	ebyshev(Mea	an, Sd) UCL	763.7			99% Cł	ebyshev(Mea	n, Sd) UCL	889.5			
450															
451						Suggested	UCL to Use								
452				95% Stud	dent's-t UCL	620.2				or 95% Moo	dified-t UCL	615.7			
453															
454	1	Note: Sugge	stions regardi	ng the selec	tion of a 95%	UCL are pr	ovided to he	lp the user to	o select the I	nost appropria	ate 95% UC	L.			
455			R	ecommenda	tions are bas	sed upon da	ta size, data	distribution,	and skewne	SS.					
456		These reco	mmendations	are based u	pon the resu	Its of the sin	nulation studi	es summari	zed in Singh	, Maichle, and	Lee (2006)				
457	НС	wever, simu	lations result	s will not cov	er all Real W	orid data se	ts; for additic	onal insight t	ne user may	want to consu	lit a statistic	ian.			
458		Note: For	highly negati	volv-ekowor	l data confic	lence limite	(e.g. Chen	lohneon l	ognormal	nd Gamma) I	may not be				
459		NOLE. FOI	reliable (	hen's and .	ohnson's me	athods provi	de adjustme	onts for nosi	tvelv skewe	d data sets	nay not be				
460							ao agabane			u uuu ooto.					
461															
462	mercury	nercury													
463	mercury														
404						General	Statistics								
405			Total	Number of C	bservations	6			Numbe	r of Distinct O	bservations	5			
467									Numbe	r of Missing O	bservations	17			
468					Minimum	0.057					Mean	0.136			
469					Maximum	0.255					Median	0.104			
470					SD	0.0741				Std. Er	ror of Mean	0.0303			
471				Coefficient	of Variation	0.544					Skewness	0.953			
472				Mean of	logged Data	-2.114				SD of lo	ogged Data	0.537			
473															
474			Not	e: Sample s	ize is small (	(e.g., <10), i	f data are co	ollected usir	ng ISM appr	oach					
475			Chol	you may w	ant to use C	nebysnev (	the Nenner	ate EPC (II	RC, 2012).	tiono					
476			Cliei	Jyshev UCL	can be com	puted using	ule Nolipai	amenic and		nions.					
477					Nonnarame	tric Distribu	tion Free LIC	CL Statistics	<u>.</u>						
478				Data appea	ar Approxima	ate Normal	Distributed a	t 5% Signifi	cance Leve	1					
479										-					
400					As	suming Nor	mal Distribut	tion							
482			95% No	rmal UCL				95%	UCLs (Adju	usted for Skev	vness)				
483				95% Stud	dent's-t UCL	0.197			95% Adjuste	ed-CLT UCL (	Chen-1995)	0.199			
484									95% Modifi	ed-t UCL (Joh	nson-1978)	0.199			
485															
486					Nonpar	rametric Dis	tribution Fre	e UCLs							
487				95	% CLT UCL	0.186				95% Jac	kknife UCL	0.197			
488			95%	Standard Bo	otstrap UCL	0.181				95% Boot	strap-t UCL	0.295			
489			9	5% Hall's Bo	otstrap UCL	0.694			95%	Percentile Boo	otstrap UCL	0.185			
490			9	5% BCA Bo	otstrap UCL	0.187									
491			90% Ch	ebyshev(Mea	an, Sd) UCL	0.227			95% Cł	ebyshev(Mea	n, Sd) UCL	0.268			
492			97.5% Ch	ebyshev(Mea	an, Sd) UCL	0.325			99% Cł	ebyshev(Mea	n, Sd) UCL	0.437			
493						0									
494				<b>B</b>		Suggested	UCL to Use	mad Dist "							
495				Data	a appear Noi	rmal, May w	ant to try No	ormal Distrib	oution						

	A	В	3	С	D	E	F	G	Н	1	J	К		L
1					Nonpar	ametric UC	L Statistics	for Data Se	ts with No	n-Detects				
2														
2		User	Sele	cted Options										
3		ate/Time	of Co	omputation	ProUCL 5.11	2/31/2019 3	3:58:18 PM							
4				From File	SED 0-0 15n	nha Chemis	try input v5	vle						
5			Eu	Il Precision		nbg onennis	uy_nput_vo							
6		06-1	Fu											
7		Contide	ence	Coemicient	95%									
8	Numbe	r of Boots	trap	Operations	2000									
ŤŪ														
496		Nete: 0						and data data data	I 41				1	
497		Note. St	lgges	suons regard	ing the select		OCL are pr		ip the user	to select the	most appropr		L.	
498					ecommendat	ions are bas	sed upon da	a size, data	distribution	n, and skewne	SS.			
499		These	recor	nmendations	are based up	oon the resu	Its of the sin	nulation stud	ies summa	irized in Singh	i, Maichle, an	d Lee (2006).		
500	I	However,	simu	lations result	s will not cove	er all Real W	orld data se	ts; for additi	onal insigh	t the user may	want to cons	sult a statistici	ian.	
501														
502														
503	molybdei	num												
504														
505							General	Statistics						
506				Total	Number of Ol	bservations	22			Numbe	er of Distinct (	Observations	1	5
507										Numbe	r of Missing (	Observations	1	
508						Minimum	0.6					Mean	1	.216
500						Maximum	2.4					Median	1	.075
509						SD	0.506				Std. E	rror of Mean	0	).108
510					Coefficient	of Variation	0.416					Skewness	1	.258
511					Mean of lo	ogged Data	0.124				SD of	logged Data	0	0.375
512						- 33								
513						Nonnarame	tric Distribu	tion Free LL	CI Statieti	<u></u>				
514					Doto o	nonparame	ormol Dietri	buted at 5%	Significar					
515					Data a	ppear Logn	ormai Disuri		Significar			-		
516														
517						As	suming Nor	mai Distribu	tion					
518				95% No	ormal UCL				95	% UCLs (Adj	usted for Ske	wness)		
519					95% Stud	ent's-t UCL	1.402			95% Adjuste	ed-CLT UCL	(Chen-1995)	1	.424
520										95% Modifi	ed-t UCL (Jo	hnson-1978)	1	.406
521														
522						Nonpai	rametric Dis	tribution Fre	e UCLs					
523					95%	6 CLT UCL	1.393				95% Ja	ackknife UCL	1	.402
524				95%	Standard Boo	otstrap UCL	1.39				95% Boo	otstrap-t UCL	1	.443
525				9	5% Hall's Boo	otstrap UCL	1.422			95%	Percentile Bo	ootstrap UCL	1	.4
526				ç	5% BCA Boo	otstrap UCL	1.407							
527				90% Ch	ebyshev(Mea	n, Sd) UCL	1.539			95% CI	nebyshev(Me	an, Sd) UCL	1	.686
528				97.5% Ch	ebyshev(Mea	n, Sd) UCL	1.889			99% CI	nebyshev(Me	an, Sd) UCL	2	2.289
520								1						
529							Suggested	UCL to Use	)					
530					Data apr	pear Logno	mal. Mav w	ant to try Lo	onormal [	Distribution				
531							,, .		- <u>-</u>					
532		Note: Si	IUUE	stions regard	ing the selecti	ion of a 95%	UCL are pr	ovided to be	In the user	to select the	most appropr	riate 95% LICI	1	
533		11010.00	aggot			ions are bas			distribution	and skowne				
534		These	recor	nmendations	are based	on the recur	Its of the ein				Maichlo co	d Lee (2006)		
535	ļ	lowever	oim	Intione recult				to: for odd'*		the user me	, maicrie, an		ion	
536		nowever,	SIITIU	auons result	S WIII HOT COVE	er all Real W	onu uata se	is, iui additi	unai insigh	une user may	want to cons	suit a statistici	Idi I.	
537														
538														
539	nickel													
540														
541							General	Statistics						
542				Total	Number of Ol	bservations	22			Numbe	er of Distinct (	Observations	1	5
543										Numbe	r of Missing (	Observations	0	)
544						Minimum	16					Mean	2	2.46

	A B C	D E	F	G	Н		J	К	L					
1		Nonparametric U	CL Statistics	for Data Set	ts with Non-	Detects								
2		1												
3	User Selected Options	D. 1101 5 440/04/0040	0.50.40.514											
4	Date/Time of Computation	ProUCL 5.112/31/2019	3:58:18 PM											
5	From File	SED 0-0. ISmbg Chemi	stry_input_va	.xis										
6		0FF												
7	Number of Bootstrap Operations	2000												
8		2000												
545		Maximum	36					Median	21.5					
545		SD	4.931				Std. Error	r of Mean	1.051					
547		Coefficient of Variation	0.22				S	kewness	1.276					
548		Mean of logged Data	3.091				SD of log	ged Data	0.204					
549			1					1						
550		Nonparam	etric Distribu	tion Free UC	CL Statistics	;								
551		Data appear Ga	mma Distrib	uted at 5% S	Significance	Level								
552														
553		A	ssuming Nor	mal Distribut	tion									
554	95% Normal UCL         95% UCLs (Adjusted for Skewness)           95% Student's-t UCL         24.27         95% Adjusted-CLT UCL (Chen-1995)         24.49           95% Modified-t UCL (Johnson-1978)         24.32													
555		95% Student's-t UCL	. 24.27		9	95% Adjuste	ed-CLT UCL (Ch	en-1995)	24.49					
556						95% Modifi	ed-t UCL (Johns	on-1978)	24.32					
557														
558	Nonparametric Distribution Free UCLs           95% CLT UCL         24.19         95% Jackknife UCL         24.27           95% Standard Bootstrap UCL         24.15         95% Bootstrap-t UCL         24.67													
559		95% CLT UCL	. 24.19				95% Jackk	nife UCL	24.27					
560	95%	Standard Bootstrap UCL	. 24.15			0.50/	95% Bootstr	ap-t UCL	24.67					
561	9	5% Hall's Bootstrap UCL	. 24.84			95%	Percentile Boots	trap UCL	24.23					
562	00% 01	95% BCA Bootstrap UCL	. 24.34			05% 01		0.15.1.01	07.04					
563	90% Ch	ebysnev(Mean, Sd) UCL	25.61			95% Cr	ebysnev(Mean,	Sd) UCL	27.04					
564	97.5% Ch	ebysnev(mean, Sd) UCL	29.02			99% Cr	iebysnev(iviean,	Sa) UCL	32.92					
565			Suggested											
566		Data annear Ga	Suggesteu	ant to the G	amma Dietril	hution								
567		Data appear Ga	mina, way w			buuon								
568	Note: Suggestions regard	ing the selection of a 959	6 LICL are pr	ovided to he	In the user to	select the i	most appropriate	95% LICI						
569		Recommendations are ba	sed upon da	a size, data	distribution.	and skewne	ss.							
570	These recommendations	are based upon the res	ults of the sin	ulation studi	ies summariz	zed in Singh	, Maichle, and L	ee (2006).						
5/1	However, simulations result	s will not cover all Real V	Vorld data se	ts; for additio	onal insight th	he user may	want to consult	a statistici	an.					
572	,			,	0									
574	Note: For highly negat	ively-skewed data, conf	dence limits	(e.g., Chen,	, Johnson, L	ognormal, a	and Gamma) ma	ay not be						
575	reliable. C	Chen's and Johnson's m	ethods provi	de adjustme	ents for posi	tvely skewe	d data sets.							
576														
577	selenium													
578														
579			General	Statistics										
580	Total	Number of Observations	22			Numbe	r of Distinct Obs	ervations	5					
581						Numbe	r of Missing Obs	ervations	1					
582		Number of Detects	5				Number of Nor	n-Detects	17					
583	N	umber of Distinct Detects	4			Numb	er of Distinct Nor	n-Detects	2					
584		Minimum Detec	0.7				Minimum No	on-Detect	0.5					
585		Maximum Detec	1				Maximum No	on-Detect	0.7					
586		Variance Detects	0.0205				Percent Nor	1-Detects	//.27%					
587		Mean Detects	0.848				SE	Detects	0.143					
588		Niedian Detects	0.242				C\		0.169					
589		Skewness Detects	0.342				SD of Logger	d Detects	-2.98/ 0.169					
590		mean or Logged Delects	-0.170				SP 01 LOUGE	u Delecis	0.100					
591		Nonnerem	etric Dietribu	tion Free !!!	Cl Statistics									
592		Detected Data appo	ar Normal Di	stributed et	5% Significa	nce level								
593		Detected Data appe		annarea ar	o /o olgrillica	TEASI								

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 324 of 406 Page 335 of 486

	А	В	(	0	D	E		F	G	Н		I	J	К	L
1					Non	parametric l	JCL	Statistics	for Data Se	ets with N	lon-Det	ects			
2					1										
3		User Se	elected O	ptions											
4	Date	e/Time of	Computa	ation	ProUCL 5	5.112/31/201	9 3:5	58:18 PM							
5			From	File	SED 0-0.1	15mbg Chen	nistry	y_input_v5	i.xls						
6		F	Full Preci	sion	OFF										
7	(	Confidenc	ce Coeffic	cient	95%										
8	Number of	f Bootstra	p Operat	ions	2000										
ŤŪ															
594			Ka	nlan-I	leier (KM)	Statistics	sina	Normal C	ritical Valu	es and o	ther No	nnarame	atric UCI s		
595			T C	planti		Mea	an	0.579				nparame	Standard	Error of Mean	0.0377
596						S	D.	0 158					95% KI	M (BCA) UCI	N/A
597					95		CL	0.644			95	5% KM (F	Percentile Bo	potstrap) UCL	N/A
598					95	% KM (z) UC	CL	0.641					95% KM Bo	otstrap t UCL	N/A
599				9	0% KM Ch	ebyshev UC	L	0.692					95% KM Ch	ebyshev UCL	0.743
600				97.	5% KM Ch	nebyshev UC	CL	0.814					99% KM Ch	ebyshev UCL	0.954
602															
603				Statis	tics using	KM estimate	es or	Logged	Data and A	ssuming	Lognor	mal Dist	ribution		
604					KI	M SD (logge	d)	0.228				95%	Critical H Va	alue (KM-Log)	1.792
605					KM I	Mean (logge	d)	-0.576					k	(M Geo Mean	0.562
606			KM St	tandar	d Error of I	Mean (logge	d)	0.0544					95% H-U	CL (KM -Log)	0.631
607															
608							S	uggested	UCL to Us	e					
609					D	ata appear	Norn	nal, May v	vant to try l	lormal D	istributi	on.			
610	N	Data appear Normal, May want to try Normal Distribution. Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UC												L.	
611				R	ecommen	dations are b	base	d upon da	ta size, data	distribut	tion, and	l skewne	SS.		
612		These rec	commend	lations	are based	I upon the re	sults	s of the sin	nulation stu	dies sumr	marized	in Singh	, Maichle, a	nd Lee (2006)	
613	Hov	wever, sir	nulations	result	s will not c	over all Real	Wor	rld data se	ts; for addit	onal insig	ght the u	user may	want to cor	nsult a statistic	ian.
614															
615															
616	silver														
617								Ganaral	Statistics						
618				Total	Number of		ne	22	Glausues			Numbe	r of Distinct	Observations	22
619				Total		00301101	13	22				Numbe	r of Missing	Observations	1
620						Minimu	m	0.083				Tumbe	r or missing	Mean	0 721
621						Maximu	m	3.3						Median	0.379
622						S	D	0.881					Std.	Error of Mean	0.188
623					Coefficie	ent of Variatio	on	1.223						Skewness	2.171
624					Mean	of logged Da	ta	-0.856					SD o	f logged Data	1.017
626															
627						Nonpara	metr	ic Distribu	tion Free L	CL Stati:	stics				
628					Data	a appear Lo	gnor	mal Distri	buted at 59	Signific	ance Lo	evel			
629															
630							Assu	iming Nor	mal Distrib	ition					
631			9	5% No	ormal UCL					(	95% UC	CLs (Adjı	usted for Sk	(ewness)	
632					95% S	tudent's-t UC	CL	1.044			95%	6 Adjuste	ed-CLT UCL	. (Chen-1995)	1.123
633											95	% Modifi	ed-t UCL (Jo	ohnson-1978)	1.058
634															·
635						Non	bara	metric Dis	tribution Fr	ee UCLs	1				
636						95% CLT UC	CL	1.03					95% J	ackknife UCL	1.044
637				95%	Standard E	Bootstrap UC	CL	1.024					95% Bo	otstrap-t UCL	1.368
638				9	5% Hall's E	Bootstrap UC	L	1.516				95%	Percentile B	ootstrap UCL	1.033
639				ç	5% BCA E	Bootstrap UC	CL	1.126							
640			90	)% Ch	ebyshev(N	lean, Sd) UC	CL	1.284				95% Cł	nebyshev(M	ean, Sd) UCL	1.54
641			97.5	5% Ch	ebyshev(N	lean, Sd) UC	CL	1.894				99% Cł	nebyshev(M	ean, Sd) UCL	2.59
642															

	A	В	С	DE		F	G		H	<u> </u>		J		K		L
1				Nonparametri	c UC	L Statistics	for Data Set	ts with	Non-I	Detects						
2																
3		User Seleo	cted Options													
4	Date/	Time of Co	omputation	ProUCL 5.112/31/2	019 3	8:58:18 PM										
5			From File	SED 0-0.15mbg Ch	nemis	try_input_v	ō.xls									
6		Ful	II Precision	OFF												
7	Co	onfidence	Coefficient	95%												
8	Number of E	Bootstrap (	Operations	2000												
ŤŪ						Suggested										
643				Data annear I (	anor	mal May u	rent to try Lo	anorr	aal Die	tribution						
644					Jynoi	mai, may v		gnom		andudan						
645	Not	te: Sugges	stions regard	ing the selection of a	95%	LICL are n	rovided to be	In the	usor to	solact th	no mos	t annron	riato C	5% UC		
646		io. ouggee	F	ecommendations ar	e has	ed upon da	ta size data	distrib	ution	and skew	mess	t approp				
647	Tł	nese recon	nmendations	are based upon the	resu	Its of the sir	nulation stud	ies sur	nmariz	red in Sin	nah Ma	aichle ar	ndlee	(2006)		
648	Howe	ever, simu	lations result	s will not cover all Re	eal W	orld data se	ets: for addition	onal in	siaht th	ne user m	nav wa	nt to con	sult a	statistic	ian.	
649							,		9		,					
650																
051	sodium															
052																
053						General	Statistics									
655			Total	Number of Observat	tions	6				Num	ber of	Distinct	Obser	vations	f	3
656										Num	ber of	Missing	Obser	vations	1	7
657				Minir	num	209								Mean	30	0
658				Maxir	num	447								Median	28	3
659					SD	94.39						Std. E	Error o	of Mean	3	8.54
660				Coefficient of Varia	ation	0.315							Ske	ewness	(	).678
661				Mean of logged	Data	5.664						SD of	f logge	ed Data	(	).308
662		integration of logged Data 5.004 SU of logged Data														
663			No	te: Sample size is s	mall (	e.g., <10),	if data are c	ollecte	d usin	g ISM ap	proac	h				
664				you may want to u	use C	hebyshev	UCL to estim	nate El	PC (IT	RC, 2012	2).					
665			Che	byshev UCL can be	com	puted using	g the Nonpai	rametr	ic and	All UCL	Optior	IS.				
666																
667				Nonpa	rame	tric Distribu	tion Free U	CL Sta	tistics							
668				Data appea	r Nor	mal Distrib	uted at 5% S	Signific	ance	Level						
669																
670					Ass	suming Nor	mal Distribu	tion								
671			95% No	ormal UCL		077.7			95%	UCLS (A	djuste	d for Sk	ewne	38)	07	4.0
672				95% Student's-t	UCL	3/1.7			5	95% Adju	isted-C		(Cher	1-1995)	37	4.8
673										95% Moo	dified-t	UCL (JC	onnsoi	1-1978)	37	9.4
674				N		omotrio Dia	tribution Ere									
675					Dinpar				_5			05%	ookkn	ife LICI	27	77
676			05%	Standard Bootstran		357.3						95% Bo	otetra		30	0.2
677			35./0	5% Hall's Bootstrap		364.5				05	% Dor	Sontile B			35	8.7
678				5% BCA Bootstrap		360.7				30	70 F EI	Jenuie Di	ootsua	ap OCL	- 55	0.7
679			90% Ch	ebyshev(Mean_Sd)		415.6				95%	Cheby	shev(Me	an S	d) UCI	46	8
680			97 5% Ch	ebyshev(Mean, Sd)		540.7				99%	Cheby	shev(Me	ean S		68	34
681			07.070 01		002	0.00.7				0070	005)	0.101(.1.1	, o	u) 002		
682						Suggested	UCL to Use	)								
604				Data appea	r Nor	mal, May w	vant to try No	ormal	Distrib	ution						
685	L			•••		•	•		-							
600	Not	te: Sugges	stions regard	ing the selection of a	95%	UCL are p	rovided to he	lp the	user to	select th	ne mos	t approp	riate 9	5% UC	L.	
687			F	ecommendations ar	e bas	ed upon da	ta size, data	distrib	ution, a	and skew	ness.					
688	Tł	nese recon	nmendations	are based upon the	resu	Its of the sir	nulation stud	ies sur	mmariz	zed in Sin	ngh, Ma	aichle, ar	nd Lee	(2006)		
689	Howe	ever, simu	lations result	s will not cover all Re	eal W	orld data se	ets; for addition	onal in	sight th	ne user m	nay wa	nt to con	sult a	statistic	ian.	
690																
691																

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 326 of 406 Page 339 of 486

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	s with Non-	Detects			
2				i								
3		User Sele	cted Options									
4	Dat	e/Time of Co	omputation	ProUCL 5.1	12/31/2019 3	3:58:18 PM						
5			From File	SED 0-0.15	mbg Chemis	try_input_v5	.xls					
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
10	Ale a Ille and											
692	mailium											
693						0	0					
694				<u></u>		General	Statistics			(D)		45
695			I otal	Number of O	bservations	22			Numbe	r of Distinct C	Deservations	15
696						0.00			Numbe	r of ivilssing C	Deservations	1
697					Minimum	0.08					Mean	0.158
698					Maximum	0.263					Median	0.135
699				0 11 1	SD	0.0533				Std. E	rror of Mean	0.0114
700				Coefficient	of Variation	0.338					Skewness	0.554
701				Mean of I	ogged Data	-1.902				SD of	logged Data	0.337
702												
703					Nonparame	tric Distribu	tion Free UC	CL Statistics	-			
704				Data appea	ar Approxima	ate Normal I	Distributed a	t 5% Signifi	cance Leve			
705												
706			050( )		As	suming Nor	nai Distribut	10N				
707			95% No	ormal UCL		0.477		95%	UCLS (Adji	isted for Ske	wness)	0.470
708				95% Stud	ient's-t UCL	0.177			95% Adjuste	d-CLI UCL (	(Chen-1995)	0.178
709									95% Modifi	ed-t UCL (Joh	nnson-1978)	0.177
710												
711				0.57	Nonpar	ametric Dis	tribution Free	e UCLs		050/		0.177
712				959	% CLT UCL	0.176				95% Ja	ckknife UCL	0.177
713			95%	Standard Boo	otstrap UCL	0.176				95% Boo	tstrap-t UCL	0.179
714			9	5% Hall's Boo	otstrap UCL	0.178			95%	Percentile Bo	otstrap UCL	0.176
715			ç	95% BCA Bo	otstrap UCL	0.177						
716			90% Ch	ebyshev(Mea	an, Sd) UCL	0.192			95% Cł	ebyshev(Mea	an, Sd) UCL	0.207
717			97.5% Ch	ebyshev(Mea	an, Sd) UCL	0.229			99% Cł	ebyshev(Mea	an, Sd) UCL	0.271
718												
719						Suggested	UCL to Use					
720				Data	appear Nor	mal, May w	ant to try No	rmal Distrib	ution			
721												
722	١	Note: Sugges	stions regard	ing the select	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the i	nost appropri	iate 95% UCL	
723			R	lecommenda	tions are bas	ed upon dat	a size, data (	distribution,	and skewne	SS.		
724		These recor	mmendations	are based u	pon the resu	Its of the sin	ulation studi	es summari	zed in Singh	, Maichle, and	d Lee (2006).	
725	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	nal insight t	ne user may	want to cons	sult a statistici	an.
726												
727												

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpar	ametric UC	L Statistics	for Data Set	ts with Non-	Detects			
2												
3		User Sele	ected Options									
4	Dat	e/Time of C	omputation	ProUCL 5.11	2/31/2019 3	8:58:18 PM						
5			From File	SED 0-0.15n	nbg Chemis	try_input_v5	.xls					
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
728	tin											
729												
730						General	Statistics					
731			Total	Number of Ob	oservations	6			Numbe	r of Distinct Ob	oservations	6
732									Numbe	r of Missing Ob	oservations	17
733					Minimum	1.36					Mean	3.605
734					Maximum	6.31					Median	3.64
735					SD	1.963				Std. Err	or of Mean	0.802
736				Coefficient	of Variation	0.545					Skewness	0.154
727				Mean of lo	ogged Data	1.134				SD of lo	ogged Data	0.624
730							1					
730			No	te: Sample siz	ze is small (	e.g., <10), i	f data are co	ollected usin	g ISM appr	oach		
739				you may wa	ant to use C	hebyshev l	JCL to estim	ate EPC (IT	RC, 2012).			
740			Che	byshev UCL (	can be com	puted using	the Nonpar	ametric and	All UCL Op	otions.		
741				•			•					
742					Nonparame	tric Distribu	tion Free U	CL Statistics				
743				Data	appear Nor	mal Distribu	ited at 5% S	anificance	Level			
744												
745					As	sumina Nor	mal Distribut	tion				
746			95% No	ormal UCL				95%	UCLs (Adi	usted for Skew	(ness)	
747				95% Stud	ent's-t UCL	5.22			95% Adjuste	ed-CLT UCL (C	Chen-1995)	4.977
748						-			95% Modifi	ed-t UCL (Johr	1son-1978)	5.229
749										,	,	
750					Nonpar	ametric Dis	tribution Fre	e UCLs				
/51				95%		4 923				95% Jac	kknife UCI	5 22
752			95%	Standard Boo	tstrap UCL	4.825				95% Boots	strap-t UCL	5.342
753			9	5% Hall's Boo	tstrap UCL	4,792			95%	Percentile Boo	tstrap UCL	4.778
/54			(	95% BCA Boo	tstran UCI	4 822						
755			90% Ch	ehvshev(Mea	n Sd) UCL	6.01			95% Cł	ehvshev(Mea	n Sd) UCI	7 099
/56			97.5% Ch	ebyshev(Mea	n, Sd) UCL	8.61			99% Cł	ebyshev(Mear	n, Sd) UCL	11.58
757			071070 011	00)01101(11100	, 60/ 662	0.01			0070 01		., 00/002	
/58						Suggested	UCL to Use	1				
759				Data	appear Nor	mal. May w	ant to try No	ormal Distrib	ution			
760				540								
761	Ν	lote: Suaae	stions regard	ing the selecti	on of a 95%	UCL are pr	ovided to he	lp the user to	select the i	nost appropria	te 95% UC	
/62			R	ecommendat	ions are has	ed upon da	a size data	distribution	and skewne	SS.		
763		These reco	mmendations	are based un	on the resu	Its of the sin	ulation studi	ies summari:	zed in Singh	. Maichle and	Lee (2006)	
/64	Ho	wever. simi	ulations result	s will not cove	er all Real W	orld data se	ts: for additio	onal insight th	ne user mav	want to consu	It a statistic	an.
765							.,		, 200, may		_ 5134040	
766												
767	titanium											
/68												
769						General	Statistics					
770			Total	Number of OF	servations	6			Numbe	r of Distinct Or	servations	6
771			10.01			~			Numbe	r of Missing OF	servations	17
172					Minimum	101			i tambe		Mean	126.8
773					Maximum	150					Median	125
774						16.7				Std Err	or of Mean	6 810
775				Coefficient	of Variation	0.122				Siu. Ell	Skownooc	0.019
776				Coenicient	u vanation	U.13Z					OREWHESS	-v.208

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 328 of 339 of 486

	A	В	С	D	E	F	G	Н		I	J		K		L
1	· · · · · · · · · · · · · · · · · · ·			Nonpa	rametric UC	L Statistics i	or Data Se	ts with No	on-Dete	cts					
2		llsor Colo	cted Ontions												
3	Dat	Juser Sele		ProLICI 5.1	12/31/2010 3	8-58-18 PM									
4	Dat		From File	SED 0-0 15	mba Chemist	try input v5	xls								
5		Fu	Ill Precision	OFF	nog enemie	ay_mput_ro									
7		Confidence	Coefficient	95%											
8	Number o	f Bootstrap	Operations	2000											
9															
777				Mean of I	ogged Data	4.835					SD	of logg	ed Data		0.135
778															
779			Not	e: Sample s	ize is small (	e.g., <10), i	data are c	ollected u	SING IS	M appro	bach				
780			Che	you may w	can be com	nuted using	the Nonnai	ametric a	ITRC,		tions				
781			0110	5951107 002	can be com	putou ubing				002.00					
782					Nonparame	tric Distribut	ion Free U	CL Statist	ics						
783				Data	appear Nor	mal Distribu	ted at 5% S	ignificand	ce Leve	əl					
785	L														
786					As	suming Norr	nal Distribu	tion							
787			95% No	ormal UCL				95	5% UCI	Ls (Adju	sted for S	Skewne	ess)		
788				95% Stud	lent's-t UCL	140.6			95%	Adjuste	d-CLT UC	CL (Che	en-1995)	13	37.4
789									95%	6 Modifie	ed-t UCL (	Johnso	on-1978)	14	40.5
790															
791				0.5	Nonpar	ametric Dist	ribution Fre	e UCLs			050/	la aldu			40.0
792			05%	95 Standard Bo	% CLT UCL	136.0					95%	Jackkr		1/	40.6
793			95%	5% Hall's Bo	otstran UCL	144.5				95% F	95 /0 D	Bootst	ran UCI	11	36.2
794				5% BCA Bo	otstrap UCL	137.3				55701	creentile	Dootst			50.2
795			90% Ch	ebyshev(Mea	an, Sd) UCL	147.3				95% Ch	ebyshev(N	Mean, S	Sd) UCL	15	56.6
796			97.5% Ch	ebyshev(Mea	an, Sd) UCL	169.4				99% Ch	ebyshev(N	Mean, S	, Sd) UCL	19	94.7
798															
799						Suggested	JCL to Use	)							
800				Data	appear Nor	mal, May wa	ant to try No	ormal Dist	tributior	n					
801															
802	N	lote: Sugge	stions regard	ing the select	ion of a 95%	UCL are pro	ovided to he	Ip the use	r to sele	ect the n	nost appro	opriate	95% UC	L.	
803		These rese	R	ecommenda	tions are bas	ed upon dat	a size, data	distributio	n, and :	skewnes	SS.	andla	a (2006)		
804	Но		ilations result	s will not cov	pon ine resu	orld data set	s: for addition		anzeu i	n Singn,	want to co			ian	
805	10					5.10 0010 361	s, ioi adulli	ai in sigi		551 may			. 5141510		
805		Note: For	highly negati	vely-skewed	data, confid	lence limits	e.g., Chen	, Johnson	, Logno	ormal, a	nd Gamm	na) may	y not be		
808			reliable. C	hen's and J	ohnson's me	thods provi	le adjustme	ents for po	ositvely	skewed	data set	s.			
809															
810															
811	uranium														
812															
813						General	Statistics								
814			Total	Number of C	pservations	22				Number	of Missing		ervations	+	19
815					Minimum	0.46				Number	UI IVIISSIN	y Obse	Mean	+	0.645
816					Maximum	0.40							Median	+	0.645
817					SD	0.118					Std	. Error	of Mean	(	0.0252
810				Coefficient	of Variation	0.183						Sk	ewness		0.525
820				Mean of I	ogged Data	-0.455					SD	of logg	ed Data	+	0.181
821	L											-		1	
822					Nonparame	tric Distribut	ion Free U	CL Statist	ics						
823				Data	appear Nor	mal Distribu	ted at 5% S	ignificanc	ce Leve	əl					
824															

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 329 of 440 of 486

1	A	В	C	D	E	F	G	Н		J	K		L
			-	Nonpar	rametric UC	L Statistics	for Data Se	ts with Non-	Detects	· · ·			
2													
3		User Sele	cted Options										
4	Dat	e/Time of Co	omputation	ProUCL 5.11	12/31/2019 3	3:58:18 PM							
5			From File	SED 0-0.15n	nbg Chemis	try_input_v5	i.xls						
6		Fu	II Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number c	of Bootstrap (	Operations	2000									
TU					Δο	suming Nor	mal Distribu	tion					
825			95% No	rmal UCL	, 10.	outing iter		95%	UCLs (Adiu	usted for Skev	wness)		
826				95% Stud	ent's-t UCL	0.688			95% Adjuste	ed-CLT UCL (C	Chen-1995)		0.689
827									95% Modifie	ed-t UCL (Joh	nson-1978)		0.688
828											,		
830					Nonpar	rametric Dis	tribution Fre	e UCLs					
831				95%	% CLT UCL	0.686				95% Jac	kknife UCL		0.688
832			95%	Standard Boo	otstrap UCL	0.685				95% Boots	strap-t UCL		0.693
833			9	5% Hall's Boo	otstrap UCL	0.691			95% I	Percentile Boo	otstrap UCL		0.686
834			ç	5% BCA Boo	otstrap UCL	0.687							
835			90% Ch	ebyshev(Mea	n, Sd) UCL	0.72			95% Ch	nebyshev(Mea	in, Sd) UCL		0.754
836			97.5% Ch	ebyshev(Mea	n, Sd) UCL	0.802			99% Ch	nebyshev(Mea	in, Sd) UCL		0.895
837													
838						Suggested	UCL to Use	)					
839				Data	appear No	rmal, May w	ant to try N	ormal Distrib	oution				
840													
841	١	lote: Sugges	stions regard	ng the selecti	ion of a 95%	UCL are pr	ovided to he	Ip the user to	o select the r	most appropria	ate 95% UC	L.	
842			R	ecommendat	ions are bas	sed upon da	ta size, data	distribution,	and skewne	SS.			
843		These recor	mmendations	are based up	pon the resu	ilts of the sin	nulation stud	ies summari	zed in Singh	, Maichle, and	Lee (2006)	).	
-				· · · · ·				1.1			10 0 01 01		
844	по	wever, sinu	liations result	s will not cove	er all Real W	/orld data se	ts; for additi	onal insight t	he user may	want to consu	ult a statistic	cian.	
844 040 040	vanadium	wever, sinu	liations result	s will not cove	er all Real W	/orld data se	ts; for additi	onal insight t	he user may	want to consu	ult a statistic	cian.	
844 845 840 847	vanadium	wever, sinu	liations result	s will not cove	er all Real W	/orld data se	ts; for additi	onal insight t	he user may	want to consu	ult a statistic	cian.	
844 843 847 848 848	vanadium		liations result	s will not cove	er all Real W	/orld data se	ts; for addition	onal insight t	he user may	want to consu	ult a statistic	cian.	
844 843 847 847 848 849 850	vanadium		Total	s will not cove	er all Real W	/orld data se General 15	ts; for additions that the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	onal insight t	he user may	want to consu	ult a statistic	cian.	11
844 843 847 848 849 850 851	vanadium		Total	s will not cove	er all Real W	General	ts; for additi	onal insight t	he user may Numbe Numbe	want to consu r of Distinct Ol r of Missing Ol	ult a statistic	cian.	11 8
844 843 840 847 848 849 850 851 852	vanadium		Total	s will not cove	bservations Minimum	Vorld data se General 15 13	ts; for addition	onal insight t	he user may Numbe Numbe	want to consu or of Distinct Ol r of Missing Ol	ult a statistic bservations bservations Mean		11 8 19.33
844 843 847 848 849 850 851 852 853	vanadium	wever, simu	Total	s will not cove	bservations Minimum Maximum	forld data se General 15 13 28.7	ts; for additi	onal insight t	he user may	want to consu r of Distinct OI r of Missing OI	bservations bservations Mean Median		11 8 19.33 18
844 843 847 848 848 850 851 852 853 854	vanadium		Total	s will not cove	bservations Minimum Maximum SD	General 15 13 28.7 4.313	ts; for addition	onal insight t	he user may	want to consu or of Distinct OI of Missing OI Std. Err	bservations bservations Mean Median ror of Mean		11 8 19.33 18 1.114
844 843 847 848 849 850 851 852 853 854 855	vanadium		Total	s will not cove	bservations Minimum Maximum SD of Variation	General 15 13 28.7 4.313 0.223	Statistics	onal insight t	he user may Numbe Numbe	want to consu r of Distinct Ol r of Missing Ol Std. Err	bservations bservations Mean Median ror of Mean Skewness		11 8 19.33 18 1.114 0.489
844 843 847 848 849 850 851 852 853 854 855 856	vanadium		Total	Number of Ot Coefficient ( Mean of Ic	bservations Minimum Maximum SD of Variation ogged Data	General 15 13 28.7 4.313 0.223 2.939	ts; for addition	onal insight t	he user may Numbe Numbe	want to consu ir of Distinct OI r of Missing OI Std. Eri SD of Ic	bservations bservations bservations Mean Median ror of Mean Skewness ogged Data		11 8 19.33 18 1.114 0.489 0.223
844 845 847 848 849 850 851 852 853 854 855 856 857	vanadium		Total	Number of Ot Coefficient of Mean of Ic	bservations Minimum Maximum SD of Variation ogged Data	Ceneral 15 13 28.7 4.313 0.223 2.939	ts; for addition	onal insight t	he user may	want to consu r of Distinct OI r of Missing OI Std. En SD of Io	bservations bservations Mean Median ror of Mean Skewness ogged Data		11 8 19.33 18 1.114 0.489 0.223
844 845 840 847 848 850 851 852 853 854 855 856 857 858	vanadium		Total	Number of Ot Coefficient ( Mean of Ic	bservations Minimum Maximum SD of Variation ogged Data Nonparame	General           15           13           28.7           4.313           0.223           2.939           stric Distribution	ts; for addition	CL Statistics	he user may Numbe Number	want to consu r of Distinct OI r of Missing OI Std. Err SD of Ic	bservations bservations Mean Median ror of Mean Skewness ogged Data		11 8 19.33 18 1.114 0.489 0.223
844         843           844         847           848         849           850         851           852         853           855         856           857         858           859         859	vanadium		Total	Number of Ot Coefficient of Mean of lo	bservations Minimum Maximum SD of Variation ogged Data Nonparame appear Nor	General 15 13 28.7 4.313 0.223 2.939 stric Distribu mal Distribu	ts; for additi	CL Statistice	Numbe Number Number	want to consu r of Distinct OI r of Missing OI Std. Err SD of Ic	bservations bservations bservations Mean Median ror of Mean Skewness ogged Data		11 8 19.33 18 1.114 0.489 0.223
844           849           849           850           851           852           853           854           855           856           857           858           859           860	vanadium		Total	Number of Ot Coefficient ( Mean of Ic Data	bservations Minimum Maximum SD of Variation ogged Data Nonparame appear Nor	General 15 13 28.7 4.313 0.223 2.939 etric Distribu mal Distribu	Statistics Statistics tion Free U uted at 5% S	CL Statistics	Numbe Numbe Numbe	want to consu r of Distinct OI r of Missing OI Std. Err SD of lo	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data		11 8 19.33 18 1.114 0.489 0.223
844           343           847           848           849           850           851           852           853           855           856           857           858           859           860           861			Total	s will not cove	bservations Minimum Maximum SD of Variation bgged Data Nonparame appear Nor As:	General 15 13 28.7 4.313 0.223 2.939 stric Distribu mal Distribu	ts; for addition	CL Statistics	Numbe Numbe	want to consu r of Distinct OI r of Missing OI Std. Err SD of k	bservations bservations Mean Median ror of Mean Skewness ogged Data		111 8 19.33 18 1.114 0.489 0.223
844           840           847           848           849           850           851           852           853           855           856           857           858           859           860           861           862			Total	Number of Ot Coefficient of Mean of lo Data	bservations Minimum Maximum SD of Variation ogged Data Asi Asi	General 15 13 28.7 4.313 0.223 2.939 etric Distribu	Statistics Statistics tion Free U uted at 5% §	CL Statistics Significance tion 95%	Numbe Numbe Numbe	want to consu r of Distinct OI r of Missing OI Std. Err SD of Ic	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data		11 8 19.33 18 1.114 0.489 0.223
844         840           843         849           850         851           852         853           854         855           856         857           858         859           860         861           862         863			Total	Number of Ot Coefficient of Mean of lo Data	bservations Minimum Maximum of Variation ogged Data Nonparame appear Nor Ass ent's-t UCL	General           15           13           28.7           4.313           0.223           2.939           etric Distribution           suming Non           21.29	ts; for addition	CL Statistics Significance tion 95%	Numbe Numbe Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numbes Numb	want to consu ir of Distinct OI r of Missing OI Std. Eri SD of Ic usted for Skeve ed-CLT UCL ((	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data ogged Data		11 8 19.33 18 1.114 0.489 0.223 0.223
844         849           849         850           851         852           853         854           855         856           857         858           860         861           862         863           864         864			Total	Number of Ot Coefficient of Mean of Ic Data	bservations Minimum Maximum SD of Variation ogged Data <b>Nonparame</b> <b>appear Nor</b> <b>As:</b> ent's-t UCL	General 15 13 28.7 4.313 0.223 2.939 etric Distribu mal Distribu suming Nor 21.29	ts; for additi	CL Statistics Significance tion 95%	Numbe Numbe Numbes Numbes Numbes Numbes S Level 95% Adjuste 95% Modifie	want to consu r of Distinct OI r of Missing OI Std. Err SD of Id SD of Id usted for Skew ed-CLT UCL (C ed-t UCL (John	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data ogged Data wness) Chen-1995) nson-1978)		11 8 19.33 18 1.114 0.489 0.223 0.223 21.32 21.32
844         849           843         849           850         851           852         853           855         856           857         858           860         861           862         863           864         862			Total	Number of Ot Coefficient of Mean of lo Data	bservations Minimum Maximum SD of Variation ogged Data Nonparame appear Nor As: ent's-t UCL	General           15           13           28.7           4.313           0.223           2.939           stric Distribution           suming Nor           21.29	tion Free U uted at 5% S mal Distribu	CL Statistics Significance tion 95%	Numbe Numbe Number	want to consu r of Distinct OI r of Missing OI Std. Err SD of k SD of k usted for Skew ed-CLT UCL (John	ult a statistic bservations bservations Mean mor of Mean Skewness ogged Data ogged Data wness) Chen-1995) nson-1978)		11 8 19.33 18 1.114 0.489 0.223 21.32 21.32
844         843           843         849           850         851           852         853           855         856           857         858           859         860           861         862           863         864           865         865			Total	Number of Ot Coefficient of Mean of lo Data ormal UCL 95% Stude	bservations Minimum Maximum SD of Variation ogged Data appear Nor Ass ent's-t UCL Nonpar	General           15           13           28.7           4.313           0.223           2.939           stric Distribu           man Distribu           21.29           rametric Dis           21.29	ts; for additi	CL Statistics Significance tion 95%	Numbe Number Number Number UCLs (Adju 95% Adjuste 95% Modifie	want to consu r of Distinct OI r of Missing OI Std. Err SD of Ic SD of Ic usted for Skew cd-CLT UCL (C ed-t UCL (John	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data ogged Data wness) Chen-1995) nson-1978)		111 8 19.33 18 1.114 0.489 0.223 21.32 21.32 21.32 21.32
844         843           843         849           850         851           852         853           855         856           857         858           860         861           862         863           864         865           866         867			Total     95% Να	Standard Boo	bservations Minimum Maximum SD of Variation ogged Data appear Nor As: ent's-t UCL Nonpar	General           15           13           28.7           4.313           0.223           2.939           stric Distribu           man Distribu           21.29           21.29           21.17           21.17           21.11	ts; for additi	CL Statistice Significance tion 95%	Numbe Number Number Number UCLs (Adju 95% Adjuste 95% Modifie	want to consu r of Distinct OI r of Missing OI Std. Err SD of k SD of k usted for Skew ed-CLT UCL (C ed-t UCL (John 95% Boot	ult a statistic bservations bservations bservations Mean Median ror of Mean Skewness ogged Data Skewness Ogged Data Chen-1995) nson-1978) Skknife UCL		111 8 19.33 18 1.114 0.489 0.223 21.32 21.32 21.32 21.29 21.38
844         843           843         849           850         851           852         853           855         856           857         858           859         860           861         862           864         865           864         865           866         867           868         867			95% No	Number of Ot Coefficient of Mean of Ic Data Ormal UCL 95% Stude 95% Standard Boo	bservations Minimum Maximum SD of Variation ogged Data appear Nor appear Nor Ass ent's-t UCL Nonpar & CLT UCL tstrap UCL tstrap UCL	General           15           13           28.7           4.313           0.223           2.939           stric Distribu           mal Distribu           21.29           21.29           21.17           21.17           21.11           21.65	tion Free U statistics tion Free U sted at 5% s mal Distribu	CL Statistics Significance tion 95%	Number Number Number S Level 95% Adjuste 95% Modifie	want to consu r of Distinct OI r of Missing OI Std. Err SD of k SD of k usted for Skev ed-CLT UCL (C ed-t UCL (John 95% Boots Percentile Boot	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data Skewness Ogged Data Chen-1995) nson-1978) ckknife UCL strap-t UCL		111 8 19.33 18 1.114 0.489 0.223 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32
844         843           843         849           850         851           852         853           855         856           857         858           859         860           861         862           863         864           866         867           868         8667           8668         867			95% No 95% 0	s will not cove Number of Ot Coefficient ( Mean of Ic Data Data 95% Study 95%  bservations Minimum Maximum SD of Variation ogged Data appear Nor appear Nor As: ent's-t UCL Nonpar % CLT UCL otstrap UCL otstrap UCL otstrap UCL	General           15           13           28.7           4.313           0.223           2.939           stric Distribution           suming Normal Distribution           21.29           rametric Distribution           21.17           21.17           21.11           21.65           21.05	ts; for additi	CL Statistics Significance tion 95%	Number Number Number Number S Level 95% Adjuster 95% Modifier 95% I	want to consu r of Distinct OI r of Missing OI Std. Err SD of Id SD of Id SD of Id d-CLT UCL (C ed-t UCL (John 95% Jac 95% Boot: Percentile Boo	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data Skewness Ogged Data Chen-1995) nson-1978) chen-1995) nson-1978) ckknife UCL strap-t UCL		111 8 19.33 18 1.114 0.489 0.223 21.32 21.32 21.32 21.29 21.38 21.15	
844         847           843         849           850         851           852         853           854         852           855         856           857         858           859         860           861         862           863         864           866         867           868         869           870         77			95% No 95% No 95% O	s will not cove Number of Ot Coefficient ( Mean of lo Data Data 95% Stude 95% Stude 95% Stude 95% Standard Boo 5% Hall's Boo 95% BCA Boo	bservations Minimum Maximum SD of Variation ogged Data appear Nor appear Nor Ass ent's-t UCL Nonpar % CLT UCL otstrap UCL otstrap UCL otstrap UCL tstrap UCL n, Sd) UCI	General           15           13           28.7           4.313           0.223           2.939           etric Distribution           suming Normal Distribution           21.29           21.29           21.29           21.17           21.17           21.17           21.105           22.67	ts; for additi	CL Statistics Significance tion 95%	Number Number Number Number S Level 95% Adjuste 95% Adjuste 95% Modifier 95% Ch	want to consu ir of Distinct OI r of Missing OI Std. Err SD of Ic SD of Ic USE of Constant SD of Ic SD of SD of Ic SD of SD of SD of Ic SD of SD of Ic SD of SD	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data ogged Data Chen-1995) nson-1978) ckknife UCL strap-t UCL otstrap UCL		111 8 19.33 18 1.114 0.489 0.223 21.32 21.32 21.29 21.38 21.15 24.19
844         843           843         849           850         851           852         853           854         855           856         857           886         861           862         863           864         865           866         867           868         869           870         871			95% No 95% No 95% No 95% P 95% 90% Ch	s will not cove Number of Ot Coefficient ( Mean of lo Data Data 95% Stud 95% Stud	bservations Minimum Maximum SD of Variation ogged Data appear Nor appear Nor As: ent's-t UCL totstrap UCL otstrap UCL otstrap UCL n, Sd) UCL n, Sd) UCL	Ceneral 15 13 28.7 4.313 0.223 2.939 etric Distribution suming Nor 21.29 21.29 cametric Distribution 21.29 cametric Distribution 22.67 26.29	ts; for additi	CL Statistics Significance tion 95%	Number Number Number Number S Level 95% Adjuste 95% Modifie 95% Modifie 95% Ch 95% Ch	want to consu ir of Distinct OI r of Missing OI Std. Eri SD of Id SD of Id	ult a statistic bservations bservations Mean Median ror of Mean Skewness ogged Data ogged Data ogged Data Chen-1995) nson-1978) Skknife UCL strap-t UCL otstrap UCL otstrap UCL		111 8 19.33 18 1.114 0.489 0.223 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.3

	A	В	С	D	E	F	G	Н		J	K		L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Nor	-Detects				
2		Llear Cala	ated Options	.1									
3	Det	User Sele	ected Options		10/01/0010	0.F0.10 DM						-	
4	Dat	e/Time of C		Prouce 5.1	12/31/2019	3:58:18 PIVI							
5			From File	SED 0-0.15	mbg Chemis	stry_input_v:	D.XIS						
6		Confidence	Coofficient										
7	Number e	Conlidence	Operations	95%									
8	Number o	Бооізігар	Operations	2000									
974						Suggested	UCL to Use	1					
875				Data	a appear No	rmal, May v	ant to try No	ormal Distri	ibution				
876													
877	Ν	Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are p	rovided to he	Ip the user	to select the	most appropr	iate 95% UC	L.	
878			F	Recommenda	tions are bas	sed upon da	ta size, data	distribution	, and skewne	ess.			
879		These reco	mmendations	s are based u	ipon the resu	ilts of the sir	nulation stud	ies summa	rized in Singł	n, Maichle, an	d Lee (2006)	۱.	
880	Ho	wever, simu	ulations result	ts will not cov	er all Real W	/orld data se	ets; for addition	onal insight	the user may	want to cons	sult a statistic	ian.	
881													
882													
883	zinc												
884													
885						General	Statistics			(5)			
886			Total	Number of C	bservations	22			Numbe	er of Distinct (	Observations	1	9
887						107			Numbe	er of Missing (	Observations	00	0
888					Minimum	167					Mean	30	19.9
889					Maximum	109.9				Std E	iviedian	28	0.5
890				Coefficient	of Variation	0 351				Siu. E	Skownoss	2	0.688
891				Mean of	logged Data	5.68				SD of	longed Data		0.341
892					loggou Data	0.00					logged Data		
893					Nonparame	etric Distribu	tion Free U	CL Statistic	s				
895				Data	a appear No	rmal Distrib	uted at 5% S	ignificance	e Level				
896													
897					As	suming Nor	mal Distribu	tion					
898			95% N	ormal UCL				959	% UCLs (Adj	usted for Ske	wness)		
899				95% Stu	dent's-t UCL	349.8			95% Adjuste	ed-CLT UCL	(Chen-1995)	35	i1.7
900									95% Modifi	ied-t UCL (Jol	hnson-1978)	35	60.4
901													
902					Nonpa	rametric Dis	tribution Fre	e UCLs					
903				95	% CLT UCL	348				95% Ja	ckknife UCL	34	9.8
904			95%	Standard Bo	otstrap UCL	347.3			0.50/	95% Boo	tstrap-t UCL	35	6.4
905			9	5% Hall's Bo	otstrap UCL	351.1			95%	Percentile Bo	otstrap UCL	34	.8
906			000/ 01	95% BCA Bo	otstrap UCL	349.3			050/ 01			41	
907			90% Ch	ebysnev(Me		379.5			95% CI	hebysnev(ivie		41	1
908			97.3% UN	ien kan lev (ivles	an, Su) UCL	404.7			33% CI	ienzei ien (inie	an, Su) UCL	54	0.0
909						Suggested	UCL to Liee	•					
910				Data	a appear No	rmal. Mav v	ant to try Nr	ormal Distri	ibution				
911				2 du		, inay i							
912	N	Note: Sugae	stions regard	ling the selec	tion of a 95%	UCL are p	rovided to he	Ip the user	to select the	most appropr	iate 95% UC	L.	
913	·		F	Recommenda	tions are bas	sed upon da	ta size, data	distribution	, and skewne	ess.			
914	ļ	These reco	mmendations	s are based u	ipon the resu	ilts of the sir	nulation stud	ies summa	rized in Singh	n, Maichle, an	d Lee (2006)		
916	Но	wever, simu	ulations result	ts will not cov	er all Real W	/orld data se	ets; for addition	onal insight	the user may	want to cons	sult a statistic	ian.	
917	L												
U 17												_	

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 331eo 5402 of 486

	A	В	С	D E	F	G	Н		J	К		L
1				Nonparametric UC	L Statistics	for Data Se	ts with Non-	Detects				
2		Llear Cal	antad Ontiona									
3	Dat	User Ser		BrollCL 5 112/21/2010 /	0-E0-10 DM							
4	Dat		Erom Eile	SED 0.0 15mbg Chemis		vic						
5		F		OFF	ary_iriput_vo	.xi5						
6		Confidence		95%								
7	Number o	f Bootstran		2000								
8		Dootonap	operatione	2000								
918	acenaphthy	/lene										
919											-	
920					General	Statistics						
921			Total	Number of Observations	22			Numbe	r of Distinct O	bservations	;	9
922								Numbe	r of Missing O	bservations	;	1
923				Number of Detects	8				Number of N	Ion-Detects	;	14
924			N	umber of Distinct Detects	8			Numbe	er of Distinct N	Ion-Detects	;	1
925				Minimum Detect	0.011				Minimum	Non-Detect	t	0.1
926				Maximum Detect	0.18				Maximum	Non-Detect	t I	0.1
927				Variance Detects	0.00396				Percent N	Ion-Detects	; 6	63.64%
928				Mean Detects	0.0479					SD Detects	; (	0.0629
929				Median Detects	0.018					CV Detects	;	1.314
930				Skewness Detects	1.787				Kurto	sis Detects	í	2.258
931				Mean of Logged Detects	-3.639				SD of Logo	jed Detects	í	1.068
932												
933				Nonparame	etric Distribu	tion Free U	CL Statistics	3				
934				Data do not follow a D	iscernible D	stribution a	t 5% Signifi	cance Level				
935												
936			Kaplan-l	Meier (KM) Statistics usi	ng Normal C	ritical Value	es and other	· Nonparame	etric UCLs			
937				Mean	0.0273				Standard Er	ror of Mean	. 0	0.00895
938				SD	0.0389			050/ 1/14 /5	95% KM	(BCA) UCL	. (	0.0423
939				95% KM (t) UCL	0.0427			95% KIVI (F	OF V KM Deet	tstrap) UCL		0.0429
940				95% KIVI (2) UCL	0.042							0.101
941			07	5% KM Chebyshev UCL	0.0541					ysnev UCL		0.116
942			57.		0.0052					Silev OCL		0.110
943			Statis	tics using KM estimates	i henno I no	Data and As	ssumina I oc	normal Dist	ribution			
944			etate	KM SD (logged)	0.689		southing mos	95%	Critical H Valu	e (KM-Loa)		2 19
945				KM Mean (logged)	-3 994			0070	KM	Geo Mear		0.0184
946			KM Standar	d Error of Mean (logged)	0.177				95% H-UCI	L (KM -Loa)	) (	0.0325
947										- (**** ===3)		
948					Suggested	UCL to Use	•					
949			95	% KM (Chebyshev) UCL	0.0663						T	
950	١	lote: Sugge	estions regard	ing the selection of a 95%	UCL are pr	ovided to he	p the user t	o select the i	nost appropria	ate 95% UC	L.	
951			F	ecommendations are bas	sed upon dat	a size, data	distribution,	and skewne	SS.			
952		These reco	ommendations	are based upon the resu	Its of the sim	ulation stud	lies summari	zed in Singh	, Maichle, and	Lee (2006	).	
953	Ho	wever, sim	ulations result	s will not cover all Real W	/orld data se	ts; for additi	onal insight t	he user may	want to consu	ult a statistic	cian.	
954							-					
956	acenaphthe	ene										
957												
958					General	Statistics					-	
959			Total	Number of Observations	22			Numbe	r of Distinct O	bservations		11
960								Numbe	r of Missing O	bservations	;	1
961				Number of Detects	11				Number of N	Ion-Detects	-	11
962			N	umber of Distinct Detects	10			Numb	er of Distinct N	Ion-Detects	;	1
963				Minimum Detect	0.03				Minimum	Non-Detect	t	0.1
964				Maximum Detect	1.49				Maximum	Non-Detect	t	0.1
965				Variance Detects	0.201				Percent N	Ion-Detects	; Ę	50%
966				Mean Detects	0.329					SD Detects	;	0.448

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 332 of 440 of 486

	A	В	С	D	E	F	G	Н		J	K		L
1				Nonparame	etric UC	L Statistics	for Data Set	ts with Non-	Detects				
2			ate d Oatie as										
3	Det	User Sele	cted Options		1/2010 2	.E0.10 DM							
4	Dai	e/Time of Co	From File	SED 0.0 15mba	Chomist	5.30.10 PIVI	vic						
5		Fu		OFF	Chemis	uy_iiiput_vo	.xi5						
6		Confidence	Coefficient	95%									
7	Number o	of Bootstrap (	Operations	2000									
8 9 10													
967				Median	Detects	0.25					CV Detects	-	1.364
968				Skewness	Detects	2.143				Kurte	osis Detects	4	4.514
969				Mean of Logged	Detects	-1.865				SD of Log	ged Detects		1.302
970													
971				Nor	parame	tric Distribu	tion Free UC	CL Statistics	1				
972				Detected Data	appear	Gamma Di	stributed at	5% Significa	ance Level				
973			Kanlan	Asian (KAA) Otatia		a Namuel O			Mannanan				
974			Kapian-r	vieler (NM) Statis	Moon		ritical value	s and other	Nonparame	Standard E	rror of Moon	0	0747
975						0.103				95% KM			0 3/1
976				95% KM	(t) UCL	0.318			95% KM (P	ercentile Boo	otstran) UCI		0.327
977				95% KM (	z) UCL	0,312			55.0 KINI (F	95% KM Boo	tstrap t UCI	$\pm i$	0.583
978			9	0% KM Chebysh	ev UCL	0.413			ç	5% KM Chel	byshev UCL		0.515
919			97.	5% KM Chebysh	ev UCL	0.656			ç	9% KM Chel	byshev UCL	(	0.932
980											-	<u> </u>	
982			Statis	tics using KM est	timates	on Logged I	Data and As	suming Log	normal Dist	ribution			
983				KM SD (	logged)	1.093			95% (	Critical H Valu	ue (KM-Log)	1	2.714
984				KM Mean (	logged)	-2.469				KN	I Geo Mean	0	0.0846
985			KM Standar	d Error of Mean (	logged)	0.263				95% H-UC	L (KM -Log)	(	0.294
986													
987						Suggested	UCL to Use	1					
988				Data app	bear Ga	mma, May v	vant to try G	amma Distr	ibution				
989	N	lote: Sugges	stions regard	ing the selection of	of a 95%	UCL are pr	ovided to he	Ip the user to	select the r	nost appropri	ate 95% UC	L.	
990		Those recor	R	ecommendations	the recu	ed upon dat	a size, data	distribution,	and skewne	SS.	1100 (2006)		
991	Но	wever simu	lations result	s will not cover all	I Real W	orld data se	ts: for additic	nal insight t	e user mav	want to cons	ult a statistic	rian	
992	110							indi inoigni d					
993	anthracene	)											
994													
996						General	Statistics						
997			Total	Number of Obser	vations	22			Numbe	r of Distinct C	bservations	1	1
998									Number	of Missing C	bservations	<u> </u>	1
999				Number of	Detects	16				Number of I	Non-Detects	f	6
1000			Nu	umber of Distinct	Detects	11			Numbe	er of Distinct I	Non-Detects	-	1
1001				Minimum	Detect	0.08				Minimum	Non-Detect	(	0.1
1002				Maximum	Detect	4.69				Maximum	Non-Detect	. (	0.1
1003				Variance	Detects	1.279				Percent I	Non-Detects	2	1.104
1004				Mean		0.556					SU Detects	<u> </u>	1.131
1005				Skownooco	Detects	0.155				1/1. · · · ·	OV Detects	4	2.035
1006				Mean of Logged		-1 38/				SD of Loc	and Detects	<u> </u>	1 07/
1007				mean or Logged I	CICCIS	-1.004				SE OI LOG	yeu Delecis	<u> </u>	1.074
1008				Nor	parame	tric Distribu	tion Free UC	CL Statistics					
1009				Data do not fol	low a Di	scernible D	istribution at	t 5% Signific	ance Level				
1010													
1012			Kaplan-I	Meier (KM) Statis	tics usir	ig Normal C	ritical Value	s and other	Nonparame	tric UCLs			-
1013					Mean	0.426				Standard E	rror of Mean	(	0.211
1014					SD	0.957				95% KM	(BCA) UCL	(	0.867
1015				95% KM	(t) UCL	0.789			95% KM (P	ercentile Boo	otstrap) UCL	(	0.822
-												_	_

	A	В	С	D	Е	F	G	Н		J	K	L
1				Nonpar	rametric UC	L Statistics	for Data Set	s with Non	-Detects			
2												
3		User Sele	ected Options									
4	Da	te/Time of C	omputation	ProUCL 5.11	12/31/2019 3	8:58:18 PM						
5			From File	SED 0-0.15r	nbg Chemis	try_input_v5	.xls					
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
。	Number of	of Bootstrap	Operations	2000								
- ÿ												
1016				95% I	KM (z) UCL	0.773				95% KM Boots	trap t UCL	2.153
1017			9	0% KM Cheb	yshev UCL	1.058				95% KM Cheby	shev UCL	1.345
1018			97.	5% KM Cheb	yshev UCL	1.742				99% KM Cheby	/shev UCL	2.523
1019												
1020			Statist	tics using KN	l estimates	on Logged I	Data and As	suming Lo	gnormal Dist	tribution		
1020				KM S	SD (logged)	1.022			95%	Critical H Value	e (KM-Log)	2.614
1021				KM Me	an (logged)	-1.696				KM	Geo Mean	0.183
1022			KM Standar	d Error of Me	an (logged)	0.225				95% H-UCL	(KM -Log)	0.555
1023												
1024						Suggested	UCL to Use					
1025			95	% KM (Cheby	/shev) UCL	1.345						
1020	1	Note: Sugge	stions regardi	ng the select	ion of a 95%	UCL are pr	ovided to he	lp the user	to select the	most appropriat	te 95% UCL	
1027			R	ecommendat	ions are bas	ed upon dat	a size, data	distribution	, and skewne	SS.		
1020		These reco	mmendations	are based up	oon the resu	Its of the sin	ulation studi	ies summai	ized in Singh	, Maichle, and	Lee (2006).	
1020	Ho	owever, simu	ulations result	s will not cove	er all Real W	orld data se	ts; for additio	onal insight	the user may	want to consul	lt a statistici	an.
1030												
1032												
1033	benz(a)ant	hracene										
1034												
1035						General	Statistics					
1036			Total	Number of O	bservations	22			Numbe	er of Distinct Ob	servations	19
1037									Numbe	r of Missing Ob	servations	1
1038					Minimum	0.18					Mean	1.133
1039					Maximum	6.6					Median	0.645
1040					SD	1.395				Std. Erro	or of Mean	0.297
1041				Coefficient	of Variation	1.232					Skewness	3.208
1042				Mean of lo	ogged Data	-0.271				SD of lo	gged Data	0.822
1043							1				I	
1044					Nonparame	tric Distribu	tion Free UC	CL Statistic	s			
1045				Data a	ppear Logn	ormal Distri	outed at 5%	Significan	ce Level			
1046												
1047					As	suming Nor	mal Distribut	tion				
1048			95% No	ormal UCL				959	6 UCLs (Adj	usted for Skew	ness)	
1049				95% Stud	ent's-t UCL	1.645			95% Adjuste	ed-CLT UCL (C	hen-1995)	1.839
1050									95% Modifi	ed-t UCL (John	ison-1978)	1.678
1051												
1052					Nonpar	ametric Dis	tribution Fre	e UCLs				
1053				95%	% CLT UCL	1.622				95% Jack	knife UCL	1.645
1054			95%	Standard Boo	otstrap UCL	1.612				95% Boots	trap-t UCL	2.313
1055			9	5% Hall's Boo	otstrap UCL	3.555			95%	Percentile Boot	tstrap UCL	1.653
1056			ç	5% BCA Boo	otstrap UCL	1.83						
1057			90% Ch	ebyshev(Mea	n, Sd) UCL	2.025			95% CI	nebyshev(Mear	n, Sd) UCL	2.429
1058			97.5% Ch	ebyshev(Mea	n, Sd) UCL	2.99			99% CI	nebyshev(Mear	n, Sd) UCL	4.092
1059												
1060						Suggested	UCL to Use					
1061				Data ap	pear Lognor	mal, May w	ant to try Lo	gnormal D	istribution			
1062												
1063		Note: Sugge	stions regard	ng the select	ion of a 95%	UCL are pr	ovided to he	lp the user	to select the	most appropriat	te 95% UCL	
1064			R	ecommendat	ions are bas	ed upon dat	a size, data	distribution	, and skewne	ess.		

	A	В	С	D	E	F	G	Н		J	К	L
1				Nonparam	etric UC	L Statistics	for Data Set	s with Non-	Detects			
2												
3		User Sele	cted Options									
4	Dat	e/Time of C	omputation	ProUCL 5.112/3	31/2019 3	8:58:18 PM						
5			From File	SED 0-0.15mbg	Chemis	try_input_v5	i.xls					
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
-9 -10												
1065		These record	mmendations	are based upon	the resu	Its of the sin	nulation studi	ies summariz	zed in Singh	, Maichle, and Le	e (2006).	
1066	Ho	wever, simu	lations result	s will not cover a	ll Real W	orld data se	ts; for additic	onal insight th	ne user may	want to consult a	a statistici	an.
1067												
1068												
1069	benzo(b)flu	oranthene										
1070												
1070						General	Statistics					
1071			Total	Number of Obse	rvations	22			Numbe	r of Distinct Obse	ervations	18
1072									Numbe	r of Missing Obse	ervations	1
1073				Ν	1inimum	0.32					Mean	1.593
1074				М	aximum	8.37					Median	1
1075					SD	1.728				Std. Error	of Mean	0.368
1076				Coefficient of V	/ariation	1.085				Sk	ewness	3.171
1077				Mean of logg	ed Data	0 145				SD of logg	ed Data	0.748
1078				incur of logg	ou butu	0.110				02 01 1099	jou buiu	
1079				No	noromo	tric Dietribu	tion Free LIC	2 Statistics				
1080				Data anne		ormal Dietri	buted at 5%	Significance				
1081				Data appe	ai Login			Olyminearies	5 20401			
1082					٨٥	suming Nor	mal Dietribut	tion				
1083			05% N/		10	suming Non		05%	LICLe (Adiu	isted for Skowne	200)	
1084			3570140	95% Student	e_t IICI	2 227		3370	5% Adjuste		n_1005)	2 465
1085				35 % Student	3-1 UCL	2.221			95% Modify		n 1078)	2.405
1086									35 % WOULIN		n-1970)	2.200
1087					Nonnor	omotrio Dia	tribution Ero					
1088				05% 0		2 100		eucls		OF% look/r		2 2 2 7
1089			05%	Standard Bootetr		2.199				05% Poototro		2.227
1090			35 /0	5% Hall's Poststr		1.61			0.5%	Dercentile Restat		2.35
1091			9			2 5 1 7			90 /0	Fercentile Bootsu		2.202
1092			0.00/ Ch	abyebey/Meen		2.017			059/ 06			2 100
1093			90 % CH	ebysnev(Mean, 3		2.090			95 % CI	ebysnev(Mean, S		5.199
1094			97.5% CH	ebysnev(mean, c	50) OCL	5.034			33 % CI	iebysnev(iviean, c	30) OCL	5.255
1095						Ruggested						
1096				Data annos		Suggesteu		anormal Dia	tribution			
1097				Data appea	r Lognor	mai, may w		gnormal Dis	unduuon			
1098		1-t 0			-4 - 050/		and a large large large					
1099	r	Note: Sugge	stions regard	ing the selection	of a 95%	OCL are pr	ovided to ne	ip the user to	select the r	nost appropriate	95% UCL	
1100		<b>Theore</b>	H	ecommendations	s are bas		ta size, data	distribution,	and skewne	SS.	- (2000)	
1101		I nese recol	mmendations	s are based upon	the resu	its of the sin	nulation stud	es summaria	zea in Singn	, Maichie, and Le	e (2006).	
1102	по	wever, sinu	liations result	s will not cover a	li Real W	ond data se	ts, for additio	mai insigni u	le user may	want to consult a	astatistici	an.
1104	benzo(b+i)	fluoranthene	35									
1105	50.120(5-)).											
1106						General	Statistics					
1107			Total	Number of Obse	rvations	6	Clausuos		Numbe	r of Distinct Obse	ervations	5
1108			Total		i vauoris	0			Numbe	r of Missing Obse	nyations	17
1109				N.	linimum	0 0			. ambe	. c. miconig Obse	Mean	1 163
1110				IV NA	aximum	1.4					Median	1.105
1111				IVI	271110111 9D	0.2				Std Error	of Mean	0.0817
1112				Coefficient of V	ariation	0.2				QU. LIIUI		-0.236
1113				Mean of loca	anau011	0.172				SD of loca	ad Data	0.230
1114				wearr or logg	eu Data	0.138				SD OT IOGG	eu Data	0.177

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects			
2				1								
3		User Sele	ected Options									
4	Date	e/Time of C	omputation	ProUCL 5.1	12/31/2019 3	:58:18 PM						
5			From File	SED 0-0.15	mbg Chemisi	try_input_v5	.XIS					
6		Fu	Caefficient									
7	Numbere		Coefficient	95%								
8		вооквиар	Operations	2000								
1115												
1115			Not	te: Sample si	ize is small (	e.g., <10), i	f data are co	ollected usin	g ISM appro	bach		
1117				you may w	ant to use C	hebyshev l	JCL to estim	ate EPC (IT	RC, 2012).			
1110			Che	byshev UCL	can be com	puted using	the Nonpar	ametric and	All UCL Op	tions.		
1110												
1120					Nonparame	tric Distribu	tion Free U	CL Statistics	1			
1120				Data	appear Nor	mal Distribu	ited at 5% S	ignificance	Level			
1122												
1122					Ass	suming Nor	mal Distribu	tion				
1120			95% No	ormal UCL				95%	UCLs (Adju	sted for Skewness	s)	
1125				95% Stud	lent's-t UCL	1.328		!	95% Adjuste	d-CLT UCL (Chen-	1995)	1.289
1126									95% Modifie	ed-t UCL (Johnson-	1978)	1.327
1127							1					
1128					Nonpar	ametric Dis	tribution Fre	e UCLs				
1129				959	% CLT UCL	1.298				95% Jackknife	e UCL	1.328
1130			95%	Standard Boo	otstrap UCL	1.285				95% Bootstrap-	t UCL	1.316
1131			9	5% Hall's Boo	otstrap UCL	1.265			95%	Percentile Bootstrap	p UCL	1.283
1132			ç	95% BCA Boo	otstrap UCL	1.267						
1133			90% Ch	ebyshev(Mea	an, Sd) UCL	1.408			95% Ch	ebyshev(Mean, Sd	) UCL	1.52
1134			97.5% Ch	ebyshev(Mea	an, Sd) UCL	1.674			99% Ch	ebyshev(Mean, Sd	) UCL	1.976
1135												
1136						Suggested	UCL to Use	1				
1137				Data	appear Nor	mal, May w	ant to try No	ormal Distrib	ution			
1138												
1139	N	ote: Sugge	stions regard	ing the select	ion of a 95%	UCL are pr	ovided to he	Ip the user to	select the r	nost appropriate 95	5% UCL	
1140			R	lecommendat	tions are bas	ed upon da	ta size, data	distribution,	and skewne	SS.		
1141		These reco	mmendations	are based u	pon the resu	Its of the sin	nulation stud	ies summariz	zed in Singh	, Maichle, and Lee	(2006).	
1142	Ho	wever, simu	ulations result	s will not cove	er all Real W	orld data se	ts; for additio	onal insight th	ne user may	want to consult a s	tatisticia	an.
1143												
1144		Note: For	highly negati	vely-skewed	data, confid	lence limits	(e.g., Chen	, Johnson, L	ognormal, a	nd Gamma) may r	not be	
1145			reliable. C	Chen's and Jo	ohnson's me	thods provi	de adjustme	ents for posi	tvely skewe	d data sets.		
1146												
1147												
1148	benzo(g,h,i)	perylene										
1149												
1150					,	General	Statistics					
1151			Total	Number of O	bservations	22			Numbe	r of Distinct Observ	ations	20
1152									Number	r of Missing Observ	ations	1
1153					Minimum	0.13					Mean	0.699
1154					Maximum	4.36				M	ledian	0.435
1155				0(5)	SD	0.874				Std. Error of	Mean	0.186
1156				Coefficient	of Variation	1.251				Skev	wness	3.822
1157				Mean of l	ogged Data	-0./01				SD of logged	a Data	0.747
1158					Mana		N	01.01.11.11				
1159				Data	Nonparame	tric Distribu	uon Free U(	L Statistics				
1160				Data appea	r Approxima	te Gamma	Distributed a	at 5% Signifi	cance Leve	I		
1161												

#### Appendix "A" to Report PW19008(g)/LS19004(f) Pagp 336 of 349 of 486

	A	В	<u> </u>			u			5 K	L
1				Nonparametric UC	L Statistics	for Data Set	s with Non	-Detects		
2	ļ									
3		Jser Sele	cted Options		50 40 514					
4	Date/1	lime of Co	Supprised for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	ProUCL 5.112/31/2019 3	3:58:18 PM	. vle				
5		Fu		SED 0-0. TSINDY Chemis	try_input_va	).XIS				
6	Cc	nfidence		95%						
7	Number of F	Bootstran		2000						
8		, ooton up .								
1162				As	suming Nor	mal Distribut	ion			
1163			95% N	ormal UCL			95%	6 UCLs (Adj	usted for Skewness)	
1164				95% Student's-t UCL	1.019			95% Adjust	ed-CLT UCL (Chen-1995)	1.168
1165								95% Modif	ied-t UCL (Johnson-1978)	1.045
1166										
1167				Nonpar	rametric Dis	tribution Fre	e UCLs			
1168			0.50/	95% CLT UCL	1.005				95% Jackknife UCL	1.019
1169			95%	Standard Bootstrap UCL	1			050/	95% Bootstrap-t UCL	1.542
1170			9	15% Hall's Bootstrap UCL	2.218			95%	Percentile Bootstrap UCL	1.051
1171			0.0% Ch	95% BCA Boolstrap UCL	1.230			0.5% 0	hobychov(Moon Sd) UCI	1 5 1 1
1172			90 % Ch	hebyshev(Mean Sd) UCL	1.200			90% C	hebyshev(Mean Sd) UCL	2 552
1173			97.5 % CI		1.005			33 /8 C		2.555
1174					Suggested	UCL to Use				
1175				Data appear Approxima	te Gamma,	May want to	try Gamm	a Distributio	n	
1170										
1178	Not	e: Sugges	stions regard	ling the selection of a 95%	UCL are pr	ovided to he	p the user	to select the	most appropriate 95% UCL	
1179			F	Recommendations are bas	ed upon da	ta size, data	distribution	, and skewne	ess.	
1180	Th	lese recor	mmendation	s are based upon the resu	Its of the sin	nulation studi	es summai	ized in Singl	n, Maichle, and Lee (2006).	
1181	Howe	ever, simu	lations result	ts will not cover all Real W	/orld data se	ts; for additio	nal insight	the user may	/ want to consult a statistici	an.
1182										
1183	benzo(k)fluora	anthene								
1184										
1185					General	Statistics				
1186			Total	Number of Observations	22			Numb		
1187								Numbe	er of Distinct Observations	16
1188								Numbe	er of Distinct Observations er of Missing Observations	16 1
1189				Number of Detects	17			Numbe	er of Distinct Observations er of Missing Observations Number of Non-Detects	16 1 5
1190			N	Number of Detects umber of Distinct Detects	17 15			Numbe	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects	16 1 5 1
1191			N	Number of Detects umber of Distinct Detects Minimum Detect	17 15 0.23			Numbe	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect	16 1 5 1 0.2
1192			N	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect	17 15 0.23 2.29			Numbe	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	16 1 5 1 0.2 0.2
			N	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects	17 15 0.23 2.29 0.284			Numbe	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	16 1 5 1 0.2 0.2 22.73%
1193			N	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects	17 15 0.23 2.29 0.284 0.606			Numbe	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects	16 1 5 1 0.2 0.2 22.73% 0.533 0.870
1193 1194			N	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	17 15 0.23 2.29 0.284 0.606 0.41 2.328			Numbe	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects Kurtosis Detects	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964
1193 1194 1195			N	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Longed Detects	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748			Numb	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67
1193 1194 1195 1196			N	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748			Numb	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67
1193 1194 1195 1196 1197			N	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748	tion Free UC	CL Statistic	Numb	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67
1193 1194 1195 1196 1197 1198			N	Number of Detects umber of Distinct Detects Minimum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Nonparame ected Data appear Appro	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 etric Distribu	tion Free UC	CL Statistic	Numbe Numbe Significance	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67
1193 1194 1195 1196 1197 1198 1199			N Det	Number of Detects Iumber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Nonparame ected Data appear Appro	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 etric Distribu	ition Free UC	CL Statistic	Numbe Numbe Significance	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67
1193 1194 1195 1196 1197 1198 1199 1200			N Det	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Nonparame ected Data appear Appro	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 tric Distribution oximate Gar	tion Free UC nma Distribu	CL Statistic ted at 5% s and othe	Numb Numb	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects Level etric UCLs	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67
1193 1194 1195 1196 1197 1198 1199 1200 1201			N Det Kaplan-	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Nonparame ected Data appear Appro Meier (KM) Statistics usir Mean	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 etric Distribution partice Carteria (Contention) oximate Garting oximate Garting (0.514)	tion Free UC	CL Statistic ted at 5% s and othe	s Significance	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects Level etric UCLs Standard Error of Mean	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.67 0.107
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203			N Det Kaplan-	Number of Detects umber of Distinct Detects Minimum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Nonparame ected Data appear Appro Meier (KM) Statistics usir Mean SD	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 etric Distribution oximate Gar	tion Free UC	CL Statistic ted at 5% s and othe	Number Number Significance	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detectt Maximum Non-Detectt Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects Level etric UCLs Standard Error of Mean 95% KM (BCA) UCL	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.107 0.107 0.71
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204			Det	Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects Nonparame sected Data appear Appro Meler (KM) Statistics usir Mean SD 95% KM (t) UCL	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 etric Distribu oximate Gar ng Normal C 0.514 0.485 0.697	tion Free UC nma Distribu	CL Statistic ted at 5% s and othe	s Significance 95% KM ((	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detectt Maximum Non-Detectt Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects etric UCLs Standard Error of Mean 95% KM (BCA) UCL Percentile Bootstrap) UCL	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.107 0.71 0.688
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205			Det	Number of Detects umber of Distinct Detects Minimum Detect Variance Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Nonparame sected Data appear Appro Meier (KM) Statistics usir Mean SD 95% KM (t) UCL 95% KM (z) UCL	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 etric Distribu oximate Gar ng Normal C 0.514 0.485 0.697 0.689	tion Free UC nma Distribu	CL Statistic ted at 5% s and othe	s Significance 95% KM (	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detectt Maximum Non-Detectt Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects Elevel etric UCLs Standard Error of Mean 95% KM (BCA) UCL Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.107 0.71 0.688 0.864
1193           1193           1194           1195           1196           1197           1198           1199           1200           1201           1202           1203           1204           1205           1206			N Det Kaplan-	Number of Detects Iumber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 tric Distribution oximate Gar 0.514 0.485 0.697 0.689 0.833	tion Free UC nma Distribu	CL Statistic ted at 5% s and othe	s Significance 95% KM (	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED D	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.107 0.71 0.688 0.864 0.978
1193           1193           1194           1195           1196           1197           1198           1199           1200           1201           1202           1203           1204           1205           1206           1207			N Det	Number of Detects Iumber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Nonparame Sected Data appear Appro Meler (KM) Statistics usir Mean SD 95% KM (t) UCL 95% KM (z) UCL 10% KM Chebyshev UCL 5% KM Chebyshev UCL	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 otric Distribut oximate Gar 0.514 0.485 0.697 0.689 0.833 1.179	ttion Free UC	CL Statistic ted at 5% s and othe	s Significance 95% KM (	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects ST Of Logged Detects SD of Logged Detects ST Of Logged Detects ST Of Logged Detects ST Of Logged Detects ST Of Logged Detects ST Of Logged Detects ST Of Logged Detects ST Of Logged Detects ST Of Logged Detects ST Of Logged Detects ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED DETECTS ST OF LOGGED D	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.107 0.71 0.688 0.864 0.978 1.574
1193           1193           1194           1195           1196           1197           1198           1199           1200           1201           1202           1203           1204           1205           1206           1207           1208			N N N N Set	Number of Detects Iumber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean SD 95% KM (2) UCL 95% KM (2) UCL 20% KM Chebyshev UCL .5% KM Chebyshev UCL	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 <b>btric Distribu</b> <b>oximate Gar</b> <b>oximate Gar</b> <b>oximate Gar</b> <b>oximate Gar</b> <b>0.514</b> 0.485 0.697 0.689 0.833 1.179	tion Free UC	CL Statistic ted at 5% s and othe	s Significance 95% KM (	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects Standard Error of Mean 95% KM (BCA) UCL Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.107 0.71 0.688 0.864 0.978 1.574
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209			N N Det Kaplan-	Number of Detects Umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Mean SD 95% KM (t) UCL 95% KM (z) UCL 10% KM Chebyshev UCL 5% KM Chebyshev UCL tits using KM estimates	17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748 <b>btric Distribu</b> <b>oximate Gar</b> <b>oximate Gar</b>	tion Free UC nma Distribu Critical Value	CL Statistic ted at 5% s and othe suming Lo	Numb Numb Significance r Nonparam 95% KM ()	er of Distinct Observations er of Missing Observations Number of Non-Detects er of Distinct Non-Detects Minimum Non-Detectt Maximum Non-Detectt Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects Etric UCLs Standard Error of Mean 95% KM (BCA) UCL Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	16 1 5 1 0.2 0.2 22.73% 0.533 0.879 5.964 0.67 0.67 0.107 0.71 0.688 0.864 0.978 1.574

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 337eo 5448 of 486

	А	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	s with Non-	Detects			
2												
3		User Sele	cted Options									
4	Dat	te/Time of C	omputation	ProUCL 5.1	12/31/2019 3	8:58:18 PM						
5			From File	SED 0-0.15	mbg Chemis	try_input_v5	.xls					
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
1211				KM Me	an (logged)	-0.944				KN	/I Geo Mean	0.389
1212			KM Standar	d Error of Me	an (logged)	0.149				95% H-UC	L (KM -Log)	0.674
1213											I	
1214						Suggested	UCL to Use	1				
1215				Data	a appear Ga	mma, May v	vant to try G	amma Distr	ibution			
1216	1	Note: Sugge	stions regard	ing the select	ion of a 95%	UCL are pro	ovided to he	Ip the user to	select the r	nost appropri	iate 95% UCL	
1217			R	lecommenda	tions are bas	ed upon dat	a size, data	distribution,	and skewne	SS.		
1217		These record	mmendations	are based u	pon the resu	Its of the sim	ulation studi	ies summariz	zed in Singh	, Maichle, and	d Lee (2006).	
1210	Hc	wever, simu	lations result	s will not cov	er all Real W	orld data set	ts; for additic	onal insight th	ne user may	want to cons	ult a statistici	an.
1220												
1220												
1221	benzo(a)py	/rene										
1222												
1223						General	Statistics					
1224			Total	Number of C	bservations	22			Numbe	r of Distinct C	Observations	19
1225									Number	of Missing C	bservations	1
1220					Minimum	0.18					Mean	1.068
1227					Maximum	6.01					Median	0.69
1228					SD	1.231				Std. E	rror of Mean	0.262
1229				Coefficient	of Variation	1.153					Skewness	3.391
1230				Mean of I	ogged Data	-0.274				SD of	logged Data	0.767
1231					00							
1232					Nonparame	tric Distribu	tion Free U	CL Statistics				
1233				Data a	ppear Logn	ormal Distrit	outed at 5%	Significance	e Level			
1234												
1235					As	sumina Norr	nal Distribut	tion				
1236			95% No	ormal UCI				95%	UCLs (Adiu	isted for Ske	wness)	
1237				95% Stu	lent's-t UCI	1 5 1 9			95% Adjuste		Chen-1995)	1 702
1238									95% Modifie		unson-1978)	1 551
1239												
1240					Nonnar	ametric Dist	ribution Fre	eUCIs				
1241				95		1 / 99		0 0 0 0 0		95% la	ckknife LICI	1 5 1 9
1242			95%	Standard Bo		1.433				95% Boo	tetran_t LICI	2 119
1243			00.00	5% Hall's Bo		3 200			95%	Percentile Bo	otstran LICI	1.56
1244				5% BCA Bo		1 712			55701	creentile bo	otoliap ool	1.00
1245			00% Ch	obychoy/Mor		1.712			05% Ch	obychoy/Mo		2 212
1246			90 % CII			0.706			93 % Ch			2.212
1247			97.3% UN	enà21164(14165	an, Suj UCL	2.700			33% CN	enter (INIG	an, Su) UCL	3.079
1248						Suggested						
1249				Data an	neer Loans	mal May	ant to to / .	anormal Dia	tribution			
1250				Data ap	pear Lognol	mai, May W		ynonnai Dis	UDUUON			
1251		lata: Curr	ationa area -	ing the!	ion of - 05%		avidad to b			nant or	inte OE% LICI	
1252	ſ	vote. Sugge	suons regard	ing the select	ion of a 95%	occ are pro		ip uie user to	select the r	nosi appropri	iale 95% UCL	
1253		There	R	ecommenda	uons are bas	eu upon dat	a size, data	uistribution,	and skewnes	Mai-hl	d Los (0000)	
1254		i nese recoi	mmendations	are based u	pon the resu	its of the sim	ulation studi	ies summariz	zea in Singh	, waichle, and	a Lee (2006).	
1255	Но	owever, simu	lations result	s will not cov	er all Real W	orid data set	ts; tor additio	onal insight th	ne user may	want to cons	suit a statistici	an.
1256												
1257												

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 338 of 349 of 486

	A B C	D E	F	G H	I J K	L
1		Nonparametric UC	L Statistics	for Data Sets with Non-	Detects	
2						
3	User Selected Op	otions				
4	Date/Time of Computa	tion ProUCL 5.112/31/2019 3	3:58:18 PM			
5	From	File SED 0-0.15mbg Chemis	try_input_v5	.xls		
6	Full Precis	sion OFF				
7	Confidence Coeffic	ient 95%				
8	Number of Bootstrap Operati	ons 2000				
9		÷				
1258	chrysene					
1259	1					
1260	1		General	Statistics		
1261		Total Number of Observations	22		Number of Distinct Observations	22
1262					Number of Missing Observations	1
1263		Minimum	0.26		Mear	1.379
1264		Maximum	7.15		Mediar	0.875
1265		SD	1.467		Std. Error of Mear	0.313
1266	;	Coefficient of Variation	1.064		Skewness	3.209
1267	,	Mean of logged Data	0.00898		SD of logged Data	0.749
1268						
1269	1	Nonparame	etric Distribu	tion Free UCL Statistics		
1270	1	Data appear Gan	nma Distribi	ited at 5% Significance	Level	
1271						
1272		As	suming Nori	mal Distribution		
1273	95	5% Normal UCL	1.017	95%	UCLs (Adjusted for Skewness)	0.100
1274		95% Student's-t UCL	1.917		95% Adjusted-CLT UCL (Chen-1995)	2.122
1275	;				95% Modified-t UCL (Johnson-1978)	1.952
1276						
1277	,	Nonpar	rametric Dis	tribution Free UCLs		
1278		95% CLT UCL	1.893		95% Jackknife UCL	. 1.917
1279	1	95% Standard Bootstrap UCL	1.896		95% Bootstrap-t UCL	. 2.574
1280	1	95% Hall's Bootstrap UCL	4.157		95% Percentile Bootstrap UCL	. 1.945
1281		95% BCA Bootstrap UCL	2.155			
1282	90	% Chebyshev(Mean, Sd) UCL	2.317		95% Chebyshev(Mean, Sd) UCL	. 2.742
1283	97.5	% Chebyshev(Mean, Sd) UCL	3.332		99% Chebyshev(Mean, Sd) UCL	. 4.49
1284						
1285	;		Suggested	UCL to Use		
1286	;	Data appear Gan	nma, May w	ant to try Gamma Distri	bution	
1287						
1288	Note: Suggestions re	egarding the selection of a 95%	OCL are pr	ovided to help the user to	5 select the most appropriate 95% UC	;L.
1289	<u> </u>	Recommendations are bas	sed upon dat	a size, data distribution,	and skewness.	<u></u>
1290	I nese recommend	auons are based upon the resu	Ins of the sin	iulation studies summaria	zeu in Singn, Maichle, and Lee (2006	). Dian
1291	However, simulations	results will not cover all Real w	orid data se	ts; for additional insight ti	he user may want to consult a statistic	cian.
1292						
1293	dibenz(a,n)anthracene					
1294			0	04-41-41-		
1295			General	Statistics	Number of Distinct Observations	11
1296			22		Number of Distinct Observations	1
1297		Number of Data-ta-	12			
1298		Number of Distinct Date	13		Number of Distinct Non-Detects	3
		Minimum Detects	0.1			
1299		Nummum Liefect	U. I		winimum Non-Detec	0.1
1299 1300	)	Maximum Detect	0.70		Massian or New Deter	
1299 1300 1301		Maximum Detect	0.79		Maximum Non-Detec	40.010/
1299 1300 1301 1302		Maximum Detect Variance Detects	0.79		Maximum Non-Detect	40.91%
1299 1300 1301 1302 1303		Maximum Detect Maximum Detect Variance Detects Mean Detects	0.79 0.0348 0.222		Maximum Non-Detect Percent Non-Detects SD Detects	40.91% 0.187
1299 1300 1301 1302 1303 1304		Maximum Detect Maximum Detect Variance Detects Mean Detects Median Detects	0.79 0.0348 0.222 0.16		Maximum Non-Detec Percent Non-Detects SD Detects CV Detects	0.1       40.91%       0.187       0.843
1299 1300 1301 1302 1303 1304 1305		Maximum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects	0.79 0.0348 0.222 0.16 2.723		Maximum Non-Detec Percent Non-Detects SD Detects CV Detects Kurtosis Detects	0.1 40.91% 0.187 0.843 8.07

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 339 of 486

	А	В	С	D	E	F	G	Н		J	К	L
1				Nonpa	rametric UC	L Statistics	for Data Se	ets with Non-	Detects			
2		Llear Cala	ated Options									
3	Det	User Sele		DrollCL 5 1	12/21/2010 2	0-E0-10 DM						
4	Dat		From File	SED 0 0 15	mbg Chomist		vle					
5		Ful	Il Precision	OFF	inby Chemis	try_input_v5						
6		Confidence	Coefficient	95%								
/	Number o	f Bootstrap (	Operations	2000								
8												
1307												
1308					Nonparame	tric Distribu	tion Free U	CL Statistics	;			
1309			Dete	ected Data a	ppear Appro	oximate Gar	nma Distrib	uted at 5% S	Significance	Level		
1310												
1311			Kaplan-I	Veier (KM) S	tatistics usir	ng Normal C	ritical Valu	es and other	Nonparame	etric UCLs	(1)	0.0000
1312					Mean	0.1/2				Standard Error o	of Mean	0.0333
1313				0.6%	SD KM (t) LICI	0.15			05% KM /	95% KM (BC)		0.242
1314				95%		0.229			95 % KIVI (F	95% KM Bootstra		0.225
1315			9	0% KM Chet	ovshev UCL	0.272				95% KM Chebysh	ev UCL	0.317
1316			97.	5% KM Cheb	ovshev UCL	0.38				99% KM Chebysh	ev UCL	0.504
1317					,							
1310			Statis	tics using KM	l estimates	on Logged I	Data and A	ssuming Log	normal Dist	ribution		
1320				KMS	SD (logged)	0.52			95%	Critical H Value (K	(M-Log)	2.016
1321				KM Me	an (logged)	-1.948				KM Ge	o Mean	0.143
1322			KM Standar	d Error of Me	an (logged)	0.115				95% H-UCL (KI	M -Log)	0.205
1323												
1324						Suggested	UCL to Us	Э				
1325				Data	a appear Ga	mma, May v	vant to try (	Gamma Dist	ibution			
1326	N	lote: Sugges	stions regard	ing the select	ion of a 95%	UCL are pr	ovided to he	elp the user to	o select the	most appropriate 9	95% UCL	
1327		<b>T</b> 1	R	ecommendat	tions are bas	sed upon dat	a size, data	distribution,	and skewne	ISS.	(0000)	
1328	Ha	These recor	Internetions	are based u	pon the resu	lts of the sin	to: for odditi	anes summari	zed in Singn	i, Maichle, and Lee	etotictici	22
1329	НО	wever, sinu		S WIII HOL COV			15, 101 auulu		ne user may	want to consult a	SIGUSUCIO	
1330												
1331	fluoranthen	0										
1332												
1334						General	Statistics					
1335			Total	Number of O	bservations	22			Numbe	er of Distinct Obser	vations	22
1336									Numbe	r of Missing Obser	vations	1
1337					Minimum	0.59					Mean	3.49
1338					Maximum	24.5					Median	1.955
1339				0	SD	5.055				Std. Error c	of Mean	1.078
1340				Moon of l	of Variation	0.916				SD of logge	ewness	3.783
1341				Mean of I	ogged Data	0.010				SD of logge	eu Data	0.010
1342					Nonnarame	tric Distribu	tion Free U	CL Statistics				
1343				Data a	ppear Logn	ormal Distri	outed at 5%	6 Significanc	e Level			
1344												
1345					As	suming Nor	mal Distribu	ition				
1340			95% No	ormal UCL				95%	UCLs (Adj	usted for Skewnes	ss)	
1348				95% Stud	lent's-t UCL	5.344			95% Adjuste	ed-CLT UCL (Cher	n-1995)	6.191
1349									95% Modifi	ed-t UCL (Johnsor	n-1978)	5.489
1350												
1351					Nonpar	rametric Dis	tribution Fr	ee UCLs				
1352				959	% CLT UCL	5.262				95% Jackkni	ife UCL	5.344
1353			95%	Standard Boo	otstrap UCL	5.223			0=0	95% Bootstrap	p-t UCL	9.89
1354			9	5% Hall's Boo	otstrap UCL	12.29			95%	Percentile Bootstra	ap UCL	5.368
1355			ç	95% BCA Boo	otstrap UCL	6.834						

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 340 of 486

	A B C	D E	F	G	Н		J	K		L			
1		Nonparametric UC	CL Statistics	for Data Se	ts with Nor	-Detects							
2		1											
3	User Selected Options												
4	Date/Time of Computation	ProUCL 5.112/31/2019	3:58:18 PM										
5	From File	SED 0-0.15mbg Chemi	stry_input_v5	.xls									
6	Full Precision	OFF											
7	Confidence Coefficient	95%							-				
8	Number of Bootstrap Operations	2000											
1256		ebyshev(Mean, Sd) UCL	6.723			95% Cł	nebyshev(Mean,	Sd) UCL	8	8.187			
1350	97.5% Ch	ebyshev(Mean, Sd) UCL	. 10.22			99% Cł	nebyshev(Mean,	, Sd) UCL	1	4.21			
1357													
1350			Suggested	UCL to Use	)								
1360		Data appear Logno	ormal, May w	ant to try Lo	gnormal D	istribution							
1361													
1362	Note: Suggestions regard	ling the selection of a 95%	6 UCL are pr	ovided to he	Ip the user	to select the	most appropriate	95% UC	L.				
1363	F	Recommendations are ba	sed upon da	ta size, data	distribution	, and skewne	ess.						
1364	These recommendations	s are based upon the res	ults of the sin	nulation stud	ies summa	rized in Singh	, Maichle, and Le	e (2006)	۱.				
1365	However, simulations result	ts will not cover all Real V	Vorld data se	ts; for additio	onal insight	the user may	want to consult	a statistic	ian.				
1366													
1367	fluorene												
1368													
1369	General Statistics Total Number of Observations 22 Number of Distinct Observations 1												
1370	Total	Total Number of Observations         22         Number of Distinct Observations           Number of Missing Observations         Number of Missing Observations											
1371						Numbe	er of Missing Obse	ervations		1			
1372		Number of Detects	13				Number of Non	I-Detects	Ś	3			
1373	N	umber of Distinct Detects	13			Numb	er of Distinct Non	I-Detects		1			
1374		Minimum Detect	0.047				Minimum No	n-Detect		J.1			
1375		Maximum Detect	1.76				Maximum No	n-Detect		J.1			
1376		Moon Detects	0.232				Percent Non	Detects	4	0.91%			
1377		Median Detects	0.343				3L	/ Detects		1.402			
1378		Skewness Detects	2 / 93				Kurtosis		6	6.637			
1379		Mean of Longed Detects	-1 733				SD of Longer			1 144			
1380		mean of Logged Detecta	1.700				OD OF LOGGOU	10010010					
1381		Nonparam	etric Distribu	tion Free U	CL Statistic	s							
1382		Detected Data appea	ar Gamma D	stributed at	5% Signifi	cance Level							
1383													
1385	Kaplan-	Meier (KM) Statistics usi	ing Normal C	ritical Value	s and othe	or Nonparame	etric UCLs						
1386		Mean	0.229				Standard Error	of Mean	0	.0847			
1387		SD	0.382				95% KM (B	CA) UCL	(	0.395			
1388		95% KM (t) UCL	0.375			95% KM (F	Percentile Bootstr	rap) UCL	(	0.383			
1389		95% KM (z) UCL	0.368				95% KM Bootstr	ap t UCL	(	0.67			
1390	ç	00% KM Chebyshev UCL	0.483			1	95% KM Chebys	hev UCL	(	0.598			
1391	97	.5% KM Chebyshev UCL	. 0.758			!	99% KM Chebys	hev UCL	-	1.072			
1392													
1393	Statis	tics using KM estimates	suming Lo	gnormal Dist	tribution								
1394		KM SD (logged)	1.001	_		95%	Critical H Value (	KM-Log)	2	2.585			
1395		KM Mean (logged)	-2.162				KM G	eo Mean	(	0.115			
1396	KM Standa	rd Error of Mean (logged)	0.229				95% H-UCL (H	KM -Log)	(	0.334			
1397													
1398			Suggested	UCL to Use									
1399		Data appear Ga	amma, May	want to try G	amma Dis	tribution							
1400	Note: Suggestions regard	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
1401	F	Recommendations are ba	sed upon da	ta size, data	distribution	, and skewne	SS.						
1402	These recommendations	s are based upon the res	ults of the sin	nulation stud	ies summa	rized in Singh	n, Maichle, and Le	e (2006)					
1403	However, simulations result	ts will not cover all Real V	Vorld data se	ts; for addition	onal insight	the user may	want to consult	a statistic	ian.				
1400													

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 3410 5492 of 486

	А	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects			
2												
3		User Sele	cted Options									
4	Dat	e/Time of Co	omputation	ProUCL 5.1	12/31/2019 3	8:58:18 PM						
5			From File	SED 0-0.15	mbg Chemist	try_input_v5	.xls					
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
/	Number o	f Bootstrap	Operations	2000								
8		· .	<u> </u>									
1406	indeno(1,2,	3-cd)pyrene	9									
1407												
1/08						General	Statistics					
1/00			Total	Number of C	bservations	22			Numbe	r of Distinct C	Observations	19
1409									Number	r of Missing C	Observations	1
1410					Minimum	0.11				-	Mean	0.603
1411					Maximum	3.45					Median	0.42
1412			-		SD	0.698				Std. E	rror of Mean	0.149
1413				Coefficient	of Variation	1.157					Skewness	3.547
1414				Mean of I	ogged Data	-0.835				SD of	logged Data	0.754
1415					- 39-2 Bala					02.01	- <u>3</u> <u>3</u> - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1416					Nonnarame	tric Distribut	tion Free LI	CL Statistics				
1417				Data annea	r Annroxima	te Gamma I	Distributed a	at 5% Signifi	cance I eve			
1418				Data appoa	i / pproxima			at o to olginii		•		
1419					٨٩	suming Nor	mal Distribut	tion				
1420			95% Nr	rmal UCI	7.00	Saming Hom		95%	UCI s (Adii	isted for Ske	wness)	
1421				95% Stu	lent's-t UCI	0 859			95% Adjuste		(Chen-1995)	0.968
1422				0070 0100		0.000			95% Modifie	ed-t UCL (Joh	hnson-1978)	0.878
1423												0.070
1424					Nonnar	ametric Dist	tribution Fre	eUCIs				
1425				95	% CLT UCL	0.848				95% Ja	ckknife UCI	0.859
1426			95%	Standard Bo	otstran UCI	0.843				95% Boo	tstran-t UCI	1 234
1427				5% Hall's Bo	otstrap UCL	1.859			95%	Percentile Bo	otstrap UCL	0.857
1428			ç	5% BCA Bo	otstrap UCL	0.997						
1429			90% Ch	ebvshev(Mea	an, Sd) UCL	1.049			95% Ch	ebvshev(Me	an, Sd) UCL	1.252
1430			97.5% Ch	ebvshev(Mea	an, Sd) UCL	1.532			99% Ch	ebvshev(Me	an, Sd) UCL	2.083
1431				, ,	. ,					, (	. ,	L
1432						Suaaested	UCL to Use	)				
1433				Data appea	r Approxima	te Gamma.	May want to	o trv Gamma	Distribution	n		
1434							•	•				
1435	Ν	lote: Sugge	stions regard	ing the select	tion of a 95%	UCL are pro	ovided to he	lp the user to	select the r	nost appropr	iate 95% UC	 L.
1430			R	ecommenda	tions are bas	ed upon dat	a size, data	distribution,	and skewne	SS.		
1/138		These recor	mmendations	are based u	pon the resu	Its of the sim	ulation stud	ies summariz	zed in Singh	, Maichle, an	d Lee (2006)	
1/20	Но	wever, simu	lations result	s will not cov	er all Real W	orld data set	ts; for additio	onal insight th	ne user may	want to cons	ult a statistic	ian.
1433												
1440	methylnaph	thalene, 1-										
1441												
14/2						General	Statistics					
1444			Total	Number of C	bservations	16			Numbe	r of Distinct C	Observations	3
1445									Number	r of Missing C	Observations	7
1446				Numbe	r of Detects	2				Number of	Non-Detects	14
1447	1		Nı	umber of Dist	inct Detects	2			Numbe	er of Distinct	Non-Detects	1
1448	1			Minii	mum Detect	0.15				Minimum	Non-Detect	0.1
1449	1			Maxi	mum Detect	0.2				Maximum	Non-Detect	0.1
1450	1			Varia	nce Detects	0.00125				Percent	Non-Detects	87.5%
1451	1			M	ean Detects	0.175					SD Detects	0.0354
1452	1			Med	lian Detects	0.175					CV Detects	0.202
1453				Skewn	ess Detects	N/A				Kurt	osis Detects	N/A
1454				Mean of Log	ged Detects	-1.753				SD of Log	ged Detects	0.203

	A	В	С	D	E	F	G	Н				J	K		L
1				Nonpara	ametric UC	L Statistics	for Data Set	ts with N	lon-D	etects					
2		Llaar Cala	ated Options	1											
3	Det	User Sele	ected Options		2/21/2010 2										
4	Date		Erom Eilo	PIOUCE 5.11	2/31/2019 3	0.00.10 PIVI	xlc								
5		Fu		OFF		uy_input_vo	.xi5								
6		Confidence		95%											
7	Number of	f Bootstran	Operations	2000											
8		Dootstrup	operations	2000											
1455															
1456				١	Narning: Da	ata set has	only 2 Deter	cted Valu	ues.						
1457			TI	nis is not enou	igh to comp	ute meanin	gful or relial	ole statis	stics a	nd esti	mates	3.			
1458															
1459															
1460				I	Nonparame	tric Distribu	tion Free U	CL Statis	stics						
1461				Data do not	follow a Di	scernible D	stribution a	t 5% Sig	nifica	nce Lev	vel				
1462															
1463			Kaplan-	Meier (KM) St	atistics usin	ig Normal C	ritical Value	s and ot	ther N	lonpara	ametri	c UCLs			
1464					Mean	0.109					5	Standard E	Error of Mea	3n	0.00931
1465				050/1	SD	0.0263						95% KN	Л (BCA) UC	;L	N/A
1466				95% P		0.126			į	95% KIV	/I (Per	Centile Bo	otstrap) UC		N/A
1467				95% K		0.125					95		bychov UC	,L	N/A
1468			50	5% KM Cheby		0.137					95	% KM Che	bysnev UC	/L	0.15
1469			97	.5 % KIVI CHED	SHEV UCL	0.108					99			·L	0.202
1470			Statis	tics using KM	estimates (	n Longed I	)ata and As	sumina	Loan	ormal D	)istrih	ution			
1471			01000	KM S	D (logged)	0 189		Suming	Login	95	i% Cri	tical H Va	lue (KM-Lo	a)	1 793
1472				KM Mea	an (logged)	-2.234						K	M Geo Mer	an	0.107
14/3			KM Standa	rd Error of Mea	an (logged)	0.0667						95% H-U(	CL (KM -Lo	g)	0.119
1474					(*33**)								- (	57	
1475						Suggested	UCL to Use	1							
1477				95% ł	KM (t) UCL	0.126							KM H-UC	)L	0.119
1478				95% KM (	BCA) UCL	N/A									
1479				Warnin	g: One or n	nore Recom	mended UC	CL(s) not	t avai	lable!					
1480	N	ote: Sugge	stions regard	ling the selection	on of a 95%	UCL are pr	ovided to he	Ip the us	er to	select th	ne mo	st approp	riate 95% L	ICL.	
1481			F	Recommendati	ons are bas	ed upon dat	a size, data	distributi	on, ai	nd skew	vness				
1482		These reco	mmendations	s are based up	on the resu	Its of the sim	ulation stud	ies sumn	narize	ed in Sin	ngh, N	laichle, an	1d Lee (200	6).	
1483	Но	wever, simu	ulations result	ts will not cove	r all Real W	orld data se	s; for additio	onal insig	jht the	e user m	nay w	ant to con	sult a statis	ticiar	า.
1484	methydrora h	thelene 0													
1485	тепушарп	uidierie, 2-	•												
1486						General	Statistics								
1487			Total	Number of Ob	servations	22				Num	nber o	of Distinct (	Observation	าร	8
1488										Num	nber o	f Missina (	Observation	าร	1
1489	<u> </u>			Number	of Detects	9					N	Jumber of	Non-Detec	ts	13
1490	ļ		N	umber of Distir	nct Detects	8				Nur	mber	of Distinct	Non-Detec	ts:	1
1491				Minim	um Detect	0.0096						Minimun	n Non-Dete	ct	0.1
1493	L			Maxim	num Detect	0.3						Maximun	n Non-Dete	ct	0.1
1494	L			Varian	ce Detects	0.0142						Percent	Non-Detec	ts	59.09%
1495				Me	an Detects	0.096							SD Detec	ts	0.119
1496				Medi	an Detects	0.034							CV Detec	ts	1.244
1497				Skewne	ss Detects	1.382						Kur	tosis Detec	ts	0.255
1498				Mean of Logg	ed Detects	-3.083						SD of Log	gged Detec	ts	1.315
1499															
1500				I	Nonparame	tric Distribu	tion Free U	CL Statis	stics						
1501			Det	ected Data ap	opear Appro	oximate Nor	mal Distribu	ted at 59	% Sig	nificano	ce Le	vel			
1502															

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 343 of 496 of 486

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects			
2				i								
3		User Sele	cted Options									
4	Dat	te/Time of Co	omputation	ProUCL 5.1	12/31/2019 3	3:58:18 PM						
5			From File	SED 0-0.15	mbg Chemis	try_input_v5	5.xls					
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap (	Operations	2000								
10			Kanlan	Anion (IZM) O			Villian Value	e and other	Nonnorme			
1503			Kapian-r	VIEIEr (INIV) 3	tausucs usir		riucal value	is and other	Nonparame		mar of Moon	0.0102
1504					Iviean	0.0554						0.0193
1505				050/	SD	0.0809			050/ 1/14/10	95% KIV		0.0877
1506				95%		0.0886			95% KIVI (P		otstrap) UCL	0.0886
1507			0	90%		0.0071						0.117
1508			9		bysnev UCL	0.113					bysnev UCL	0.139
1509			97.	5% KIN Chet	bysnev UCL	0.176			5	99% KIN Che	bysnev UCL	0.247
1510			01-11-	No								
1511			Statis	acs using KN		on Logged	Data and As	suming Log			(KM  )	0.007
1512				KIVI S	SD (logged)	1.018			95% (	Jritical H val	ue (Kivi-Log)	2.607
1513				KIM Me	an (logged)	-3.53				650( 11 11C	M Geo Mean	0.0293
1514			KM Standar	d Error of Me	an (logged)	0.311				95% H-UC	CL (KM -Log)	0.0878
1515												
1516						Suggested	UCL to Use					
1517				Data	a appear No	rmal, May v	vant to try N	ormal Distri	bution.			
1518	ſ	Note: Sugges	stions regard	ing the select	ion of a 95%	UCL are pr	ovided to he	Ip the user to	select the r	nost appropr	iate 95% UCI	
1519		-	R	ecommenda	tions are bas	sed upon da	ta size, data	distribution,	and skewne	SS.	(0000)	
1520		These recor	mmendations	are based u	pon the resu	its of the sin	nulation stud	ies summari	zed in Singn	, Maichle, an	d Lee (2006).	
1521	Нс	owever, simu	llations result	s will not cov	er all Real W	orld data se	ts; for additio	onal insight t	ne user may	want to cons	sult a statistic	an.
1522												
1523	naphthalen	ie										
1524						0	0					
1525						General	Statistics			(D) // //		44
1526			l otal	Number of O	bservations	22			Numbe	r of Distinct C	Observations	11
1527					(5	44			Number	r of Missing C	Observations	1
1528			NI	Numbe	r of Detects	10			Niccostra	Number of	Non-Detects	11
1529			N	umber of Dist	Inct Detects	10			Numbe	er of Distinct	Non-Detects	1
1530				Minii	num Detect	0.0089				Ma	Non-Detect	0.1
1531				Maxii	num Detect	0.98				Maximum	Non-Detect	0.1
1532				Varia	nce Detects	0.0782				Percent	Non-Detects	50%
1533	ļ			Me	ean Detects	0.177					SD Detects	0.28
1534				Mec	iian Detects	0.13				12	UV Detects	1.578
1535				Skewn	ess Detects	2.779				Kurt	osis Detects	8.388
1536				iviean of Log	ged Detects	-2.6/6				SD of Log	gea Detects	1.506
1537	ļ				News							
1538				Did i i	Nonparame	etric Distribu	nion Free UC	L Statistics				
1539				Detected	uata appea	r Gamma Di	istributed at	o% Significa	ance Level			
1540												

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 344 of 496 of 486

	А	В	С	D E		F	G	Н		J	K	L
1				Nonparametri	c UCL	Statistics	for Data Set	s with Non-	Detects			
2												
3		User Sele	cted Options									
4	Dat	te/Time of Co	omputation	ProUCL 5.112/31/2	019 3	:58:18 PM						
5			From File	SED 0-0.15mbg Ch	nemist	ry_input_v	5.xls					
6		Fu	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
1541			Kaplan-l	Veier (KM) Statistic	s usin	g Normal (	critical Value	s and other	r Nonparame	etric UCLs		
1541				N	lean	0.0975				Standard Error o	f Mean	0.0458
1543					SD	0.205				95% KM (BCA	A) UCL	0.191
1544				95% KM (t)	UCL	0.176			95% KM (F	ercentile Bootstra	p) UCL	0.181
1545				95% KM (z)	UCL	0.173				95% KM Bootstrap	o t UCL	0.305
1546			g	0% KM Chebyshev	UCL	0.235			9	95% KM Chebyshe	ev UCL	0.297
1547			97	5% KM Chebyshev	UCL	0.384			ę	99% KM Chebyshe	ev UCL	0.553
1548												
1549			Statis	tics using KM estim	ates c	on Logged	Data and As	suming Log	normal Dist	ribution		
1550				KM SD (log	ged)	1.279			95% (	Critical H Value (K	M-Log)	2.992
1551				KM Mean (log	ged)	-3.395				KM Geo	o Mean	0.0335
1552			KM Standar	d Error of Mean (log	ged)	0.309				95% H-UCL (KN	√ -Log)	0.175
1553												
1554				Data anna		Suggested	UCL to Use	Dist.				
1555		lata Cuana	tione record	Data appea		nma, may	want to try G	amma Dist		naat annranriata O	E0/ LICI	
1556	ľ	Note: Sugges	stions regard	Ing the selection of a	95%	oct are p	to size data	distribution	o select the r	nost appropriate 9	5% UCL	
1557		These recor	mendations	are based upon the	resul	ts of the sir		ies summari		Maichle and Lee	(2006)	
1558	Hc	wever simu	lations result	s will not cover all R	eal W	orld data se	ts: for additio	nal insight t	he user may	want to consult a	statistici:	an
1559											otatiotion	
1560												
1562	phenanthre	ene										
1563	-											
1564						General	Statistics					
1565			Total	Number of Observa	tions	22			Numbe	r of Distinct Obser	vations	21
1566									Numbe	r of Missing Obser	vations	1
1567				Mini	num	0.25					Mean	2.293
1568				Maxi	num	16.5				1	Median	0.875
1569					SD	3.766				Std. Error o	f Mean	0.803
1570				Coefficient of Vari	ation	1.642				Ske	ewness	3.124
1571				Mean of logged	Data	0.163				SD of logge	ed Data	1.033
1572												
1573				Nonpa	rame	tric Distribu	tion Free U	L Statistics	5			
1574				Data do	not to	niow a Dis	cernible Dist	nbution (U.U	15)			
1575					Ace	uming Nor	mal Dietribut	tion				
1576			95% N	ormal LICI	7.99	uning No		95%	LICIs (Adiu	isted for Skewnes	2e)	
1577				95% Student's-t	UCL	3.675			95% Adjuste	d-CLT UCL (Chen	1-1995)	4,185
1578									95% Modifie	ed-t UCL (Johnson	1-1978)	3.764
1579											/	
1580				N	onpara	ametric Dis	tribution Fre	e UCLs				
1582				95% CLT	UCL	3.614				95% Jackkni	fe UCL	3.675
1583			95%	Standard Bootstrap	UCL	3.6				95% Bootstrap	o-t UCL	6.822
1584			9	5% Hall's Bootstrap	UCL	9.29			95%	Percentile Bootstra	ap UCL	3.672
1585			Ģ	95% BCA Bootstrap	UCL	4.336						
1586			90% Ch	ebyshev(Mean, Sd)	UCL	4.702			95% Ch	ebyshev(Mean, So	d) UCL	5.793
1587			97.5% Ch	ebyshev(Mean, Sd)	UCL	7.307			99% Ch	ebyshev(Mean, So	d) UCL	10.28
1500							1					

	A B C	D E	F	G	Н		J	K	L
1		Nonparametric UC	CL Statistics	for Data Se	ts with Non-	Detects			
2									
3	User Selected Options								
4	Date/Time of Computation	ProUCL 5.112/31/2019	3:58:18 PM						
5	From File	SED 0-0.15mbg Chemis	stry_input_v	5.xls					
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
9									
1589			Suggested	UCL to Use					
1590	95% Che	byshev (Mean, Sd) UCL	5.793						
1591									
1592	Note: Suggestions regard	ing the selection of a 95%	6 UCL are pi	rovided to he	Ip the user t	o select the r	nost appropriate	∍ 95% UCL	
1593	R	ecommendations are ba	sed upon da	ta size, data	distribution,	and skewne	SS.		
1594	These recommendations	are based upon the res	ults of the sir	nulation stud	ies summari	zed in Singh	Maichle, and L	.ee (2006).	
1595	However, simulations result	s will not cover all Real V	Vorld data se	ets; for addition	onal insight t	he user may	want to consult	a statisticia	an.
1596									
1597									
1598	pyrene								
1599									
1600			General	Statistics					
1601	Total	Number of Observations	22			Numbe	r of Distinct Obs	ervations	22
1602						Number	of Missing Obs	ervations	1
1603		Minimum	0.47					Mean	2.696
1604		Maximum	18.9					Median	1.49
1605		SD	3.887				Std. Erro	r of Mean	0.829
1606		Coefficient of Variation	1.441				5	Skewness	3.804
1607		Mean of logged Data	0.562				SD of log	ged Data	0.815
1607									
1608		Nonparam	etric Distribu	tion Free U	CL Statistics	3			
1009		Data appear Logr	normal Distri	buted at 5%	Significanc	e Level			
1010					•				
1611		As	sumina Nor	mal Distribu	tion				
1612	95% No	ormal UCL			95%	UCLs (Adiu	sted for Skewr	ness)	
1613		95% Student's-t UCL	4 122			95% Adjuste		en-1995)	4 778
1614						95% Modifie	ed-t UCL (Johns	son-1978)	4 234
1615									
1616		Nonna	rametric Dis	tribution Fre	e UCI s				
1617		95% CLT UCL	4 059				95% Jack	knife UCI	4 122
1618	Q5%	Standard Bootstran LICI	4 007				95% Bootet	ran-t UCI	7,339
1619		5% Hall's Bootstran UCI	9 386			95%	Percentile Roote	stran UCI	4 095
1620		5% BCA Bootstran LICI	4 973			55761	S. COTTAIC DOULS		4.000
1621	000/ Ch	abyshev(Mean Sd) UCL	5 192			95% Ch	ehvshev/Mean	S4) LICI	6 308
1622	07 EV OL	abyshev(Mean, Sd) UCL	7 971			90% Ch	ebyshev(Mean	Sd) LICI	10.000
1623	97.0% CH	Subjective dif, Su) UCL	7.071			33 /0 UI	coyonev(wedf),	Su) UCL	10.94
1624			Quesete						
1625		Data arment arm	Suggested		anormal Pl	atulla atlan			
1626		Data appear Logno	nnai, May W	rarit to try LC	ynormai Di	SUIDUUON			
1627	Net O 11	analogia e e est	(110)		la de			050/ 1121	
1628	Note: Suggestions regard	ng the selection of a 95%	6 UCL are pi	rovided to he	ip the user t	o select the r	nost appropriate	3 95% UCL	
1629	R	ecommendations are ba	sed upon da	ta size, data	distribution,	and skewne	SS.	(0	
1630	I hese recommendations	are based upon the res	uits of the sir	nulation stud	ies summari	zed in Singh	iviaichle, and L	.ee (2006).	
1631	However, simulations result	s will not cover all Real V	Vorld data se	ets; for addition	onal insight t	he user may	want to consult	a statisticia	an.
1632									
1633									

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 346 of 486

	А		В	С	D	E	F	G	Н		J	К	L	
1					Nonp	arametric UC	L Statistics	for Data Se	ts with No	on-Detects				
2														
3			User Sele	ected Options										
4		Date/	Time of C	omputation	ProUCL 5.	112/31/2019	3:58:18 PM							
5				From File	SED 0-0.1	5mbg Chemis	stry_input_v	5.xls						
6		-	Fu	Ill Precision	OFF									
7		С	onfidence	Coefficient	95%								-	
8	Numb	er of I	Bootstrap	Operations	2000								-	
9		_												
1634	ammoni	a and	1 ammoni	um (as N)										
1635														
1636							Genera	I Statistics						
1637				Total	Number of	Observations	16			Numbe	er of Distinct O	bservations	4	
1638										Numbe	er of Missing O	bservations	7	
1639					Numb	er of Detects	6				Number of N	Jon-Detects	10	
1640				Nu	umber of Dis	stinct Detects	4			Numb	er of Distinct N	Jon-Detects	1	
1641					Mir	nimum Detect	100				Minimum	Non-Detect	100	
1642					Max	kimum Detect	400				Maximum	Non-Detect	100	
1643					Vari	ance Detects	10667				Percent N	Jon-Detects	62.5	;%
1644					Ν	Aean Detects	233.3					SD Detects	103.3	\$
1645					Me	edian Detects	200					CV Detects	0.44	43
1646					Skew	ness Detects	0.666				Kurto	sis Detects	0.58	86
1647					Mean of Lo	gged Detects	5.366				SD of Log	jed Detects	0.46	69
1648														
1649						Nonparam	etric Distrib	ution Free U	CL Statis	tics				
1650					Detecte	d Data appea	r Normal D	istributed at	5% Signi	ficance Level				
1651														
1652				Kaplan-I	Meier (KM)	Statistics usi	ng Normal	Critical Valu	es and oth	her Nonparam	etric UCLs			
1653						Mean	150				Standard Er	ror of Mean	23.7	'2
1654						SD	86.6				95% KM	(BCA) UCL	N/A	
1655					959	% KM (t) UCL	191.6			95% KM (I	Percentile Boo	tstrap) UCL	N/A	
1656					95%	6 KM (z) UCL	189				95% KM Boot	strap t UCL	N/A	
1657				9	0% KM Che	ebyshev UCL	221.2				95% KM Cheb	yshev UCL	253.4	ł
1658				97.	.5% KM Che	ebyshev UCL	298.1				99% KM Cheb	yshev UCL	386	
1659														
1660				Statis	tics using K	M estimates	on Logged	Data and A	ssuming L	.ognormal Dis	tribution			
1661					KN	I SD (logged)	0.452			95%	Critical H Valu	ie (KM-Log)	2.00	02
1662					KM N	lean (logged)	4.89				KN	I Geo Mean	133	
1663				KM Standar	d Error of N	lean (logged)	0.124				95% H-UC	L (KM -Log)	186.1	1
1664														
1665							Suggested	UCL to Us	8					
1666					Da	ita appear No	ormal, May	want to try N	Normal Dis	stribution.				
1667		No	te: Sugge	stions regard	ing the sele	ction of a 95%	6 UCL are p	rovided to he	elp the use	er to select the	most appropria	ate 95% UC	. <u>.</u>	
1668				R	lecommend	ations are ba	sed upon da	ata size, data	distributio	on, and skewne	ess.			
1669		T	hese reco	mmendations	are based	upon the resu	ults of the si	mulation stud	dies summ	arized in Singl	n, Maichle, and	I Lee (2006)	1.	
1670		How	ever, simu	lations result	s will not co	ver all Real V	/orld data s	ets; for additi	onal insigl	ht the user may	/ want to consi	ult a statistic	;ian.	
1072	ommoni		N											
1673	annion	a as												
1674							Ganoro	Statistics						
1675				Total	Number of	Observations	6	, Staustics		Numbe	or of Distinct O	hservations	6	
1676				i Utdi		000017010115	0			Numbe		hservations	17	
1677						Minimum	3.6			TAULIDE	2 of Missing O	Meen	64.0	33
1678						Maximum	100					Modica	04.9	, j
1679							76.54				Ctd Er		20.5	, 25
1680					Coefficier	ot of Variation	1 170				Siu. El	Skowness	1 1	.5
1681					Maan	flogged Data	2 /10				6D ~41	orded Data	1.10	68
1682					wearr 0		5.419				30 01	ogyeu Dala	1.40	50
1683														

	A	В	С	D	E	F	G	Н			J	k			L
1				Nonpar	ametric UC	L Statistics	for Data Set	ts with Non-	Detects						
2															
3		User Sele	ected Options												
4	Dat	e/Time of C	omputation	ProUCL 5.11	12/31/2019 3	8:58:18 PM									
5			From File	SED 0-0.15r	nbg Chemis	try_input_v5	.xls								
6		Fu	III Precision	OFF											
7		Confidence	Coefficient	95%											
8	Number o	f Bootstrap	Operations	2000											
9															
1684			Not	e: Sample si	ze is small (	(e.g., <10), i	f data are c	ollected usi	ng ISM ap	pproa	ch				
1685				you may wa	ant to use C	hebyshev l	JCL to estim	nate EPC (I	FRC, 201	2).					
1686			Che	byshev UCL	can be com	puted using	the Nonpar	rametric and	I All UCL	. Optic	ons.				
1687															
1688					Nonparame	etric Distribu	tion Free U	CL Statistic:	6						
1689				Data appea	r Approxima	ate Normal I	Distributed a	at 5% Signif	icance Le	evel					
1690															
1691					As	suming Nor	mal Distribu	tion							
1692			95% No	ormal UCL				95%	UCLs (A	Adjust	ed for Sl	kewness	)		
1693				95% Stud	ent's-t UCL	127.9			95% Adju	usted-	CLT UCI	_ (Chen-	995)	13	2.3
1694									95% Mo	dified	-t UCL (J	ohnson-	978)	13	0.4
1695															
1696					Nonpar	rametric Dis	tribution Fre	e UCLs							
1697				95%	6 CLT UCL	116.3					95%	Jackknife	UCL	12	7.9
1698			95%	Standard Boo	otstrap UCL	112.8					95% Bo	ootstrap-t	UCL	42	0.4
1699			9	5% Hall's Boo	otstrap UCL	626.6			95	5% Pe	rcentile E	Bootstrap	UCL	11	5.5
1700			ç	5% BCA Boo	otstrap UCL	122.7									
1700			90% Ch	ebyshev(Mea	n, Sd) UCL	158.7			95%	Chet	yshev(M	lean, Sd)	UCL	20	1.1
1702			97.5% Ch	ebyshev(Mea	n, Sd) UCL	260.1			99%	Chet	yshev(M	lean, Sd)	UCL	37	5.8
1702												-			
1703						Suggested	UCL to Use	)							
1704				Data	appear No	rmal, May w	ant to try No	ormal Distril	oution						
1705							-								
1700	N	lote: Sugge	stions regard	ing the select	ion of a 95%	UCL are pr	ovided to he	lp the user t	o select th	he mo	st approp	priate 95	% UC	L.	
1707			R	ecommendat	ions are bas	ed upon da	a size, data	distribution,	and skew	vness					
1700		These reco	mmendations	are based up	oon the resu	Its of the sin	ulation stud	ies summar	zed in Sir	ngh, N	laichle, a	and Lee (	2006)		
1709	Но	wever, simu	ulations result	s will not cove	er all Real W	/orld data se	ts; for additio	onal insight t	he user m	nay w	ant to co	nsult a st	atistic	ian.	
1710															
1710															
1712	kieldahl nitr	ogen total													
1713															
1714						General	Statistics								
1710			Total	Number of O	bservations	22			Num	nber c	f Distinct	Observa	tions	1	5
1710									Num	nber o	f Missina	Observa	itions	1	1
1710					Minimum	5.8					5		Mean	65	4.2
1718					Maximum	1900						M	edian	60	0
1719					SD	495.1					Std	Error of	Mean	10	5.6
1/20				Coefficient	of Variation	0,757					0.0.	Skew	ness		).85
1/21				Mean of le	ogged Data	5.96					SD	of loaned	Data	1	1.402
1/22					33-1 2 4.4	2.00					021	- 3900		L'	
1723	ļ				Nonnarame	tric Distribu	tion Free L	CL Statistics	3						
1724		Data annear Normal Distributed at 5% Significance Level													
1725				Daid					20701						
1726					A ~	suming Nor	nal Dietribu	tion							
1727	ļ		05% N/	mal LICI	~5	saming NOF		050		Adjue	ed for S	rownees	<u> </u>		
1728		95% Student's-t LICL 835.9 95% Adjusted-CL T LICL (Chen-1995) 848.3											<u>8</u> 3		
1729				33 /0 Siud	UCL	000.9			05% Ma	usieu-			070	04	0.0
1730									30 /0 IVIO	unied	-1 UCL (J	01115011-	310)	03	3
1731															

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 348 of 359 of 486

	A	В	С	D	E	F	G	Н			J	K		L
1				Nonpar	ametric UC	L Statistics	for Data Set	ts with M	Non-L	Detects				
2				1										
3		User Sele	cted Options											
4	Dat	e/Time of C	omputation	ProUCL 5.11	2/31/2019 3	3:58:18 PM								
5			From File	SED 0-0.15n	nbg Chemis	try_input_v5	.xls							
6		Fu	III Precision	OFF										
7		Confidence	Coefficient	95%										
8	Number o	of Bootstrap	Operations	2000										
ŤŪ					Nonno	omotrio Dio	ribution Ero							
1732				05%				0 UCLS	5		0.5%	okknifa UCI	0.25	- 0
1733			0.5%	Standard Pag	tetron UCL	027.0					95 /0 Ja	tetron t UCL	033	3.5
1734			90 %			023.1				0.5%	90 /0 DOC		070	2.1
1735				5% BCA Boo	istrap UCL	8/1 8				33781	ercentile Do		020	
1736			00% Ch	obyshov/Moa		070.0				05% Ch	obyshov/Mo	an Sd) LICI	111	1
1737			90 % Ch			1212				00% Ch			170	4
1738			97.5% CH	ebysnev(iviea	II, 30) UCL	1313				33 /8 CH	ebysnev(ivie		170	+
1739						Suggested								
1740				Data	annear No	mai May w	ant to try No	ormel Di	ietrih	ution				
1741				Dala	appear 1401	mai, way w			Journa					
1742	N	loto: Suggo	stions regard	ing the colocti	on of a 95%		ovided to be	In the us	sor to	soloct the r	nost appropr	iato 95% LIC	·I	
1743		ole. Sugge	Subris regard	ecommendat	ions are has			distribut	tion a	and skowney			L.	
1744		These reco	mmendations	are based ur	on the resu	Its of the sim	ulation studi		mariz		Maichle an	d Lee (2006)		
1745	Но	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticiar										ian		
1746											adri.			
1747	nitrogen (total)													
1748	na ogen (te	,uaiy												
1749						General	Statistics							
1750			Total	Number of Of	servations	6	0100000			Numbe	r of Distinct (	Observations	3	
1751			10101		5561 Valionio	•				Number	of Missing (	Observations	17	7
1752				Number	of Detects	3				Number	Number of	Non-Detects	3	
1753			N	imber of Disti	nct Detects	2				Numbe	er of Distinct	Non-Detects	1	
1754				Minin	num Detect	3000					Minimum	Non-Detect	200	0
1755				Maxin	num Detect	4000					Maximum	Non-Detect	200	0
1756				Varian	ce Detects	333333					Percent	Non-Detects	50	)%
1757				Me	an Detects	3333						SD Detects	577	74
1758				Medi	ian Detects	3000						CV Detects	0	173
1759				Skewne	ess Detects	1 732					Kur	tosis Detects	N//	A
1/60				Mean of Logo	ed Detects	8.102					SD of Loc	aed Detects	0	.166
1761														
1762				,	Warning: D	ata set has	only 3 Deter	cted Val	lues.					
1764			Th	is is not enou	ugh to comp	oute meanin	gful or reliat	ole stati	stics	and estimat	tes.			
1764														
1767			Note: Samp	ole size is sma	all (e.g., <10	0), if data ar	e collected	using IS	SM ap	proach, yo	u should use	3		
1768			guidance pro	vided in ITR	C Tech Reg	Guide on I	SM (ITRC, 2	2012) to	com	pute statist	ics of interes	st.		
1769			For e	xample, you	may want to	o use Cheby	shev UCL t	o estima	ate E	PC (ITRC,	2012).			
1770			Chebyshev	UCL can be	computed u	ising the No	nparametric	and Al	II UCI	Options of	ProUCL 5.	1		
1771														
1772	Nonparametric Distribution Free UCL Statistics													
1773			Det	ected Data a	ppear Appro	oximate Nor	mal Distribu	ted at 5	5% Si	gnificance l	_evel			
1774														
1775			Kaplan-I	deier (KM) St	atistics usir	ng Normal C	ritical Value	s and o	other	Nonparame	tric UCLs			
1776					Mean	2667					Standard E	rror of Mean	372	2.7
1777					SD	745.4					95% KN	I (BCA) UCL	N/A	A
1778				95%	KM (t) UCL	3418				95% KM (P	ercentile Bo	otstrap) UCL	N/A	A
1779				95% k	KM (z) UCL	3280				9	95% KM Boo	otstrap t UCL	N/A	A
1780			9	0% KM Cheb	yshev UCL	3785				9	5% KM Che	byshev UCL	429	1
1781			97.	5% KM Cheb	yshev UCL	4994				9	9% KM Che	byshev UCL	637	5
.,,,,														

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 349 of 400 of 486

	A B C D	E	F	G	H		J K	L					
1	NC	nparametric UC	L Statistics	for Data Set	s with Non-	Detects			_				
2	Licer Selected Ontions								_				
3	Date/Time of Computation ProLICI	5 112/31/2010 3	3-58-18 DM						_				
4		) 15mbg Chemis	try input v5	vle				-					
5	Full Precision OFF	7. Tomby Chemis	uy_iiiput_vo										
6	Confidence Coefficient 95%								_				
7	Number of Bootstrap Operations 2000								_				
8													
1782													
1783	Statistics using	J KM estimates	on Logged	Data and As	suming Log	normal Dist	ribution						
1784		KM SD (logged)	0.268			95% (	Critical H Value (KM-Lo	g) 2.17	73				
1785	KI	I Mean (logged)	7.852				KM Geo Me	in 2570					
1786	KM Standard Error o	f Mean (logged)	0.134				95% H-UCL (KM -Lo	g) 3458					
1787													
1788			Suggested	UCL to Use	1								
1789		Data appear No	ormal, May v	ant to try N	ormal Distri	bution.							
1790	Note: Suggestions regarding the s	election of a 95%	UCL are pr	ovided to he	Ip the user to	o select the r	nost appropriate 95% l	CL.					
1791	Recomme	ndations are bas	sed upon da	a size, data	distribution,	and skewne	SS.						
1792	These recommendations are bas	ed upon the resu	ilts of the sin	ulation stud	ies summari	zed in Singh	, Maichle, and Lee (200	6).					
1793	However, simulations results will not	cover all Real W	orld data se	ts; for additio	onal insight t	he user may	want to consult a statis	lician.					
1794													
1795	organic phosphorus												
1796			Canaral	Ctotiotico									
1797	Total Number	of Observations	General	Statistics		Numbo	r of Distinct Observatio	6					
1798			0			Numbe	of Missing Observatio	15 0 17					
1799	Nu	mber of Detects	5			Number	Number of Non-Deter	ts 1					
1800	Number of	Distinct Detects	5			Numbe	er of Distinct Non-Detec	ts 1					
1801		Minimum Detect	1.1				Minimum Non-Dete	ct 1	-				
1002	N	Aaximum Detect	4.6				Maximum Non-Dete	ct 1					
1804	V	ariance Detects	1.837				Percent Non-Detec	ts 16.6	57%				
1805		Mean Detects	2.58				SD Detec	ts 1.35	55				
1806		Median Detects	2.4				CV Detec	ts 0.52	25				
1807	Sk	ewness Detects	0.745				Kurtosis Detec	ts 0.19	94				
1808	Mean of	Logged Detects	0.832				SD of Logged Detect	ts 0.54	49				
1809													
1810	Note: Sample size i	3 small (e.g., <10	0), if data aı	e collected	using ISM a	pproach, yo	u should use						
1811	guidance provided in	ITRC Tech Reg	g Guide on I	SM (ITRC, 2	2012) to con	npute statist	ics of interest.						
1812	For example,	you may want to	o use Cheby	shev UCL t	o estimate l	EPC (ITRC,	2012).						
1813	Chebyshev UCL ca	) be computed u	ising the No	nparametric	and All UC	L Options of	f ProUCL 5.1						
1814		Nonnorma	tula Distribu	tion Free LI									
1815	Data	Nonparame	r Normal Di	uon Free U	5L Statistics								
1816	Deter	ted Data appea	r Normai Di	stributed at	5% Significa	ance Level							
1817	Kanlan-Meier (K	M) Statistics usir	ng Normal (	ritical Value	s and other	Nonnarame	atric LICI s	-					
1818		Mean	2.317			Tonparame	Standard Error of Me	n 0.57	72				
1819		SD	1,254				95% KM (BCA) U	L 3.25	5				
1820		35% KM (t) UCI	3.47			95% KM (P	Percentile Bootstrap) U	L 3.26	67				
1821	C	5% KM (z) UCL	3.258				95% KM Bootstrap t U	L 3.95	52				
1822	90% KM	Chebyshev UCL	4.033			ç	95% KM Chebyshev U	L 4.81	11				
1023	97.5% KM (	Chebyshev UCL	5.89			ç	99% KM Chebyshev U	L 8.01	1				
1825			<u> </u>	<u> </u>			-						
	A	В	С	D	E	F	G	Н		J	K		L
------	-----------	--------------	----------------	----------------	----------------	-----------------	-------------------	----------------	--------------	----------------	----------------	--------------	-------
1				Nonpa	arametric UC	L Statistics	for Data Set	s with Non-	Detects				
2				i									
3		User Sele	cted Options										
4	Dat	e/Time of C	omputation	ProUCL 5.1	12/31/2019	3:58:18 PM							
5			From File	SED 0-0.15	mbg Chemis	stry_input_v	5.xls						
6		Fu	III Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number o	of Bootstrap	Operations	2000									
9													
1826			Statis	tics using KI	M estimates	on Logged	Data and As	suming Log	normal Dis	stribution			
1827				KM	SD (logged)	0.545			95%	Critical H Va	alue (KM-Lo	1)	2.749
1828				KM Me	ean (logged)	0.693				K	CM Geo Mea	n	2
1829			KM Standar	d Error of Me	ean (logged)	0.249				95% H-U	CL (KM -Lo	1)	4.536
1830													
1831						Suggested	UCL to Use						
1832				Dat	a appear No	ormal, May v	want to try N	ormal Distri	bution.				
1833	1	Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pi	rovided to he	Ip the user to	o select the	e most approp	oriate 95% U	CL.	
1834			F	ecommenda	ations are ba	sed upon da	ta size, data	distribution,	and skewn	ess.			
1835		These reco	mmendations	are based u	Ipon the resu	ults of the sir	nulation stud	ies summari	zed in Sing	h, Maichle, a	nd Lee (200	ö).	
1836	Нс	wever, simu	lations result	s will not cov	ver all Real V	Vorld data se	ets; for addition	onal insight t	ne user ma	iy want to cor	isult a statis	ician.	
1837													
1838													
1839	phosphoru	S											
1840													
1841						General	Statistics			(5) ()	<u></u>		
1842			l otal	Number of C	Observations	22			Numb	er of Distinct	Observation	s	22
1843									Numb	er of Missing	Observation	S	1
1844					Minimum	598					Mea	n 90	)4.4
1845					Maximum	1622					Media	n 8	16
1846				0 11	SD	284.7				Std.	Error of Mea	n (	50.69
1847				Coefficient	t of Variation	0.315					Skewnes	s	1.383
1848				Mean of	logged Data	6.767				SD o	f logged Da	a	0.281
1849													
1850				<u>.</u>	Nonparamo	etric Distribu	Ition Free U	L Statistics					
1851				Data appea	ar Approxim	ate Normai	Distributed a	it 5% Signifi	cance Lev	ei			
1852													
1853					As	suming Nor	mal Distribu	tion					
1854			95% No			1000		95%	UCLS (Ad	ljusted for Sk	(ol 100)		200
1855				95% Stu	dent's-t UCL	1009			95% Adjus		. (Chen-199	) 10 ) 10	123
1856									95% Modi	nea-t UCL (Jo	unson-197	5) 10	'1Z
1857					Name -	nomotrie Di-	telloution E						
1858				05				UULS		0.50/	ookknife UC	1 1/	00
1859			050/	Standard D -	ototron UCL	1004				95% J	ackknille UC		109
1860			95%		ototran UCL	1003			050	95% BO	otstrage UC		144
1861			9	5% Hall's Bo	oustrap UCL	1041			95%	Percentile B	ootstrap UC	L 10	συ
1862				Do% BCA Bo		1020			050/ 0	hohyohoy/M		1 44	160
1863			90% Ch			1000			95% (				03
1864			97.5% Ch	enysnev(Me	an, Su) UCL	1203			99% C	mebysnev(M		L 15	00
1865						Quagaated							
1866				Det	oppear N-	Suggested	UCL TO USE	ma Dist-II	ution				
1867				Data	a appear NO	mai, May W	Manic to thy NC	uniai Distrit	uuon				
1868	ļ	loto: Curr	otione re '	ing the colo	tion of a OFA		ouided to b	In the warm'		monter	riote OF0/		
1869	r	vote. Sugge	suons regard		tions are k-			diotribution		most approp	niale 35% U	UL.	
1870		Those reca	mmondatio	ecommenda	non the re-	seu upon da	ud Size, data	uisu ibution,		ess.	nd Loc (200	6)	
1871		inese reco	Internations	are based t				nes summari		n, warne, a		J).	
1872	Нс	wever, simu	nations result	s will not cov	rer all Real V	voria data se	ets; for additio	onai insight t	ie user ma	iy want to cor	isuit a statis	ician.	
1873													

# Appendix "A" to Report PW19008(g)/LS19004(f) Page 3510 5402 of 486

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpara	metric UC	L Statistics	for Data Set	s with Non-	Detects		·	
2												
3		User Selec	cted Options									
4	Dat	te/Time of Co	omputation	ProUCL 5.112	/31/2019	3:58:18 PM						
5			From File	SED 0-0.15mb	og Chemis	stry_input_v5	5.xls					
6		Ful	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number of	of Bootstrap (	Operations	2000								
9	_											
1874	Fecal Colif	orms										
1875												
1876						General	Statistics					
1877			l otal	Number of Obs	servations	1/			Numbe	r of Distinct (	Jbservations	16
1878					(	10			Number	r of Missing (	Jbservations	6
1879				Number	of Detects	16				Number of	Non-Detects	1
1880			NL	umber of Disting	ct Detects	15			Numbe	er of Distinct	Non-Detects	1
1881				Minimu	Im Detect	3000				Minimum	1 Non-Detect	1000
1882				Maximu	Im Detect	45000				Maximum	1 Non-Detect	1000
1883				Varianc	e Detects	1./68E+8				Percent	Non-Detects	5.882%
1884				Mea	n Detects	21500					SD Detects	13297
1885		User Selected Options Date/Time of Computation ProUCL 5.112/ From File SED 0-0.15mbg Full Precision OFF Confidence Coefficient 95% Jumber of Bootstrap Operations 2000 al Coliforms Total Number of Dotstinct Number of Distinct Minimu Maximu Variance Mean Median Skewness Mean of Logged Mean of Logged Mean of Logged Mean of Logged Mean of Logged Statistics using KM ean 95% KM 90% KM Chebysl 97.5% KM Chebysl 97.5% KM Chebysl 97.5% KM Chebysl 97.5% KM Chebysl 97.5% KM Chebysl 97.5% KM Standard Error of Mean KM tistics will not cover a				18000					CV Detects	0.618
1886		Deter Selected Options Date/Time of Computation ProUCL 5.112/ From File SED 0-0.15mbg Full Precision OFF Confidence Coefficient 95% Imber of Bootstrap Operations 2000 al Coliforms Total Number of Distinct Number of Distinct Minimur Maximur Variance Mean Median Skewness Mean of Logged No Detected Da Kaplan-Meier (KM) Stati Statistics using KM ee Statistics using KM ee KM SD Statistics using KM een KM Standard Error of Mean KM Standard Error of Mean KM Standard Error of Mean KM Standard Error of Mean Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions Constructions				0.572				Kur	losis Detects	-0.959
1887		Number of Distinct Minimum Maximum Variance Mean Median Skewness Mean of Logged Nor Detected Dat Kaplan-Meier (KM) Statis 95% KM 95% KM 90% KM Chebysh 97.5% KM Chebysh				9.761				SD of Log	Jged Detects	0.731
1888		Mean of Logged Nor Detected Dat Kaplan-Meier (KM) Statis										
1889		No Detected Dat Kaplan-Meier (KM) Stati				etric Distribu	tion Free UC	CL Statistics	; 			
1890		No Detected Da Kaplan-Meier (KM) Stati				ir Normal Di	stributed at	5% Significa	ince Level			
1891		Detected Dat Kaplan-Meier (KM) Stati										
1892		Detected Da Kaplan-Meier (KM) Stati				ng Normal C	critical Value	s and other	Nonparame	etric UCLs		0054
1893					Mean	20294				Standard E	rror of Mean	3354
1894				050/1/	SD	13389			050/ 1/04 /5	95% KN	1 (BCA) UCL	25529
1895				95% K		26149			95% KM (P	ercentile Bo	otstrap) UCL	25765
1896		Number of District Minimu Maximu Variance Mear Mediar Skewness Mean of Logged Mean			25811				95% KM B00	ststrap t UCL	26981	
1897			9	0% KM Cheby	shev UCL	30356				95% KM Che	bysnev UCL	34913
1898			97.	5% KM Cheby	shev UCL	41239			ţ	99% KM Che	bysnev UCL	53664
1899			Ctatio	Nee yeing KM /	atimataa	on Longod	Data and As	oursing Log	normal Dist	-		
1900			Statist		) (legged)		Data and As	suming Log				2 612
1901			-	KIVI SL	(logged)	0.96			95% (		ue (Kivi-Log)	2.013
1902			KM Standar		1 (logged)	9.593						14008
1903			KIVI Stanuar		i (logged)	0.24				95% H-UU	JL (KIVI -LOG)	43547
1904						Suggested						
1905				Data	annear Nr	mal May	vent to try N	ormal Dietri	hution			
1906		Note: Sugges	tions regardi	ing the selection	n of a 95%		rovided to be	In the user to	select the r	nost annroni	riate 95% LIC	·1
1907	- ·	Note: Sugges		ecommendatio			ta siza data	distribution	and skowno			L.
1908		These recor		are based upo	n the resi	lts of the sin				Maichle an	d Loo (2006)	
1909	Ha	mese recon	lations result	s will not cover		Ins of the sin	te: for additio	nal insight t		want to con		
1910				s will not cover	all i teal v			inai insigni u	le user may	want to cons		
1911	DAlle (eur	of total)										
1912												
1913						General	Statistics					
1914			Total	Number of Obs	ervations	22	Claubuco		Numbe	r of Distinct (	Observations	22
1915			10101						Number	of Missing (	Observations	1
1916					Minimum	2.97					Mean	14 79
1917			<u> </u>		Maximum	98.60					Median	7.55
1918			-			20.71				Std F	Fror of Mean	4 4 1 5
1919				Coefficient of	Variation	14				Olu. E	Skewness	3 5/10
1920				Mean of loc	ned Data	2 262				SD of	logged Data	0.817
1921					,500 0010	2.202	L			00 01		
1922	1											

### Appendix "A" to Report PW19008(g)/LS19004(f) Page 352 Page 363 of 486

	A	В	С	D	E	F	G	Н		J	К	L
1				Nonpa	arametric UC	L Statistics	for Data Se	ts with Nor	n-Detects			
2				1								
3		User Sele	ected Options									
4	Date	e/Time of C	computation	ProUCL 5.	112/31/2019	3:58:18 PM						
5			From File	SED 0-0.1	ombg Chemis	stry_input_v	o.xls					
6		Fu	Ill Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number of	f Bootstrap	Operations	2000								
ŤŪ					Nonneram	atrio Dietribu	tion Free LL	CI Statisti	20			
1923				Data annea			Distributer	1 at 5% Sic	nificance Lev	اه		
1924					пдриоліна	e Lognorma				0		
1925					۵۵	suming No	mal Distribu	tion				
1926			95% N	ormal LICI	7%	Suming No.		95	% UCIs (Adi	isted for Skew	(neee)	
1927			007011	95% Stu	dent's-t UCI	22.39		00	95% Adjuste		(hen-1995)	25.63
1928				0070 010		22.00			95% Modifi		son-1978)	22.00
1929											10011 1070)	22.00
1930					Nonna	rametric Dis	tribution Fre	e UCI s				
1931				95	5% CLT UCL	22.06				95% Jack	kknife UCI	22 39
1932			95%	Standard Bo	ootstran UCI	21.75				95% Boots	stran-t UCI	38.12
1933			9	5% Hall's Bo	ootstran UCI	51 19			95%	Percentile Boot	tstran UCI	23.26
1934				95% BCA B	ootstran UCI	26.41			0070			20.20
1935			90% Ch	ebvshev(Me	an Sd) UCI	28.04			95% Cl	ebvshev(Mear	n Sd) UCI	34 04
1936			97.5% Ch	ebyshev(Me	an Sd) UCI	42.37			99% Cl	ebyshev(Mear	n, Sd) UCL	58 72
1937			07.070 011	ebyonev(me		42.07			00,00	iebyonev(mear	1, 00) 00E	00.72
1938						Suggested	UCL to Use	•				
1939			D	ata appear /	Approximate	Lognormal	May want to	o trv Loana	ormal Distribu	tion		
1940				ata appear /	4 proviniero	Lognorman	may mane e	o ay nogin				
1941	N	lote: Suaae	stions regard	ing the seled	ction of a 95%	6 UCL are p	rovided to he	lp the user	to select the	nost appropria	te 95% UCI	
1942			F	Recommenda	ations are ba	sed upon da	ta size. data	distributior	. and skewne	SS.		
1943		These reco	mmendations	are based	upon the resi	ults of the sir	nulation stud	lies summa	rized in Sinah	. Maichle, and	Lee (2006).	
1944	Но	wever, simi	ulations result	s will not co	ver all Real V	Vorld data se	ets; for addition	onal insight	the user may	want to consu	lt a statistici	an.
1945		,					-,	J				-
1946	PAHs (sum	of total)										
1947		,										
1940						General	Statistics					
1050			Total	Number of (	Observations	21			Numbe	r of Distinct Ob	oservations	21
1950									Numbe	r of Missing Ob	servations	1
1952					Minimum	2.97					Mean	10.8
1952					Maximum	42.23					Median	7.3
105/					SD	9.035				Std. Err	or of Mean	1.972
1954				Coefficien	t of Variation	0.837					Skewness	2.406
1056				Mean of	logged Data	2.151				SD of lo	ogged Data	0.646
1057												
1958					Nonparam	etric Distribu	ition Free U	CL Statisti	cs			
1950				Data	appear Logr	ormal Distr	buted at 5%	Significan	ce Level			
1960												
1961					As	suming No	mal Distribu	tion				
1962			95% N	ormal UCL				95	% UCLs (Adj	usted for Skew	rness)	
1963				95% Stu	dent's-t UCL	14.2			95% Adjuste	ed-CLT UCL (C	Chen-1995)	15.15
1964									95% Modifi	ed-t UCL (John	nson-1978)	14.37
1965							1					
1963 1964 1965				95% Stu	ident's-t UCL	14.2			95% Adjuste 95% Modifi	ed-CLT UCL (C ed-t UCL (John	Chen-1995) nson-1978)	15.15 14.37

## Appendix "A" to Report PW19008(g)/LS19004(f) Page 353 of 406 of 486

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	arametric UC	L Statistics	for Data Se	ts with No	n-Detects		•	
2												
3		User Selec	cted Options									
4	Dat	te/Time of Co	mputation	ProUCL 5.	112/31/2019	3:58:18 PM						
5			From File	SED 0-0.15	5mbg Chemis	stry_input_v	.xls					
6		Ful	Precision	OFF								
7		Confidence (	Coefficient	95%								
8	Number o	of Bootstrap C	Operations	2000								
- ğ TU												
1966					Nonpa	rametric Dis	tribution Fre	e UCLs				
1967				95	5% CLT UCL	14.04				95% Ja	ackknife UCL	14.2
1968			95%	Standard Bo	ootstrap UCL	13.95				95% Boo	otstrap-t UCL	16.77
1969			9	5% Hall's Bo	ootstrap UCL	25.37			95%	Percentile Bo	ootstrap UCL	14.18
1970			9	95% BCA Bo	ootstrap UCL	15.5						
1971			90% Ch	ebyshev(Me	an, Sd) UCL	16.71			95% Ch	ebyshev(Me	an, Sd) UCL	19.39
1972			97.5% Ch	ebyshev(Me	an, Sd) UCL	23.11			99% Ch	ebyshev(Me	an, Sd) UCL	30.41
1973												
1974						Suggested	UCL to Use	•				
1975	Data appear Lognormal, May want to try Lo								Distribution			
1976												
1977	١	Note: Sugges	tions regard	ing the seled	ction of a 95%	6 UCL are p	ovided to he	Ip the user	to select the r	nost appropr	iate 95% UC	L.
1978			F	lecommenda	ations are ba	sed upon da	ta size, data	distribution	n, and skewne	SS.		
1979		These recon	nmendations	are based i	upon the resu	ults of the sir	nulation stud	ies summa	arized in Singh	, Maichle, an	d Lee (2006)	).
1980	Hc	wever, simul	ations result	s will not cov	ver all Real V	/orld data se	ts; for addition	onal insigh	t the user may	want to cons	sult a statistic	cian.

	A	В	С	D E	F	G	Н		J	К	L
1				Nonparametric UC	CL Statistics	for Data Set	ts with Non-	Detects			
2											
3		User Sele	cted Options								
4	Dat	e/Time of Co	omputation	ProUCL 5.11/13/2020 2	:22:32 PM						
5			From File	WorkSheet.xls							
6		Fu	II Precision	OFF							
7		Confidence	Coefficient	95%							
8	Number o	of Bootstrap	Operations	2000							
0											
10											
11	Acenaphth	ylene									
12											
13					General	Statistics					
14			Total	Number of Observations	21			Numbe	r of Distinct (	Observations	2
15								Numbe	r of Missing (	Observations	0
16				Minimum	0.05					Mean	0.0881
17				Maximum	0.1					Median	0.1
18				SD	0.0218				Std. E	rror of Mean	0.00476
19				Coefficient of Variation	0.248					Skewness	-1.327
20				Mean of logged Data	-2.468				SD of	logged Data	0.303
21											
22				Nonparam	etric Distribu	tion Free U	CL Statistics	3			
23				Data do not	follow a Disc	ernible Dist	ribution (0.0	5)			
24											
25				As	ssuming Nor	mal Distribu	tion				
26			95% No	ormal UCL			95%	UCLs (Adju	usted for Ske	ewness)	
27				95% Student's-t UCL	0.0963			95% Adjuste	ed-CLT UCL	(Chen-1995)	0.0945
28								95% Modifi	ed-t UCL (Jo	hnson-1978)	0.0961
29											
30				Nonpa	rametric Dis	tribution Fre	e UCLs				
31				95% CLT UCL	0.0959				95% Ja	ackknife UCL	N/A
32			95%	Standard Bootstrap UCL	N/A				95% Boo	otstrap-t UCL	N/A
33			9	5% Hall's Bootstrap UCL	N/A			95%	Percentile Bo	ootstrap UCL	N/A
34				95% BCA Bootstrap UCL	N/A						
35			90% Ch	ebyshev(Mean, Sd) UCL	0.102			95% Ch	ebyshev(Me	an, Sd) UCL	0.109
36			97.5% Ch	ebyshev(Mean, Sd) UCL	. 0.118			99% Ch	ebyshev(Me	an, Sd) UCL	0.135
37											
38				05% 01 1 1 10	Suggested	UCL to Use	)		050/ 14		0.0001
39				95% Student S-t UCL	0.0963				OF 95% IVIO	Daified-t UCL	0.0961
40		later Cuana	ationa record	ing the colection of a OE9		ovided to be	In the uper to		neet en prem	riate OE9/ LIC	4
41	· ·	vole. Sugges					distribution				L.
42		Those recor		are based upon the res	ults of the sir	ulation stud	ios summari		Maichle an	d Loo (2006)	
43	Но	wever simu	lations result	s will not cover all Real V	Vorld data se	ts: for additio	nal insight t		want to cons		ian
44		wever, sind				to, for addition	indi insigni d	ne user may	want to cont		adri.
45		Note: For	hiahly neast	velv-skewed data confi	idence limits	(e.a. Chen	Johnson I	ognormal a	nd Gamma)	may not be	
46		11010.1 01	reliable. (	Chen's and Johnson's m	ethods prov	ide adjustme	ents for posi	tvelv skewe	d data sets.		
47					p			,			
48	Acenaphth	ene									
50											
51					General	Statistics					
52			Total	Number of Observations	21			Numbe	r of Distinct (	Observations	14
53								Numbe	r of Missing (	Observations	0
55				Minimum	0.05					Mean	0.265
56				Maximum	0.97					Median	0.16
57				SD	0.291				Std. E	Fror of Mean	0.0635
58				Coefficient of Variation	1.099					Skewness	1.883
59				Mean of logged Data	-1.754				SD of	logged Data	0.895

	A B C	D E	F	G	Н		J	K	L
1		Nonparametric UC	L Statistics	for Data Set	ts with Nor	-Detects			
2	Liner Selected Ontions								
3	Dete/Time of Computation	DrollCL 5 11/12/2020 2:	22-22 DM						
4	From File	WorkSheet vis	22.32 F IVI						
5	Full Precision	OFF							
6	Confidence Coefficient	95%							
_/ 。	Number of Bootstrap Operations	2000							
0									
10									
60									
61		Nonparame	tric Distribu	tion Free U	CL Statistic	s			
62		Data appear Approxima	te Gamma	Distributed a	at 5% Sign	ificance Leve	)		
63									
64		As	suming Nori	nal Distribu	tion				
65	95% No	rmal UCL			95	% UCLs (Adj	usted for Skewn	ess)	
66		95% Student's-t UCL	0.374			95% Adjuste	ed-CLT UCL (Che	en-1995)	0.397
67						95% Modifi	ea-t UCL (Johnso	on-1978)	0.379
68		Nonnar	ametric Die	tribution Ere					
69			0.369		e ocls		95% Jackk	nife LICI	0 374
70	95% \$	Standard Bootstrap UCL	0.366				95% Bootstra	ap-t UCL	0.415
71	95	5% Hall's Bootstrap UCL	0.356			95%	Percentile Bootst	rap UCL	0.375
72	9	5% BCA Bootstrap UCL	0.389						
74	90% Che	ebyshev(Mean, Sd) UCL	0.455			95% CI	nebyshev(Mean,	Sd) UCL	0.542
75	97.5% Che	ebyshev(Mean, Sd) UCL	0.661			99% CI	nebyshev(Mean,	Sd) UCL	0.897
76				1					
77			Suggested	UCL to Use	)				
78		Data appear Approxima	te Gamma,	May want to	o try Gamn	na Distributio	n		
79									
80	Note: Suggestions regardin	ng the selection of a 95%	UCL are pr	ovided to he	Ip the user	to select the	most appropriate	95% UCI	
81	R(	ecommendations are bas	ed upon dat	a size, data	distribution	, and skewne	SS.	- (2000)	
82	However, simulations results	are based upon the resu		te: for addition	nal insight	the user may	want to consult	e (2000).	20
83						ule user may		a statistici	an.
84									
85	Anthracene								
87									
88			General	Statistics					
89	Total I	Number of Observations	21			Numbe	er of Distinct Obse	ervations	
90									15
91						Numbe	r of Missing Obse	ervations	15 0
-		Minimum	0.05			Numbe	er of Missing Obse	ervations Mean	15 0 0.294
92		Minimum Maximum	0.05			Numbe	er of Missing Obse	ervations Mean Median	15 0 0.294 0.21
92 93		Minimum Maximum SD	0.05 1.12 0.294			Numbe	r of Missing Obse Std. Error	Mean Median of Mean	15 0 0.294 0.21 0.0642
92 93 94		Minimum Maximum SD Coefficient of Variation	0.05 1.12 0.294 1.001			Numbe	std. Error	Mean Median of Mean kewness	15 0 0.294 0.21 0.0642 2.168
92 93 94 95		Minimum Maximum SD Coefficient of Variation Mean of logged Data	0.05 1.12 0.294 1.001 -1.587			Numbe	r of Missing Obse Std. Error SI SD of logg	Mean Median of Mean kewness ged Data	15 0 0.294 0.21 0.0642 2.168 0.861
92 93 94 95 96		Minimum Maximum SD Coefficient of Variation Mean of logged Data	0.05 1.12 0.294 1.001 -1.587	tion Free 11	C] Qtatinti	Numbe	r of Missing Obse Std. Error SI SD of logg	Mean Median of Mean kewness ged Data	15 0 0.294 0.21 0.0642 2.168 0.861
92 93 94 95 96 97		Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame	0.05 1.12 0.294 1.001 -1.587 tric Distribu	tion Free U	CL Statistic	Numbe	r of Missing Obse Std. Error SI SD of loge	Mean Median of Mean kewness ged Data	15 0 0.294 0.21 0.0642 2.168 0.861
92 93 94 95 96 97 98		Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan	0.05 1.12 0.294 1.001 -1.587 tric Distribu	tion Free U	CL Statistic Significanc	Numbe	r of Missing Obse Std. Error SI SD of logg	ervations Mean Median of Mean kewness ged Data	15 0 0.294 0.21 0.0642 2.168 0.861
92 93 94 95 96 97 98 99		Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan	0.05 1.12 0.294 1.001 -1.587 tric Distribu nma Distribu	tion Free U uted at 5% \$ nal Distribu	CL Statistic Significanc	Numbe	r of Missing Obse Std. Error SI SD of logg	ervations Mean Median of Mean kewness ged Data	15 0 0.294 0.21 0.0642 2.168 0.861
92 93 94 95 96 97 98 99 100	95% No	Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan As: rmal UCL	0.05 1.12 0.294 1.001 -1.587 tric Distribu nma Distribu suming Nor	tion Free U0 uted at 5% § mal Distribu	CL Statistic Significanc tion 95'	Numbe	r of Missing Obse Std. Error SI SD of logg	ervations Mean Median of Mean kewness ged Data	15 0 0.294 0.21 0.0642 2.168 0.861
92 93 94 95 96 97 98 99 100 101	95% No	Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan Ast Irmal UCL 95% Student's-t UCL	0.05 1.12 0.294 1.001 -1.587 tric Distribu mma Distribu suming Non 0.405	tion Free Uo uted at 5% S mal Distribu	CL Statistic Significance tion 95	Numbe	std. Error Std. Error SD of logg usted for Skewno	ervations Mean Median of Mean kewness ged Data ess) en-1995)	15 0 0.294 0.21 0.0642 2.168 0.861
92 93 94 95 96 97 98 99 100 101 102 103	95% No	Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan Data appear Gan Ast rmal UCL 95% Student's-t UCL	0.05 1.12 0.294 1.001 -1.587 stric Distribution mma Distribution suming Norma 0.405	tion Free Uo uted at 5% \$ mal Distribu	CL Statistic Significanc tion 95'	Numbe	std. Error Std. Error SD of logg Usted for Skewn ed-CLT UCL (Che ed-t UCL (Johnso	ervations Mean Median of Mean kewness ged Data ess) en 1995) on 1978)	15 0 0.294 0.21 0.0642 2.168 0.861 0.861
92 93 94 95 96 97 98 99 100 101 102 103 104	95% No	Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan Data uppear Gan As: rmal UCL 95% Student's-t UCL	0.05 1.12 0.294 1.001 -1.587 htric Distribution mma Distribution suming Norm 0.405	tion Free U( uted at 5% \$ mal Distribu	CL Statistic Significance tion 95	Numbe	std. Error Std. Error SD of logg Usted for Skewn ed-CLT UCL (Che ed-t UCL (Johnso	ervations Mean Median of Mean kewness ged Data ged Data	15 0 0.294 0.21 0.0642 2.168 0.861 0.861
92 93 94 95 96 97 98 99 100 101 102 103 104 105	95% No	Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan Data appear Gan As: rmal UCL 95% Student's-t UCL	0.05 1.12 0.294 1.001 -1.587 tric Distribut suming Norr 0.405 ametric Distribut	tion Free U uted at 5% § mal Distribu	CL Statistic Significance tion 95'	Numbe	std. Error Std. Error SD of logg Usted for Skewn ed-CLT UCL (Che ed-t UCL (Johnso	ervations Mean Median of Mean kewness ged Data ess) en-1995) on-1978)	15 0 0.294 0.21 0.0642 2.168 0.861 0.861
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	95% No	Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan Data spear Gan Student's-t UCL 95% Student's-t UCL	0.05 1.12 0.294 1.001 -1.587 stric Distribution mma Distribution suming Non 0.405 rametric Distribution 0.399	tion Free U uted at 5% \$ mal Distribu	CL Statistic Significance tion 95' e UCLs	Numbe	std. Error Std. Error SD of logg Usted for Skewn ed-CLT UCL (Che ed-t UCL (Johnson 95% Jackk	ervations Mean Median of Mean kewness ged Data ess) en-1995) pon-1978)	15 0 0.294 0.21 0.0642 2.168 0.861 0.432 0.432 0.41 0.405

	A	В	С	D	E	F	G	Н		J	K		L
1				Nonpa	rametric UC	L Statistics	for Data Set	s with Non-	Detects				
2													
3		User Sele	ected Options										
4	Dat	e/Time of C	omputation	ProUCL 5.1	1/13/2020 2:	22:32 PM							
5			From File	WorkSheet.	xls							-	
6		Fu	III Precision	OFF								-	
7		Confidence	Coefficient	95%									
8	Number o	of Bootstrap	Operations	2000									
q													
10													
108			9	5% Hall's Bo	otstrap UCL	0.968			95% I	Percentile Bo	otstrap UCL	0.	.404
100			ç	5% BCA Bo	otstrap UCL	0.438							
110			90% Ch	ebyshev(Mea	an, Sd) UCL	0.486			95% Ch	ebyshev(Me	an, Sd) UCL	0.	.574
111			97.5% Ch	ebyshev(Mea	an, Sd) UCL	0.695			99% Ch	ebyshev(Me	an, Sd) UCL	0.	.932
112												1	
112						Suggested	UCL to Use						
114				Data	appear Gan	nma, May w	ant to try Ga	amma Distril	oution				
115													
116	١	lote: Sugge	stions regard	ing the select	ion of a 95%	UCL are pr	ovided to he	lp the user to	select the r	nost appropri	iate 95% UC	L.	
117			R	ecommenda	tions are bas	ed upon da	a size, data	distribution,	and skewne	SS.			
118		These reco	mmendations	are based u	pon the resu	Its of the sin	ulation studi	ies summariz	zed in Singh	, Maichle, an	d Lee (2006)		
119	Ho	wever, simu	ulations result	s will not cov	er all Real W	orld data se	ts; for additic	onal insight th	ne user may	want to cons	sult a statistic	ian.	
120													
121													
122	Benzo[a]an	thracene											
123													
124						General	Statistics						
125			Total	Number of C	bservations	21			Numbe	r of Distinct C	Observations	19	)
126									Number	of Missing C	Observations	0	
127					Minimum	0.05					Mean	0.	.937
128					Maximum	3.54					Median	0.	.75
129					SD	0.796				Std. E	rror of Mean	0.	.174
130				Coefficient	of Variation	0.85					Skewness	2.	.109
131				Mean of I	ogged Data	-0.453				SD of	logged Data	1.	.071
132													
133					Nonparame	tric Distribu	tion Free UC	CL Statistics					
134				C	ata do not f	ollow a Disc	ernible Dist	ribution (0.0	5)				
135													
136					As	suming Nor	mal Distribut	tion					
137			95% No	ormal UCL				95%	UCLs (Adju	isted for Ske	wness)		
138				95% Stud	lent's-t UCL	1.237		9	95% Adjuste	d-CLT UCL (	(Chen-1995)	1.	.308
139									95% Modifie	ed-t UCL (Jol	hnson-1978)	1.	.25
140													
141					Nonpai	rametric Dis	tribution Fre	e UCLs					
142				95	% CLT UCL	1.223				95% Ja	ckknife UCL	1.	.237
143			95%	Standard Bo	otstrap UCL	1.21				95% Boo	tstrap-t UCL	1.	.484
144			9.	5% Hall's Bo	otstrap UCL	2.95			95%	Percentile Bo	otstrap UCL	1.	.235
145			<u></u>	95% BCA Bo	otstrap UCL	1.316						<u> </u>	
146			90% Ch	ebyshev(Mea	an, Sd) UCL	1.459			95% Ch	ebyshev(Me	an, Sd) UCL	1.	.695
147			97.5% Ch	ebyshev(Mea	an, Sd) UCL	2.023			99% Ch	ebyshev(Me	an, Sd) UCL	2.	666
148						Que · ·	101						
149			050/ 07	huak /**		Suggested	UCL TO USE					<del></del>	
150			95% Che	uysnev (Mea	ιπ, 5α) UCL	1.695							
151		lata: 0:	ation "	ing the ! :	ion of - 050		avide 14	la ála c	aals -t "		inte 050/ 110		
152	1	vote: Sugge	suons regard	ing the select	IUN OF A 95%	ouch are pr	ovided to he	ip the user to	select the r	nost appropri	iate 95% UC	L.	
153		Those are -	mmondetier		non the	the of the	a size, data	uisuidution,	anu skewne	Mojehle -	d Loc (2000)		
154		i nese reco	umendations	are based u	pon the resu		iulation stud	es summariz	ea in Singh	, want to	u Lee (2006)		
155	Ho	wever, simu	uations result	s will not cov	er all Real W	orld data se	ts; for additic	onal insight th	ne user may	want to cons	sult a statistic	ian.	

	A	В	С	D	E	F	G	H	1		J	K		L
1				Nonpara	metric UC	L Statistics	for Data Se	ts with	Non-D	etects				
2				1										
3		User Sele	ected Options											
4	Date	e/Time of C	Computation	ProUCL 5.11/	13/2020 2::	22:32 PM								
5			From File	WorkSheet.xl	5									
6		Fu	ull Precision	OFF										
7		Confidence	e Coefficient	95%										
8	Number o	f Bootstrap	Operations	2000										
9														
10														
156														
157														
158	Benzo[b]flu	oranthene												
159														
160						General	Statistics							
161			Total	Number of Ob	servations	21				Numbe	r of Distinct O	bservations	6	19
162										Numbe	r of Missing O	bservations	6	0
163					Minimum	0.05						Mear	1	1.376
164					Maximum	4.96						Mediar	ı	1.18
165					SD	1.091					Std. Er	ror of Mear	1	0.238
166				Coefficient o	f Variation	0.793						Skewness	6	1.888
167				Mean of log	gged Data	-0.0832					SD of I	ogged Data	1	1.152
168														
169				N	lonparame	tric Distribu	tion Free U	CL Stat	istics					
170				Da	ta do not fe	ollow a Disc	ernible Dist	ribution	0.05	)				
170														
172					As	suming Nori	nal Distribu	tion						
172			95% No	ormal UCL					95%	UCLs (Adju	usted for Skew	wness)		
173				95% Stude	nt's-t UCL	1.787			9	5% Adjuste	d-CLT UCL (	Chen-1995	)	1.873
174										95% Modifi	ed-t UCL (Joh	inson-1978	)	1.803
175														
170					Nonpar	ametric Dis	tribution Fre	e UCL	s					
170				95%	CLT UCL	1.768					95% Jac	ckknife UCL	-	1.787
170			95%	Standard Boot	strap UCL	1.742					95% Boot	strap-t UCL	-	1.967
190			9	5% Hall's Boot	strap UCL	2.493				95%	Percentile Boo	otstrap UCL	-	1.767
101			ç	95% BCA Boot	strap UCL	1.88								
101			90% Ch	ebyshev(Mean	, Sd) UCL	2.091				95% Cł	nebyshev(Mea	an, Sd) UCL	-	2.414
192			97.5% Ch	ebyshev(Mean	, Sd) UCL	2.863				99% Cł	nebyshev(Mea	an, Sd) UCL	-	3.746
18/					-								_	
185						Suggested	UCL to Use	)						
100			95% Che	ebyshev (Mean	, Sd) UCL	2.414								
100														
107	N	lote: Sugge	estions regard	ing the selectio	n of a 95%	UCL are pr	ovided to he	lp the u	iser to	select the i	nost appropria	ate 95% UC	CL.	
100			F	Recommendatio	ons are bas	ed upon dat	a size, data	distribu	ition, a	nd skewne	SS.			
109		These reco	mmendations	are based up	on the resu	Its of the sim	ulation stud	ies sum	mariz	ed in Singh	, Maichle, and	d Lee (2006	).	
101	Ho	wever, sim	ulations result	s will not cover	all Real W	orld data se	ts; for addition	onal ins	ight th	e user may	want to consi	ult a statistic	cian.	
102		,												
192														
193	Benzo[g,h,i	]perylene												
194														
100						General	Statistics							
190			Total	Number of Ob	servations	21				Numbe	r of Distinct O	bservations		18
197										Numbe	r of Missina O	bservations	6	0
198					Minimum	0.1						Mear	1	0.515
199					Maximum	1.23						Mediar	1	0.45
200					SD	0.308					Std Fr	ror of Mear	1 (	0.0672
201				Coefficient o	f Variation	0.598					5 W. El	Skewness		0.958
202				Mean of log	rend Data	-0.867					SD of I	onned Date	-	0 717
203				mean or log	you Daid	-0.007					50 011	ogged Dala	1	v./ i/

	A	В	С	D	E	F	G	Н		J	К	L
1				Nonpara	ametric UC	L Statistics	or Data Set	s with No	on-Detects			
2		User Selec	ted Ontions									
3	Dat	e/Time of Cor	mputation	ProUCL 5.11/	13/2020 2:	22:32 PM						
4			From File	WorkSheet.xls	s							
5		Full	Precision	OFF								
7		Confidence C	Coefficient	95%								
8	Number o	of Bootstrap O	perations	2000								
9												
10												
204												
205				N	lonparame	tric Distribu	tion Free UC	CL Statist	tics			
206				Data appear	Approxima	te Normal I	Distributed a	t 5% Sigi	nificance Le	evel		
207							nal Distrikus					
208			05% N		Ass	suming Nori	nai Distribut	ion		Adjusted for Clo		
209			95% NG	05% Stude	nt's t LICI	0.631		9	05% Adi		(Chen 1005)	0.64
210				95 % Slude	IIIS-LUGL	0.031			95 % Auju 95% Mo		nson-1978)	0.04
211									3370 100		11301-1370)	0.000
212					Nonpar	ametric Dis	ribution Fre	e UCI s				
213				95%		0.625		00020		95% Ja	ckknife UCL	0.631
214			95%	Standard Boot	strap UCL	0.623				95% Boo	tstrap-t UCL	0.654
215			9	5% Hall's Boot	strap UCL	0.673			95	5% Percentile Bo	otstrap UCL	0.626
210			ç	95% BCA Boot	strap UCL	0.644						
217			90% Ch	ebyshev(Mean	, Sd) UCL	0.716			95%	Chebyshev(Me	an, Sd) UCL	0.807
219			97.5% Ch	ebyshev(Mean	i, Sd) UCL	0.934			99%	Chebyshev(Me	an, Sd) UCL	1.183
220					1							1
221						Suggested	UCL to Use					
222				Data a	appear Nor	mal, May w	ant to try No	ormal Dist	tribution			
223												
224	1	Note: Suggest	tions regard	ing the selectio	on of a 95%	UCL are pr	ovided to he	p the use	er to select ti	he most appropri	ate 95% UC	L.
225			R	Recommendatio	ons are bas	ed upon dat	a size, data	distributio	on, and skev	vness.		
226		These recom	mendations	s are based upo	on the resul	Its of the sim	ulation studi	es summ	arized in Sir	ngh, Maichle, an	d Lee (2006)	
227	пс	wever, simula	ations result	IS WIII HOL COVEI	all Real W	ond data se	s, for additio	mai msigr	it the user h	hay want to cons		
228												
229	Benzoľkifiu	oranthene										
230	Donzolidina											
231						General	Statistics					
232			Total	Number of Ob	servations	21			Nun	nber of Distinct C	bservations	17
234									Num	nber of Missing C	bservations	0
235					Minimum	0.05					Mean	0.443
236					Maximum	1.48					Median	0.34
237					SD	0.339				Std. E	rror of Mean	0.074
238				Coefficient o	f Variation	0.765					Skewness	1.761
239				Mean of log	gged Data	-1.115				SD of	logged Data	0.89
240												
241				N	lonparame	tric Distribu	tion Free UC	CL Statist	tics			
242				Data a	ppear Gan	nma Distribu	ited at 5% S	Significan	ce Level			
243												
244			050/ 11		Ass	suming Nori	nai Distribut	ion		divoted for C		
245			95% No		ntio + LICI	0.671		9	05% UCLS (/	vajusted for Ske	WIESS)	0 505
246				95% Slude	ents-t UCL	0.571			95% Auju	dified + UCL ( lot	Crien-1995)	0.595
247									53 /0 IVIO	unicu-i UCL (JOI		0.070
248					Nonnar	ametric Die	ribution Fre	e UCI s			-	-
249				95%	CLT UCL	0.565				95% Ja	ckknife UCL	0.571
250			95%	Standard Boot	strap UCL	0.564				95% Boo	tstrap-t UCL	0.628
201				. •		-						

	A	В	С	D	E	F	G	Н		J	К	L	L
1				Nonp	arametric UC	L Statistics	for Data Set	s with Non-	Detects				
2		Lloor Solo	otod Optiona										
3	Dat	User Sele	omputation	ProUCL 5	11/13/2020 2	·22·32 DM							
4	Dat		From File	WorkShee	t vle	.22.32 F IVI					-		
5		Fu	Ill Precision	OFF									
6		Confidence	Coefficient	95%									
_/ 。	Number o	f Bootstrap	Operations	2000									
0 0											-		
10													
252			9	5% Hall's B	ootstrap UCL	1.121			95%	Percentile Bo	ootstrap UC	L	0.569
253			ç	95% BCA B	ootstrap UCL	0.602							
254			90% Ch	ebyshev(Me	ean, Sd) UCL	0.665			95% Ch	ebyshev(Me	an, Sd) UC	L	0.766
255			97.5% Ch	ebyshev(Me	ean, Sd) UCL	0.905			99% Ch	ebyshev(Me	an, Sd) UC	L	1.179
256													
257						Suggested	UCL to Use						
258				Data	a appear Gar	nma, May v	ant to try Ga	amma Distri	bution				
259	N	loto: Suggo	stions regard	ing the colo	ction of a 95%		ovided to be	In the user t	o soloct the r	nost approp	riate 05% LL		
260		iote. Sugge	R	ecommend	ations are have		ta size data	distribution	and skewne			JL.	
261		These reco	mmendations	are based	upon the resu	Its of the sir	nulation stud	ies summari	zed in Singh	Maichle an	nd Lee (2006	<u>6)</u>	
262	Но	wever, simu	ulations result	s will not co	ver all Real V	/orld data se	ts; for additio	onal insight t	he user may	want to con	sult a statist	ician	
263		,					,	0					
265													
266	Benzo[a]py	rene											
267													
268						General	Statistics					-	
269			Total	Number of	Observations	21			Numbe	r of Distinct (	Observation	s	19
270									Numbe	r of Missing (	Observation	s	0
271					Minimum	0.05					Mea	n	0.864
272					Maximum	3.11					Media	n	0.72
273				Coofficier	SD	0.693				Std. E	rror of Mea	n	0.151
274				Mean of	Logged Data	0.602				SD of	Skewnes	5	1.939
275				Mean of	logged Data	-0.012				00 01	logged Dat	<u> </u>	1.044
276					Nonparame	etric Distribu	tion Free U	CL Statistics	6				
277					Data do not f	follow a Disc	ernible Dist	ribution (0.0	15)				
270									-				
280					As	suming Nor	mal Distribu	tion					
281			95% No	ormal UCL				95%	o UCLs (Adju	isted for Ske	ewness)	-	
282				95% Stu	ident's-t UCL	1.125			95% Adjuste	d-CLT UCL	(Chen-1995	i)	1.182
283									95% Modifi	ed-t UCL (Jo	hnson-1978	5)	1.136
284													
285				0		rametric Dis	tribution Fre	e UCLs		050/ 1			1.105
286			05%	Standard D	5% CLT UCL	1.113				95% Ja	ackknife UC		1.125
287			95%	5% Hall's B		2 578			95%	93 % BUC	nstrap-t UC		1.204
288				5% BCA B	ootstrap UCL	1.2			5570	creentile De		-	1.121
289			90% Ch	ebyshev(Me	ean, Sd) UCL	1.318			95% Ch	ebyshev(Me	an, Sd) UC	+	1.524
290 201			97.5% Ch	ebyshev(Me	an, Sd) UCL	1.809			99% Ch	ebyshev(Me	an, Sd) UC		2.37
291					*	1	1			- •			
293	L					Suggested	UCL to Use	1					
294			95% Che	byshev (Me	ean, Sd) UCL	1.524						Τ	
295						1	1						
296	N	lote: Sugge	stions regard	ing the sele	ction of a 95%	6 UCL are p	ovided to he	lp the user t	o select the r	nost approp	riate 95% U	CL.	
297			R	ecommend	ations are ba	sed upon da	ta size, data	distribution,	and skewne	SS.			_
298		These reco	mmendations	are based	upon the resu	ults of the sir	nulation stud	ies summari	zed in Singh	, Maichle, an	id Lee (2006	3).	
299	Ho	wever, simu	ulations result	s will not co	ver all Real V	/orld data se	ts; for addition	onal insight t	he user may	want to con	sult a statist	ician.	

	А	В	С	D	E	F	G	ŀ	-1		J	K	L
1				Nonpar	ametric UC	L Statistics	for Data Set	ts with	Non-I	Detects			
2													
3		User Sele	ected Options										
4	Date	e/Time of C	omputation	ProUCL 5.11	/13/2020 2:2	22:32 PM							
5			From File	WorkSheet.x	ls								
6		Fu	III Precision	OFF									
7	(	Confidence	Coefficient	95%									
, ,	Number of	f Bootstrap	Operations	2000									
<u> </u>			-										
9													
10													
300													
301	Chrysene												
302													
303						General	Statistics						
304			Total	Number of Of	servations	21	0101000			Numbe	r of Distinct Of	nservations	20
305			Total		5501 12110113	21				Numbo			
306					Minimum	0.05				Number		Moon	1.076
307					Maximum	0.03						Median	0.99
308					Maximum	4.04					044 5-		0.00
309				0	50	0.699					SIU. EII		0.190
310				Coefficient	or variation	0.835					0.5. (1	Skewness	1.998
311				iviean of ic	ogged Data	-0.336					SD of IC	ogged Data	1.125
312													
313					Nonparame	tric Distribu	tion Free U	CL Sta	tistics	_			
314				Da	ata do not fo	ollow a Disc	ernible Dist	ributio	n (0.0	5)			
315													
316					Ass	suming Nor	mal Distribu	tion	0.000				
317			95% No	ormal UCL					95%	UCLS (Adju	isted for Skew	vness)	
318				95% Stud	ent's-t UCL	1.414			ę	95% Adjuste	d-CLI UCL (C	Chen-1995)	1.49
319										95% Modifie	ed-t UCL (Johr	nson-1978)	1.428
320					Norror	emetrie Die	wikes Fre	- 1101	_				
321				050				e UCL	.5		050/ 1		1 414
322			05%	95%		1.398					95% Jac		1.414
323			95%			1.397				059/1	95% DOULS		1.000
324			9	5% Hall's Boo	tstrap UCL	2.903				95%	Percentile Boo	istrap UCL	1.417
325				95% BCA B00		1.511							1.00
326			90% Ch	ebysnev(Mea	n, Sa) UCL	1.664				95% Ch	ebysnev(Mea	n, Sd) UCL	1.93
327			97.5% Ch	ebysnev(Mea	n, Sa) UCL	2.3				99% Ch	ebysnev(Mea	n, Sa) UCL	3.027
328													
329					0.0.101	Suggested	UCL to Use	1					
330			95% Che	ebysnev (Mea	n, Sa) UCL	1.93							
331					6 050/								
332	IN	ote: Sugge	stions regard	ing the selecti	on of a 95%	UCL are pr			user to	select the r	nost appropria	ite 95% UC	
333			H	ecommendat	ions are bas	ed upon dat	a size, data	distribi	ution, a	and skewne	SS.	. (2222)	
334		These reco	mmendations	are based up	on the resul	Its of the sin	nulation stud	ies sur	nmariz	zed in Singh	, Maichle, and	Lee (2006)	
335	Hov	wever, simu	ulations result	s will not cove	er all Real W	orld data se	ts; for additio	onal ins	sight th	ne user may	want to consu	ilt a statistic	an.
336													
337													
338	Dibenz[a,h]	anthracene	)										
339							0						
340						General	Statistics						
341			l otal	Number of Ot	oservations	21				Numbe	r of Distinct Ob	oservations	11
342						0.00				Number	r of Missing Ob	oservations	U
343					Minimum	0.06						Mean	0.131
344					Maximum	0.35						Median	0.1
345				0 (7)	SD	0.0708					Std. Err	ror of Mean	0.0154
346				Coefficient	or Variation	0.54						Skewness	1.941
347				Mean of lo	ogged Data	-2.14					SD of lo	ogged Data	0.453

	A	В	С	D E		F	G	Н			J		K		L
1				Nonparamet	ric UC	L Statistics	for Data Set	ts with N	lon-D	etects					
2		Llear Calas	ted Options												
3	Dat	User Selec		ProLICI 5 11/13/2	020.2.	22-32 DM									
4	Dat		From File	WorkSheet xls	020 2.	22.32 F IVI									
5		Full	I Precision	OFF											
6		Confidence (	Coefficient	95%											
/	Number c	of Bootstrap C	Operations	2000											
8	ł														
9 10															
348	1														
349	1			Nonp	arame	tric Distribu	tion Free UC	CL Statis	stics						
350	1			Data appear	Logn	ormal Distril	outed at 5%	Signific	ance	Level					
351															
352					As	suming Nori	mal Distribut	tion							
353			95% N	ormal UCL				9	95%	JCLs (Adj	usted for S	Skewn	ess)	_	
354				95% Student's-	t UCL	0.158			9	5% Adjuste	ed-CLT UC	CL (Che	en-1995	)	0.163
355									ç	95% Modifi	ied-t UCL (	Johnso	on-1978	)	0.159
356	<b> </b>														
357	<b> </b>				lonpar	ametric Dis	tribution Fre	e UCLs			050/	la aldu	-:	1	0 1 5 0
358	<b> </b>		05%	95% CLI		0.156					95%	Jackk		-	0.158
359			95 %	5% Hall's Bootstran		0.130				05%	90 / C	Bootet		-	0.175
360				3% Hall's Dootstrap		0.164				3370	Fercentile	DOUISI		-	0.155
361			90% Ch	ebyshev(Mean_Sd)		0.104				95% CI	hehvshev(l	Mean	Sd) LICI		0 198
362	ł		97.5% Ch	ebyshev(Mean, Sd)		0.227				99% CI	hebyshev(l	Mean		-	0.285
363			07.070 01.		002	0.227				0070 0		, inclusion,	00,001	-	0.200
364	ł					Suggested	UCL to Use	)							
366	1			Data appear L	.ognoi	mal, May w	ant to try Lo	gnorma	l Dist	ribution					
367	1														
368	N	Note: Sugges	tions regard	ing the selection of	a 95%	UCL are pr	ovided to he	lp the us	er to	select the	most appro	opriate	95% UC	CL.	
369	1		F	Recommendations a	ire bas	sed upon dat	a size, data	distributi	ion, a	nd skewne	ess.				
370	]	These recom	nmendations	s are based upon th	e resu	Its of the sim	ulation studi	ies sumr	narize	ed in Singh	n, Maichle,	and Le	e (2006	).	
371	Ho	wever, simul	lations result	s will not cover all F	Real W	orld data se	ts; for additio	onal insig	ght the	e user may	/ want to co	onsult a	a statisti	cian.	
372															
373															
374	Fluoranthe	ne													
375	<b> </b>					0	04-41-41								
376			Tatal	Number of Observ	tiona	General	Statistics			Number	r of Diotin		notion		00
377	l		i otal	Trainiber of ODSelVa	auONS	21				Numbe	ar of Miccia		nvation		0
378				Min	imum	0.05				NULLIDE	1 01 1411551[1	y Obse	Mean	' 1	2 589
379				Мах	imum	10.3							Mediar	· · ·	1.98
380					SD	2.326					Std	. Error	of Mear	1	0.508
381	1			Coefficient of Var	iation	0.898					0.0	S	kewness	5	2.041
382	ł			Mean of logged	Data	0.437					SD	of load	ed Data	1	1.346
303 201	l					-						- 35		1	-
385	1			Nonp	arame	tric Distribu	tion Free UC	CL Statis	stics						
386	1			Data appea	ar Gar	nma Distribu	uted at 5% S	Significa	nce L	evel					
387	1														
388	1						mal Diatribut								
389	1				As	suming Nori	nai Distribut	tion							
200	1		95% N	ormal UCL	As	suming Nori		tion	95%	JCLs (Adj	usted for S	Skewn	ess)		
390			95% N	ormal UCL 95% Student's-	As:	suming Nori 3.464		tion	<b>95%  </b> 9	<b>JCLs (Adj</b> 5% Adjuste	usted for S ed-CLT UC	<b>Skewn</b> CL (Che	<b>ess)</b> en-1995	)	3.665
<u>390</u> <u>3</u> 91			95% N	ormal UCL 95% Student's-	As:	suming Norr		tion	9 <b>5%  </b> 9	<b>JCLs (Adj</b> 5% Adjuste 95% Modifi	usted for S ed-CLT UC ied-t UCL (	<b>Skewn</b> CL (Che Johnse	<b>en-</b> 1995 on-1978	)	3.665 3.502
390 391 392			95% No	ormal UCL 95% Student's-	As:	suming Nori		tion (	9 <b>5%  </b> 9:	JCLs (Adj 5% Adjuste 95% Modifi	usted for \$ ed-CLT UC ied-t UCL (	Skewne CL (Che Johnse	en-1995 on-1978	)	3.665 3.502
390 391 392 393			95% N	ormal UCL 95% Student's-		3.464	tribution Fre	tion (	9 <b>5%  </b> 9	JCLs (Adj 5% Adjuste 95% Modifi	usted for S ed-CLT UC ied-t UCL (	Skewn CL (Che Johnso	en-1995 on-1978	)	3.665 3.502
390 391 392 393 394			95% N	ormal UCL 95% Student's- N 95% CLT	As:	3.464 rametric Dis 3.424	tribution Fre	tion ( e UCLs	9 <b>5%  </b> 9 9	JCLs (Adj 5% Adjuste 95% Modifi	usted for \$ ed-CLT UC ied-t UCL ( 95%	Skewn CL (Che Johnso Jackki	en-1995 on-1978 nife UCL	)	3.665 3.502 3.464

	А	В	С	D	E	F	G	Н		J	K		L
1				Nonpa	rametric UC	L Statistics	for Data Set	s with Non-	Detects				
2													
3		User Sele	cted Options										
4	Dat	e/Time of C	omputation	ProUCL 5.1	1/13/2020 2:	22:32 PM							
5			From File	WorkSheet.	xls								
6		Fu	II Precision	OFF									
7		Confidence	Coefficient	95%									
, 8	Number o	f Bootstrap	Operations	2000									
٩													
10													
206			9	5% Hall's Bo	otstrap UCL	7.723			95%	Percentile Bo	ootstrap UCL	. :	3.441
207			ç	95% BCA Bo	otstrap UCL	3.594							
397			90% Ch	ebyshev(Mea	an, Sd) UCL	4.112			95% Ch	nebyshev(Me	an, Sd) UCL		4.802
398			97.5% Ch	ebyshev(Mea	an, Sd) UCL	5.759			99% Ch	nebyshev(Me	an, Sd) UCL		7.639
399				, ,	. ,					, (	, ,	1	
400						Suggested	UCL to Use						
401				Data	annear Gar	nma Mavw	ant to try Ga	mma Distril	oution				
402				Data	appear aar	inna, may n	ant to uy at		Jacon				
403	N	lote: Sugge	stions regard	ing the selec	tion of a 95%		ovided to be	n the user to	select the r	most annroni	riate 95% LIC	<u></u>	
404	1.	lote. Ougge		ling the selec	tions are bar			distribution	and skowno				
405		Those reco	mmondations		non the recu	lto of the cin				Maiabla an	d Loo (2006	<u> </u>	
406		These reco	Inmenuations	are based u			tou for odditio	es summanz	zeu in Singn	, Maichie, an	u Lee (2006)	). 	
407	по	wever, sinu	liations result	S WIII HOL COV		ronu uata se	ts, for additio	mai insigni u	le user may	want to cons		Jan.	
408													
409	-												
410	Fluorene												
411							o						
412						General	Statistics			( )			-
413			Iotai	Number of C	Deservations	21			Numbe	r of Distinct (			/
414						0.05			Numbe	r of ivilssing (	Joservations		J
415					Minimum	0.05					Mean		J.332
416					Maximum	1.06				0.1 5	iviedian		J.25
417				Coefficient	SD	0.3				Std. E	Skewmeen	0	1 206
418				Maan of	lor variation	0.904				CD of	Skewness		1.390
419				Wearr Or	loggeu Dala	-1.5				30 0	loggeu Dala		J.95
420					Nonnaramo	trio Dietribu	tion Free LIC	1 Statistics					
421				Data anno		ate Normal I	Dietributed a	+ 5% Signifi	cance Leve	1			
422							Distributed a	C 5 / Signin					
423					A.c.	euming Nor	mal Distribut	ion					
424			05% N/		- A9	Suming Non		05%	LICLe (Adiu	ieted for Ski	whose)		
425			0070110	95% Stu	dent's_t LICI	0.445					(Chen_1995)		0.461
426				00/0044		0.110			95% Modifi		(onen 1000)	<u> </u>	0.448
427										00) 100 100			5.140
428					Nonna	rametric Die	tribution Ere						
429				05		0.44		00023		05% 1	ockknife LICI		0.445
430			05%	Standard Bo		0.437				95% Boo			0.470
431			00.00	5% Hall's Bo	otstran LICI	0.437			95%	Percentile Br			0.44
432				5% BCA Bo		0.470			55701			<u> </u>	
433			00% Ch	obysboy(Mo		0.528			95% Ch	obysboy/Me	an Sd) LICI	-	0.617
434			97 5% Ch	ehvshev/Me	an, Sd) UCL	0.520			00% CH		an, Sd) UCL	+	0.983
435			57.5% 01		un, 00/ 00L	0.741			5370 UI		un, ou) ool		
436						Suggested	UCL to Lieo						
437				Detr	annear No	mai Mey w	ant to the Me	rmal Dietrib	ution				
438				Date	a ahhaar 140	mai, way w	ant to try NC	ninai Distrib	adon				
439		loto: Sura-	stions reast-	ing the cele-	tion of a OFM		ovided to b	n the user t	soloot the	nost operation	riate 050/ LLC	<u></u>	
440	ľ	iole. Sugge	suons regard	ling uie selec	uon or a 95%			distribution	and skowns	nosi appropr	idle 95% UC	L.	
441		Those roce	mmondations	are based	non the result	lts of the size				SS.	d Loo (2006	<u> </u>	
442	LIA	wever circo		s will not only	ipon ule resu		te: for addition			want to com		/·	
443	HO	wever, simu	nations result	S WIII HOT COV	ei all Real W	ronu uata se	is, ioi additio	mai insignt ti	ie user may	want to cons	suit a statistic	JidI].	

	A	В	С	D	E	F	G	ł	-		J	K		L
1				Nonpara	metric UC	L Statistics	for Data Set	ts with	Non-I	Detects				
2												-	-	
3		User Sele	cted Options											
4	Dat	e/Time of Co	omputation	ProUCL 5.11/	13/2020 2:	22:32 PM								
5			From File	WorkSheet.xls	S									
6		Fu	II Precision	OFF										
7		Confidence	Coefficient	95%										
,	Number o	of Bootstrap	Operations	2000										
°														
9														
10														
444														
445	Indeno[1.2.	3-cdlpvrene	9											
446			-											
447						General	Statistics							
448			Total	Number of Ob	servations	21				Numbe	r of Distinct (	Observations	1	8
449										Number	of Missing (	Observations	(	)
450					Minimum	0.1				- Tumber	of Wildoning C	Mean	- (	) 441
451					Maximum	1.25						Median		1 36
452						0.288					Std E	rror of Moon	0	0628
453				Coofficient	5U f Variation	0.200					Siu. E	Skowpocc		1 /65
454				Mean of log		-1.02					SD of	logged Data		1.405
455				Modil of log	ggeu Dulu	1.02					00 01	logged Data		5.001
456				N	lonnarame	tric Distribu	tion Free U(	CL Sta	tistics					
457				Data a	nnear Gan	nma Dietribu	Ited at 5% S		ance	l evel				
458					ppour dui			Jighino	anoo	20101		-		
459					۵۹	suming Nor	mal Distribu	tion						
460			95% No	ormal UCI	7101	Suming Hon		uon	95%	UCLs (Adiu	sted for Ske	wness)		
461				95% Stude	nt's-t UCI	0.55				95% Adjuste		(Chen-1995)	(	) 566
462						0.00				95% Modifie	ed-t UCL (Jo	hnson-1978)	(	0.553
463														
464					Nonpar	ametric Dis	tribution Fre	e UCL	.s					
465				95%	CLT UCL	0.545					95% Ja	ckknife UCL	(	0.55
465			95%	Standard Boot	strap UCL	0.546					95% Boo	tstrap-t UCL	(	0.589
407			9	5% Hall's Boot	strap UCL	0.636				95% F	Percentile Bo	otstrap UCL	(	).547
400			ç	95% BCA Boot	strap UCL	0.569								
409			90% Ch	ebyshev(Mean	, Sd) UCL	0.63				95% Ch	ebyshev(Me	an, Sd) UCL	(	0.715
470			97.5% Ch	ebyshev(Mean	, Sd) UCL	0.833				99% Ch	ebyshev(Me	an, Sd) UCL	1	1.066
471					-								I	
472						Suggested	UCL to Use	)						
473				Data a	ppear Gan	nma, May w	ant to try Ga	amma	Distrit	oution			-	
475														
476	١	lote: Sugges	stions regard	ing the selectio	on of a 95%	UCL are pr	ovided to he	lp the i	user to	select the r	nost appropr	iate 95% UC	L.	
477			F	ecommendatio	ons are bas	ed upon dat	a size, data	distrib	ution, a	and skewne	SS.			
478		These recor	mmendations	are based upo	on the resu	Its of the sin	ulation stud	ies sur	nmariz	zed in Singh	Maichle, an	d Lee (2006)		
479	Ho	wever, simu	lations result	s will not cover	all Real W	orld data se	ts; for additio	onal ins	sight th	ne user may	want to cons	sult a statistic	ian.	
480														
481														
482	Methylnaph	nthalene, 1-												
483														
484						General	Statistics							
485			Total	Number of Ob	servations	21				Numbe	r of Distinct C	Observations	1	4
486										Number	of Missing C	Observations	C	)
487					Minimum	0.05						Mean	C	0.289
488					Maximum	0.89						Median	C	0.12
489					SD	0.274					Std. E	rror of Mean	0	.0597
490				Coefficient o	f Variation	0.949						Skewness	1	1.2
491				Mean of log	gged Data	-1.667					SD of	logged Data	(	0.951

	A B C	D E	F	G H I J K	L
1		Nonparametric UCI	L Statistics	for Data Sets with Non-Detects	
2	Liser Selected Ontions				
3	Date/Time of Computation	roUCL 5.11/13/2020 2:2	22:32 PM		
4	From File W	/orkSheet.xls			
5	Full Precision O	FF			
7	Confidence Coefficient 95	5%			
8	Number of Bootstrap Operations 20	000			
9					
10					
492					
493		Nonparame	tric Distribu	tion Free UCL Statistics	
494			Lognornia		
495	•	Ass	sumina Nor	mal Distribution	
496	95% Norm	nal UCL		95% UCLs (Adjusted for Skewness)	
497		95% Student's-t UCL	0.392	95% Adjusted-CLT UCL (Chen-1995)	0.404
499				95% Modified-t UCL (Johnson-1978)	0.394
500				· · · · · · · · · · · · · · · · · · ·	
501		Nonpar	ametric Dis	tribution Free UCLs	
502		95% CLT UCL	0.387	95% Jackknife UCL	0.392
503	95% Sta	andard Bootstrap UCL	0.385	95% Bootstrap-t UCL	0.426
504	95%	Hall's Bootstrap UCL	0.393	95% Percentile Bootstrap UCL	0.386
505	95% 90% Cheby	% BCA Bootstrap UCL	0.4	95% Chebysboy/Mean Sd) UCI	0.540
506	90 % Cheb	vshev(Mean, Sd) UCL	0.408	95% Chebyshev(Mean, Sd) UCL	0.549
507			0.002		0.000
508			Suggested	UCL to Use	
510	Data	appear Approximate I	Lognormal,	May want to try Lognormal Distribution	
511					
512	Note: Suggestions regarding	the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
513	Rec	commendations are bas	ed upon dat	a size, data distribution, and skewness.	
514	These recommendations ar	re based upon the resul	Its of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
515	However, simulations results w	vill not cover all Real W	orld data se	ts; for additional insight the user may want to consult a statistician.	
516					
517	Methylnaphthalene, 2-				
518					
520			General	Statistics	
521	Total Nu	umber of Observations	21	Number of Distinct Observations	17
522				Number of Missing Observations	0
523		Minimum	0.05	Mean	0.571
524		Maximum	1.94	Median	0.24
525		SD	0.625	Std. Error of Mean	0.136
526	(	Coefficient of Variation	1.094	Skewness	1.229
		Mean of logged Data	-1.212	SD of logged Data	1.00-
527	-				1.235
527 528		Nonnarama	tric Dietribu	tion Free LICL Statistics	1.235
527 528 529		Nonparame Data appear Gar	tric Distribu	tion Free UCL Statistics	1.235
527 528 529 530		Nonparame Data appear Garr	tric Distribu nma Distrib	tion Free UCL Statistics uted at 5% Significance Level	1.235
527 528 529 530 531		Nonparame Data appear Gan Ass	tric Distribu nma Distribu suming Nori	tion Free UCL Statistics uted at 5% Significance Level mal Distribution	1.235
527 528 529 530 531 532 532	95% Norm	Nonparame Data appear Gan Ass nal UCL	tric Distribu nma Distribu suming Nori	tion Free UCL Statistics uted at 5% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness)	1.235
527 528 529 530 531 532 533 533	95% Nom	Nonparame Data appear Gan Ase nal UCL 95% Student's-t UCL	tric Distribu nma Distribu suming Non 0.807	tion Free UCL Statistics uted at 5% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	0.835
527 528 529 530 531 532 533 533 534 535	95% Norm	Nonparame Data appear Gan Ass nal UCL 95% Student's-t UCL	tric Distribu nma Distribu suming Non 0.807	tion Free UCL Statistics uted at 5% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0.835
527 528 529 530 531 532 533 534 535 536	95% Nom	Nonparame Data appear Gan Ass nal UCL 95% Student's-t UCL	tric Distribu nma Distribu suming Nor 0.807	tion Free UCL Statistics uted at 5% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0.835
527 528 529 530 531 532 533 534 535 536 537	95% Norm	Nonparame Data appear Gan Ass nal UCL 95% Student's-t UCL Nonpar	tric Distribu nma Distribu suming Non 0.807 ametric Dis	tion Free UCL Statistics uted at 5% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) tribution Free UCLs	0.835
527 528 529 530 531 532 533 534 535 536 537 538	95% Norm	Nonparame Data appear Gan Ass nal UCL 95% Student's-t UCL Nonpar 95% CLT UCL	tric Distribu nma Distribu suming Non 0.807 0.807 ametric Dis 0.796	tion Free UCL Statistics uted at 5% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) tribution Free UCLs 95% Jackknife UCL	1.235 0.835 0.813 0.807

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	s with Non-	Detects			
2												
3		User Sele	cted Options								-	
4	Dat	e/Time of C	omputation	ProUCL 5.1	1/13/2020 2:	22:32 PM						
5			From File	WorkSheet.	xls							
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
, Q	Number o	f Bootstrap	Operations	2000								
0												
10												
540			9	5% Hall's Bo	otstrap UCL	0.815			95%	Percentile Boot	tstrap UCL	0.784
540			ç	95% BCA Bo	otstrap UCL	0.834						
541			90% Ch	ebvshev(Mea	an. Sd) UCL	0.981			95% Cł	nebvshev(Mear	1. Sd) UCL	1.166
542			97.5% Ch	ebvshev(Mea	an, Sd) UCL	1.423			99% Cł	nebvshev(Mear	1. Sd) UCL	1.929
543					, ,	-					, ,	
544						Suggested	UCL to Use	1				
545				Data	annear Gan	ma Mavw	ant to try Ga	amma Distri	hution			
546				Butu	appour aun	inia, may n			Judon			
547	N	lote: Sugge	stions regard	ing the select	tion of a 95%		ovided to be	In the user to	select the	most annronria	ta 95% LIC	1
548		lote. Ougge		ling the select	tions are bas			distribution	and skowne			
549		Those reco	mmondotions		non the recu					Mojoblo and	100 (2006)	
550	Ha	mese reco	Intrientuations	are based u	or oll Bool W	lis of the sin	to: for additio		zeu in Singi		Lee (2000)	ion
551	110	wever, sinc		S WIII HOL COV				inai insigni u	le user may	want to consu		
552												
553	Nonhtholon											
554	марнинаюн											
555						General	Statistics					
556			Total	Number of (	beenvations	21	Statistics		Numbe	r of Distinct Ob	soniations	11
557			Total		030110113	21			Numbe	r of Missing Ob	servations	0
558					Minimum	0.05			Numbe	I OI WISSING OD	Mean	0 185
559					Maximum	1.2					Median	0.100
560					SD	0.257				Std Frn	or of Mean	0.056
561				Coefficient	of Variation	1.387				ota: En	Skewness	3 468
562				Mean of I	logged Data	-2.101				SD of lo	aged Data	0.788
563					- 33						33	
564					Nonparame	tric Distribu	tion Free U	CL Statistics				
565				C	ata do not f	ollow a Disc	ernible Dist	ribution (0.0	5)			
566									-,			
567					As	sumina Nor	mal Distribu	tion				
508			95% No	ormal UCL				95%	UCLs (Adi	usted for Skew	(ness)	
569				95% Stud	dent's-t UCL	0.282			95% Adjuste	ed-CLT UCL (C	hen-1995)	0.323
570									95% Modifi	ed-t UCL (John	ison-1978)	0.289
571												
572					Nonpar	ametric Dis	tribution Fre	e UCLs				
5/3				95	% CLT UCL	0.277				95% Jack	knife UCL	0.282
574			95%	Standard Bo	otstrap UCL	0.277				95% Boots	trap-t UCL	0.436
5/5			9	5% Hall's Bo	otstrap UCL	0.541			95%	Percentile Boot	tstrap UCL	0.282
576			ç	95% BCA Bo	otstrap UCL	0.33						
577			90% Ch	ebvshev(Mea	an. Sd) UCL	0.353			95% Cł	nebvshev(Mear	1. Sd) UCL	0.43
5/8			97.5% Ch	ebyshev(Mea	an, Sd) UCL	0.535			99% Cł	nebyshev(Mear	1, Sd) UCL	0.743
520					. ,		I			- (	,	
500	l					Suggested	UCL to Use	1				
201			95% Che	ebyshev (Mea	an, Sd) UCL	0.43						
502				, , , ,			I					L
503	N	lote: Sugge	stions regard	ing the select	tion of a 95%	UCL are pr	ovided to he	Ip the user to	select the	most appropria	te 95% UC	L.
504 505			R	lecommenda	tions are bas	ed upon da	a size, data	distribution,	and skewne	ISS.		
500		These reco	mmendations	are based u	pon the resu	Its of the sin	ulation stud	ies summari:	zed in Singh	, Maichle, and	Lee (2006)	
000	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	ts; for additio	onal insight t	he user may	want to consu	It a statistic	ian.
JQ/		, :						- 5 - 1	-,			

	A	В	С	D	E	F	G	Н		J	K	L	
1				Nonpar	ametric UC	L Statistics	for Data Set	s with Non-	Detects				
2				1									
3		User Sele	ected Options										
4	Date	e/Time of C	omputation	ProUCL 5.11	/13/2020 2::	22:32 PM							
5			From File	WorkSheet.x	ls								
6		Fu	Ill Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number o	f Bootstrap	Operations	2000									
9													
10													
588													
589													
590	Phenanthre	ne											
591						0	04-41-41						
592			Tatal	Number of Ob		General	Statistics		Niccostra	n of Diotio of C		20	
593			l otal	Number of Ot	oservations	21			Numbe	er of Distinct C	bservations	20	
594					Minimum	0.05			Numbe	r of Missing C	bservations	0	
595					winimum	0.05					iviean	2.248	
596					iviaximum	10				0.4 5	iviedian	1.31	
597				0	SD	2.426				Std. El	rror of Mean	0.529	
598				Coefficient	of Variation	1.079				00-4	Skewness	2.046	
599				Mean of Ic	ogged Data	0.13				SD of	logged Data	1.48	
600						tuis Distriku	Han Free LIC						
601	Nonparametric Distribution Free UCL Statistics Data appear Gamma Distributed at 5% Significance Level												
602				Data	appear Gan	nma Distribi	uted at 5% S	Ignincance	Levei			-	
603					A		nal Distribut	lan					
604			05% N		AS	suming Nor	mai Distribut	ion		unter d for Circ			
605			90% 140		antia t LICI	2 161		90%			Chan 100E	2 271	
606				95% Stude	ents-tUCL	3.101		:	95% Adjuste		Chen-1995)	3.371	
607									95% IVIODITI	ed-t UCL (Jor	inson-1978)	3.201	
608					Nenner	omotrio Dia	tribution Ero.						
609				05%		2 110		BUCLS		0.5% 10	okknifo UCI	2 161	
610			0.5%	Standard Roa	totron LICL	2 111				95 % Ja	totron t UCL	2 020	
611			35./0	5% Hall's Boo	tetran LICI	6 994			95%	Percentile Bo	otstran LICI	3.12	
612				35% BCA Boo	tetran LICI	3 394			5570	r creentile bo		0.12	
613			90% Ch			3 836			95% Cł	hebyshev/Me	n Sd) UCL	4 556	
614			97.5% Ch	ebyshev(Mea	n, Sd) UCL	5 554			99% CF		an, 60) 00L	7.516	
615			57.570 011	ebysnev(mea	n, 00) 00E	0.004			5570 01			7.010	
616						Suggested	UCL to Use						
617				Data a	appear Gan	ma. Mav w	ant to try Ga	mma Distril	oution				
618						,,							
619	N	lote: Suaae	stions regard	ing the selecti	on of a 95%	UCL are pr	ovided to hel	p the user to	select the	most appropri	ate 95% UCI		
620			F	ecommendati	ions are bas	ed upon dat	a size, data	distribution.	and skewne	SS.			
621		These reco	mmendations	are based up	on the resu	Its of the sin	ulation studi	es summariz	zed in Sinah	. Maichle, and	d Lee (2006).		
622	Ho	wever. simu	ulations result	s will not cove	r all Real W	orld data se	ts: for additio	nal insight t	ne user mav	want to cons	ult a statistici	an.	
623		,					,						
625													
626	Pyrene												
627	-												
629						General	Statistics						
620			Total	Number of Ob	oservations	21			Numbe	er of Distinct C	bservations	18	
029									Numbe	r of Missina C	bservations	0	
630					Minimum	0.05					Mean	2.096	
630					Maximum	7.83					Median	1.64	
032					SD	1.802				Std. E	rror of Mean	0.393	
633				Coefficient	of Variation	0.86				E	Skewness	1.895	
634				Mean of Ic	aged Data	0.261				SD of	logged Data	1.287	
635	L			incari of ic	-9900 Data	0.201				00 01		1.207	

	A B C	DE	F	G	H		JK		L
1		Nonparametric UC	L Statistics	for Data Set	s with Non-	Detects			
2	Liese Colostad Ontions								
3	Dete /Time of Computation		22.22 DM						
4	From File	NorkSheet vis	22.32 F IVI						
5	Full Precision	)FF							
6	Confidence Coefficient 9	15%							
/	Number of Bootstrap Operations 2	2000							
8 0									
9 10									
636								-	
637		Nonparame	tric Distribu	tion Free UC	L Statistics	;			
638		Data do not fo	ollow a Disc	ernible Distr	ibution (0.0	5)			
639									
640		Ass	suming Nor	mal Distribut	ion				
641	95% Nori	mal UCL			95%	UCLs (Ad	justed for Skewness)		
642		95% Student's-t UCL	2.774			95% Adjust	ed-CLI UCL (Chen-199	) )	2.917
643						95% WOOII	ried-t UCL (Johnson-197	5)	2.802
644		Nonpar	ametric Dis	tribution Free					
645			2 743				95% Jackknife IIC		2,774
646	95% St	tandard Bootstrap UCL	2.726				95% Bootstrap-t UC		3.174
647	95%	% Hall's Bootstrap UCL	5.642			95%	Percentile Bootstrap UC	L	2.766
648	95	% BCA Bootstrap UCL	2.878						
650	90% Cheb	oyshev(Mean, Sd) UCL	3.276			95% C	hebyshev(Mean, Sd) UC	L	3.81
651	97.5% Cheb	oyshev(Mean, Sd) UCL	4.552			99% C	hebyshev(Mean, Sd) UC	;L	6.009
652									
653			Suggested	UCL to Use					
654	95% Cheb	yshev (Mean, Sd) UCL	3.81						
655									
656	Note: Suggestions regarding	g the selection of a 95%	UCL are pr	ovided to hel	p the user to	o select the	most appropriate 95% L	CL.	
657	Ree	commendations are bas	sed upon da	ta size, data o	distribution,	and skewn	ess.		
658	These recommendations a	re based upon the resul	Its of the sin	nulation studi	es summari:	zed in Sing	h, Maichle, and Lee (200	6).	
659	However, simulations results	will not cover all Real W	orld data se	ts; for additio	nal insight t	ne user ma	y want to consult a statis	lician.	
660									
662									
663			General	Statistics					
664	Total N	umber of Observations	21			Numb	er of Distinct Observation	าร	20
666						Numb	er of Missing Observation	ıs	0
667		Minimum	0.91				Mea	in	13.88
668		Maximum	52.42				Media	in	11.22
669		SD	11.97				Std. Error of Mea	in	2.612
670		Coefficient of Variation	0.862				Skewnes	s	1.986
<u>67</u> 1		Mean of logged Data	2.245				SD of logged Da	ta	1.036
672									
673		Nonparame	etric Distribu	tion Free UC	L Statistics	•			
674		Data appear Gan	nma Distrib	uted at 5% S	ignificance	Level			
675				1.001 - 11					
676	05% No.	Ass	suming Nor	mal Distribut	ion				
677	95% N0ľi	95% Student's + UCL	18.20		95%			5)	10 20
678		55 /o Student S-t UCL	10.39			95% Mode	fied t LICL (Johnson 107	<i>יו</i> 8)	18.59
679							197 (JUNISON-197	"	10.07
680		Nonper	ametric Die	tribution Free	a UCI s				
681		95% CLT LICI	18.18				95% Jackknife LIC	L	18.39
682	95% St	tandard Bootstrap UCL	18.11				95% Bootstrap-t UC	- L	20.71
683	95%	% Hall's Bootstrap UCL	40.05			95%	Percentile Bootstrap UC	;L	18.42
0ŏ4									

	A	В	С	D	E	F	G	ŀ	ł		J	K		L	
1				Nonpa	rametric UC	L Statistics	for Data Se	ts with	Non-I	Detects					
2				1											
3		User Sele	ected Options												
4	Dat	e/Time of C	Computation	ProUCL 5.1	1/13/2020 2:	22:32 PM									
5			From File	WorkSheet.	XIS										
6		Fl		OFF OFW											
7	Number	Confidence	Operations	95%											
8	Number c	пвооктар	Operations	2000											
9															
10				95% BCA Bo	otstran UCI	19.31									
685			90% Ch	ebvshev(Me	an. Sd) UCL	21.72				95% Ch	ebvshev(M	lean, Sd)	UCL	25.2	27
686			97.5% Ch	ebyshev(Mea	an, Sd) UCL	30.19				99% Ch	ebyshev(M	lean, Sd)	UCL	39.8	87
687					,,.							,			
690						Suggested	UCL to Use	)							
600				Data	appear Gan	nma, May w	ant to try G	amma	Distrit	oution					
691															
692	١	lote: Sugge	estions regard	ling the selec	tion of a 95%	UCL are pr	ovided to he	Ip the u	user to	select the r	nost approp	priate 95%	6 UCL		_
693			F	Recommenda	tions are bas	ed upon da	ta size, data	distribu	ution, a	and skewne	SS.				
694		These reco	ommendations	s are based u	pon the resu	Its of the sin	nulation stud	ies sur	nmariz	ed in Singh	, Maichle, a	nd Lee (2	.006).		
695	Ho	wever, sim	ulations resul	ts will not cov	er all Real W	orld data se	ts; for addition	onal ins	sight th	ne user may	want to cor	nsult a sta	tisticia	an.	
696															
697	Antimony														
698															
699	General Statistics														
700	Total Number of Observations     21     Number of Distinct Observations     9       Number of Detects     11     Number of Non-Detects     1													9	
701				Numbe	er of Detects	11					Number o	f Non-Det	ects	10	
702			N	umber of Dist	tinct Detects	9				Numbe	er of Distinc	t Non-Det	ects	1	
703				Mini	mum Detect	0.8					Minimu	m Non-De	etect	0.8	,
704				Maxi	mum Detect	1.9					Maximu	m Non-De	etect	0.8	
705				varia	nce Detects	0.138					Percen	t Non-Det	.ects	47.0	)2%
706				IVI	ean Detects	1.218						SD Det	ects	0.3	/ I
707				Skown	an Detects	0.615					Ku		tects	0.3	05 45
708				Mean of Log	aed Detects	0.015					SD of Lo		tects	0.2	98
709					9							-99			
710					Nonparame	tric Distribu	tion Free U	CL Sta	tistics						
711				Detected	Data appea	r Normal Di	stributed at	5% Sig	nifica	nce Level					
712															
714			Kaplan-	Meier (KM) S	statistics usir	ng Normal C	ritical Value	es and	other	Nonparame	etric UCLs				
715					Mean	1.019					Standard	Error of N	lean	0.07	756
716					SD	0.33					95% K	M (BCA)	UCL	1.1	57
717				95%	KM (t) UCL	1.149				95% KM (F	Percentile B	ootstrap)	UCL	1.14	43
718				95%	KM (z) UCL	1.143					95% KM Bo	ootstrap t	UCL	1.18	89
719			9	0% KM Che	byshev UCL	1.246				9	95% KM Ch	ebyshev	UCL	1.34	49
720			97	.5% KM Che	byshev UCL	1.491				9	99% KM Ch	ebyshev	UCL	1.7	71
721															
722	22 Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution														
723	KM SD (logged) 0.28 95% Critical H Value (KM-Log)										1.8	19			
724				KM Me	ean (logged)	-0.0243					ł	∢M Geo N	lean	0.9	76
725			KM Standa	rd Error of Me	ean (logged)	0.0641					95% H-U	ICL (KM -	Log)	1.1	37
726															
727						Suggested	UCL to Use	•							
728				Dat	a appear No	rmal, May v	vant to try N	ormal	Distrik	oution.					
729	١	lote: Sugge	estions regard	ling the selec	tion of a 95%	UCL are pr	ovided to he	Ip the u	user to	select the r	nost approp	oriate 95%	₀ UCL		
730		These	F	kecommenda	tions are bas	ea upon da	a size, data	aistribu	ution, a	and skewne	SS.		0000		
731		These reco	ommendations	s are based u	pon the resu	its of the sin	nulation stud	ies sun	nmariz	ed in Singh	, Maichle, a	nd Lee (2	.006).		
732	Ho	wever, sim	ulations result	ts will not cov	er all Real W	orld data se	ts; for addition	onal ins	aght th	ne user may	want to con	nsult a sta	usticia	an.	

	A	В	С	D	E	F	G	Н		I	J	K	L	Ĺ
1				Nonpar	ametric UC	L Statistics	for Data Set	ts with N	lon-D	etects				
2			-	I										
3		User Sele	ected Options											
4	Date	e/Time of C	omputation	ProUCL 5.11	1/13/2020 2:	22:32 PM								
5			From File	WorkSheet.>	ds									
6		Fu	Ill Precision	OFF										
7		Confidence	Coefficient	95%										
8	Number o	f Bootstrap	Operations	2000										
9														
10														
733														
734														
735	Arsenic													
736														
737						General	Statistics							
738			Total	Number of O	bservations	21				Numbe	r of Distinct Ob	servations	21	
739										Number	of Missing Ob	servations	0	
740					Minimum	1.7						Mean	5.8	867
741					Maximum	16						Median	5.4	4
742					SD	3.002					Std. Erro	or of Mean	0.6	655
743				Coefficient	of Variation	0.512						Skewness	1.9	942
744				Mean of lo	ogged Data	1.661					SD of lo	gged Data	0.4	477
745														
746	Nonparametric Distribution Free UCL Statistics													
747	Data appear Gamma Distributed at 5% Significance Level													
748	Data appear Gamma Distributed at 5% Significance Level													
749					As	suming Nori	nal Distribu	tion						
750			95% No	ormal UCL				9	95%	UCLs (Adju	sted for Skew	ness)		
751				95% Stud	ent's-t UCL	6.996			9	5% Adjuste	d-CLT UCL (C	hen-1995)	7.2	241
752									(	95% Modifie	ed-t UCL (John	son-1978)	7.0	043
753														
754					Nonpa	rametric Dis	ribution Fre	e UCLs						
755				95%	6 CLT UCL	6.944					95% Jack	knife UCL	6.9	996
756			95%	Standard Boo	otstrap UCL	6.931					95% Boots	trap-t UCL	7.5	554
757			9	5% Hall's Boo	otstrap UCL	12.33				95% I	Percentile Boot	strap UCL	6.9	971
758			ç	95% BCA Boo	otstrap UCL	7.205								
759			90% Ch	ebyshev(Mea	n, Sd) UCL	7.832				95% Ch	ebyshev(Mean	, Sd) UCL	8.7	722
760			97.5% Ch	ebyshev(Mea	n, Sd) UCL	9.957				99% Ch	ebyshev(Mean	, Sd) UCL	12.	.38
761														
762						Suggested	UCL to Use	)						
763				Data	appear Gar	nma, May w	ant to try Ga	amma D	istrib	ution				
764														
765	N	lote: Sugge	stions regard	ing the selecti	ion of a 95%	UCL are pr	ovided to he	lp the us	ser to	select the r	nost appropriat	e 95% UC	L.	
766			F	ecommendat	ions are bas	sed upon dat	a size, data	distribut	ion, a	nd skewne	SS.			
767		These reco	mmendations	are based up	oon the resu	Its of the sim	ulation stud	ies sumr	mariz	ed in Singh	Maichle, and	Lee (2006)		
768	Ho	wever, simu	ulations result	s will not cove	er all Real W	orld data se	s; for addition	onal insig	ght th	e user may	want to consul	t a statistic	ian.	
769														
770														
771	1 Barium													
772														
773	General Statistics													
774	Total Number of Observations         21         Number of Distinct Observations         19													
775	Number of Missing Observations											0		
776				Mean	160.	.7								
777					Maximum	398						Median	143	
778					SD	105.6					Std. Erro	or of Mean	23.	.04
779				Coefficient	of Variation	0.657						Skewness	0.9	925
780				Mean of lo	ogged Data	4.828					SD of lo	gged Data	0.8	805

	A	В	С	D	E	F	G	H	Detecto		J		K		L
1				Nonpa	rametric UC	L Statistics	for Data Set	IS WITH NO	n-Detects						
2		User Select	ed Ontions												
3	Dat	e/Time of Con	nutation	ProUCL 5.1	1/13/2020 2.	22:32 PM									
4			From File	WorkSheet.	xls	22.02 1 10									
5		Full	Precision	OFF											
7		Confidence C	oefficient	95%											
2	Number o	of Bootstrap O	perations	2000											
9															
10															
781															
782					Nonparame	tric Distribu	tion Free U	CL Statist	ics						
783				Data	appear No	mal Distribu	ted at 5% S	Significan	e Level						
784															
785					As	suming Nori	nal Distribu	tion							
786			95% No	ormal UCL				9	5% UCLs (	(Adjus	ted for S	kewne	ess)		
787				95% Stud	dent's-t UCL	200.4			95% Adj	justed	-CLT UC	L (Che	en-1995)	20	3.5
788									95% M	odified	d-t UCL (J	Johnso	on-1978)	20	1.2
789					Norre	omotrio Dio	-								
790				05			Indution Fre	e UCLS			05%	lookk	nifo LICI	20	0.4
791			95%	90 Standard Bo	otstran LICI	198.0					95% B			20	7.9
792			90.00	5% Hall's Bo	otstran UCI	209.6			9	5% P	ercentile	Bootst	tran UCL	19	8.9
793			ç	5% BCA Bo	otstrap UCL	205				0.01		200101			0.0
794			90% Ch	ebvshev(Mea	an. Sd) UCL	229.8			95%	% Che	bvshev(N	/lean.	Sd) UCL	26	1.1
795			97.5% Ch	ebyshev(Mea	an, Sd) UCL	304.5			99%	% Che	byshev(N	/lean,	Sd) UCL	38	9.9
790					. ,						, ,		,		
797						Suggested	UCL to Use	)							
799				Data	a appear No	rmal, May w	ant to try No	ormal Dist	ribution						
800															
801	١	Note: Suggesti	ions regardi	ng the selec	tion of a 95%	UCL are pr	ovided to he	lp the use	r to select	the m	ost appro	priate	95% UC	L.	
802			R	ecommenda	tions are bas	sed upon dat	a size, data	distributio	n, and ske	wnes	S.				
803		These recomi	mendations	are based u	pon the resu	Its of the sim	ulation stud	ies summ	arized in S	ingh,	Maichle, a	and Le	e (2006)	).	
804	Ho	wever, simula	tions result	s will not cov	er all Real W	orld data se	ts; for addition	onal insigh	it the user	may v	vant to co	nsult a	a statistic	ian.	
805															
806	D														
807	Beryllium														
808						General	Statistics								
809			Total	Number of C	beenvations	21	Statistics		Nu	mbor	of Disting	t Obse	anyations	1	8
810			Total		Josei valions	21			Nu	mber	of Missing		anyations	0	ט ר
811					Minimum	0.16						,0000	Mean	0	) 398
812					Maximum	0.85							Median	0	0.39
013					SD	0.143					Std.	Error	of Mean	0	.0312
015				Coefficient	of Variation	0.36						SI	kewness	1	1.336
816				Mean of	logged Data	-0.981					SD	of logo	ged Data	C	0.357
817													-		
818					Nonparame	tric Distribu	tion Free U	CL Statist	ics						
819	1			Data appea	ar Approxima	ate Normal I	Distributed a	at 5% Sig	nificance L	.evel					
820	1														
821					As	suming Nori	nal Distribu	tion							
822			95% No	rmal UCL				9	5% UCLs (	(Adjus	ted for S	kewne	ess)		
823				95% Stud	dent's-t UCL	0.451			95% Adj	justed	-CLT UC	L (Che	en-1995)	C	0.459
824									95% M	odified	d-t UCL (J	Johnso	on-1978)	C	0.453
825															
826					Nonpai	rametric Dis	tribution Fre	e UCLs							
827				95	% CLT UCL	0.449					95%	Jackki	nife UCL	C	0.451
027														-	

	A	В	С	D	E	F	G	Н		J	К	L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects			
2				1								
3		User Sele	cted Options									
4	Dat	e/Time of C	omputation	ProUCL 5.1	1/13/2020 2:	22:32 PM						
5			From File	WorkSheet.	kls							
6		Fu	Ill Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10			0			0.407			05%	Doroontilo Pootot	tran LICI	0.45
829			9			0.497			90 %	Percentile Bootst		0.45
830			00% Ch	obyshov(Mos		0.401			05% CF	obysboy(Moon	S4) LICI	0.534
831			97.5% Ch	ehvshev(Mea	in, Sd) UCL	0.593			99% Cł	ebyshev(Mean,	Sd) UCL	0.334
832			07.070 011	ebyonev(mee	in, 60) 662	0.000			0070 01	ico yone v (mean,	00/002	0.700
833						Suggested	UCL to Use					
834				Data	appear No	rmal. Mav w	ant to try No	ormal Distrib	ution			
835												
000	N	lote: Sugge	stions regard	ing the select	ion of a 95%	UCL are pr	ovided to he	Ip the user to	select the i	nost appropriate	95% UC	L.
828			F	ecommendat	tions are bas	sed upon da	ta size, data	distribution,	and skewne	SS.		
839	L	These reco	mmendations	are based u	pon the resu	Its of the sin	nulation stud	ies summari	zed in Singh	, Maichle, and Le	e (2006)	
840	Но	wever, simu	lations result	s will not cove	er all Real W	/orld data se	ts; for additio	onal insight t	ne user may	want to consult a	a statistici	ian.
841												
842												
843	Boron (Tota	al)										
844											-	
845						General	Statistics				-	
846			Total	Number of O	bservations	5			Numbe	r of Distinct Obse	ervations	5
847									Numbe	r of Missing Obse	ervations	0
848					Minimum	4					Mean	9.8
849					Maximum	16					Median	11
850				0 11 1	SD	5.167				Std. Error	of Mean	2.311
851				Coefficient	of Variation	0.527				SD of logg	kewness	-0.0993
852				Mean of I	ogged Data	2.140				SD 01 log(	Jeu Data	0.012
853			No	te: Sample si	ze is small (	(e.a. <10) i	f data are co	allected usir	a ISM appr	nach		
854			110	vou may w	ant to use C	hebyshev l	ICL to estim	ate FPC (II	BC. 2012).	Jacii		
855			Che	byshev UCL	can be com	puted using	the Nonpar	ametric and	All UCL Or	tions.		
856				-,		p						
057					Nonparame	etric Distribu	tion Free U	CL Statistics	;			
859				Data	appear Nor	rmal Distrib	ited at 5% S	ignificance	Level			
860												
861					As	suming Nor	mal Distribu	tion				
862			95% No	ormal UCL				95%	UCLs (Adju	usted for Skewn	ess)	
863				95% Stud	lent's-t UCL	14.73			95% Adjuste	ed-CLT UCL (Che	en-1995)	13.49
864									95% Modifi	ed-t UCL (Johnso	on-1978)	14.71
865												
866					Nonpar	rametric Dis	tribution Fre	e UCLs				
867				959	% CLT UCL	13.6				95% Jackk	nife UCL	14.73
868			95%	Standard Boo	otstrap UCL	13.21				95% Bootstra	ap-t UCL	14.79
869			9	5% Hall's Boo	otstrap UCL	12.17			95%	Percentile Bootst	rap UCL	13.2
870			0000 00	J5% BCA Boo	otstrap UCL	12.8			050/ 01	a la vala - · · / A *	04) 1101	10.07
871			90% Ch	ebysnev(Mea		16.73			95% Ch	ebysnev(Mean,		19.87
872			97.5% Ch	ebysnev(Mea	m, 5a) UCL	24.23			99% Cł	iebysnev(Mean,	Sa) UCL	32.79
873						Suggested						
874				Data	annear No.	mal Mey	ant to to N	rmal Dietrik	ution			
875				Data	ahhear 1401	mai, way w		nnai Distfit				
876												

	A	В	С	D	E	F	G	Н		J	K		L
1				Nonparam	etric UC	L Statistics	for Data Set	s with Non-	Detects				
2													
3		User Sele	ected Options										
4	Dat	e/Time of C	omputation	ProUCL 5.11/13	3/2020 2:2	22:32 PM							
4			From File	WorkSheet.xls									
5		Fu	III Precision	OFF									
6		Confidence	Coefficient	95%									
7	Number		Onemations	90 %									
8	Number o	i booisirap	Operations	2000									
9													
10													
877	N	lote: Sugge	stions regard	ing the selection	of a 95%	UCL are pr	ovided to he	Ip the user to	o select the r	most approp	riate 95% U	CL.	
878			F	Recommendations	s are bas	ed upon dat	ta size, data	distribution,	and skewne	SS.			
879		These reco	mmendations	s are based upon	the resu	Its of the sin	nulation studi	ies summari	zed in Singh	, Maichle, ar	nd Lee (200	<del>3</del> ).	
880	Ho	wever, simu	ulations result	s will not cover a	ll Real W	orld data se	ts; for additic	onal insight t	ne user may	want to con	sult a statist	ician.	
881													
882		Note: For	highly negat	ively-skewed dat	ta, confid	ence limits	(e.g., Chen,	, Johnson, L	ognormal, a	and Gamma	) may not b	e	
002			reliable. (	Chen's and John	son's me	thods provi	de adjustme	ents for posi	tvely skewe	d data sets.			
003							-		-				
004													
885	Cadmium												
886													
887						General	Statistics						
888			Total	Number of Obse	nations	21	010105105		Numbo	r of Distinct	Observation	· ,	20
889			TOtal	Number of Obse	avauons	21			Numbe		Observation	3 4	20
890					Ain inc. (no.	0.07			Numbe	I UI WIISSII IY	Maa	5	12.42
891				N	, .	0.07					Iviea	<u> </u>	13.43
892				M	aximum	68					Media	n	7.6
893					SD	17.35				Std. I	Error of Mea	n	3.787
894				Coefficient of V	/ariation	1.292					Skewnes	s	2.073
895				Mean of logg	ed Data	1.512				SD of	f logged Dat	а	1.92
896													
897				No	nparame	tric Distribu	tion Free UC	CL Statistics	1				
898				Data app	bear Gan	nma Distrib	uted at 5% S	Significance	Level				
899													
900					Ass	suming Nor	mal Distribut	tion					
901			95% N	ormal UCL				95%	UCLs (Adju	usted for Sk	ewness)		
902				95% Student	's-t UCL	19.96			95% Adjuste	ed-CLT UCL	(Chen-1995	5) 2	21.49
903									95% Modifie	ed-t UCL (Jo	ohnson-1978	3) 2	20.25
904													
905					Nonpar	ametric Dis	tribution Fre	e UCLs					
906				95% C	LT UCL	19.66				95% J	ackknife UC	Ľ	19.96
007			95%	Standard Bootstr	rap UCL	19.39				95% Bo	otstrap-t UC	L :	24.26
000			9	5% Hall's Bootstr	rap UCL	48.13			95%	Percentile B	ootstrap UC	L :	20.01
000			9	95% BCA Bootstr	rap UCL	21.49						+	
909			90% Ch	ebyshev(Mean. S	Sd) UCL	24.79			95% Ch	ebyshev(Me	ean, Sd) UC	L :	29.94
910			97,5% Ch	ebvshev(Mean	Sd) UCL	37.08			99% Ch	ebvshev(Me	ean, Sd) UC		51.11
911					.,				2070 01		, 20, 00	`	
912						Suggested	UCL to Lies						
913				Data ann	ear Co~	ma Mey	ant to try Cr	amma Diet-il	hution				
914				Data app	Joan Gall	nna, way w	ant to try G8		Julion				
915		lata: C	ationa	ing the e-lt	of a 0501		ovided to b	In the	a a la ct th	mont a	riote 050/ !!		
916	N	iote: Sugge	suons regard	ing the selection	ur a 95%	UCL are pr	ovided to he	ip the user to	select the r	nost approp	nate 95% U	UL.	
917		-	F	Recommendation	s are bas	ed upon dat	a size, data	aistribution,	and skewne	SS.			
918		These reco	mmendations	s are based upon	the resu	ts of the sin	nulation studi	ies summari	zed in Singh	, Maichle, ar	nd Lee (200	o).	
919	Но	wever, simu	ulations result	s will not cover a	II Real W	orld data se	ts; for additio	onal insight t	ne user may	want to con	sult a statist	ician.	
920													
921													

	A	В	С	D E		F	G	Н		J	К	L
1				Nonparametric	CUC	L Statistics	for Data Set	ts with Nor	-Detects			
2												
3		User Sele	cted Options									
4	Dat	e/Time of C	omputation	ProUCL 5.11/13/202	20 2:	22:32 PM						
5			From File	WorkSheet.xls								
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	f Bootstrap	Operations	2000								
9												
10												
922	Chromium	Total										
923												
924						General	Statistics			(5) ( ) ( )	]	10
925			l otal	Number of Observat	ions	21			Numbe	er of Distinct O	bservations	19
926									Numbe	er of Missing O	bservations	0
927				Minin	num	6.3					Mean	35.89
928				Maxin	num	97				0.1 5	Median	32
929					SD	22.89				Std. Er	ror of Mean	4.995
930						0.038					Skewness	0.690
931				weatt of logged L	วสเส	3.38				2D 01 10	Jyyeu Data	0.089
932				Nonna	nomo	trio Distribu	tion Free LI	CI Statistic				
933		Data appear Approximate Normal Distributed at 5% Significance Level										
934				Data appear Applo								
935	Assuming Normal Distribution											-
936			95% No	ormal UCI	7.3	Suming Non		95	% UCIs (Adi	usted for Skev	wness)	
937			0070110	95% Student's-t I	ICI	44.5		00	95% Adjuste		Chen-1995)	45 69
938					JOL	-11.0			95% Modifi	ed-t UCL (Joh	nson-1978)	44 75
939										001002(0011		
940				No	npar	ametric Dis	tribution Fre	e UCLs				
941				95% CLT (	JCL	44.1				95% Jac	kknife UCL	44.5
942			95%	Standard Bootstrap l	JCL	43.95				95% Boot	strap-t UCL	47.75
943			9	5% Hall's Bootstrap l	JCL	51.37			95%	Percentile Boo	otstrap UCL	44.6
944			ç	95% BCA Bootstrap l	JCL	46.36						
946			90% Ch	ebyshev(Mean, Sd) l	JCL	50.87			95% CI	nebyshev(Mea	n, Sd) UCL	57.66
947			97.5% Ch	ebyshev(Mean, Sd) l	JCL	67.08			99% CI	nebyshev(Mea	n, Sd) UCL	85.59
948											I	
949						Suggested	UCL to Use	•				
950				Data appea	r Noi	rmal, May w	ant to try No	ormal Distr	ibution			
951												
952	Ν	lote: Sugge:	stions regard	ng the selection of a	95%	UCL are pr	ovided to he	lp the user	to select the	most appropria	ate 95% UCI	
953			R	ecommendations are	e bas	ed upon dat	a size, data	distribution	, and skewne	ess.		
954		These record	mmendations	are based upon the	resu	Its of the sin	ulation stud	ies summa	rized in Singh	, Maichle, and	Lee (2006).	
955	Ho	wever, simu	lations result	s will not cover all Re	eal W	orld data se	ts; for additio	onal insight	the user may	want to consu	ult a statistici	an.
956												
957												
958	Cobalt											
959						0	Otestiet's s					
960			T - 4 - 1	Number of Object	ion-	General	STATISTICS		K1,1	r of Distington O	hooristi	F
961			I otal	Number of Observat	ions	5			Numbe	r of Missing O	beenvetions	5
962				۰. ۸۱:۰۰:۰۰		<u>Б 1</u>			NUMDE	a or missing O	Moor	U 70
963				IVIIIII Movie	num	0.1					Median	7.2
964				IVIAXIN		9.0 1 702				Ctd Er	ror of Mean	0.9
965				Coefficient of Varia	tion	0.227				SIU. EI	Skewness	0.702
966				Mean of loaged F	)ata	1 951				SD of k	orded Data	0.0907
967						1.501				00 01 10	-ggou Duid	0.272
968												

	A	В	С	D	E	F	G	F	1			J		К		L
1				Nonpa	rametric UC	L Statistics	for Data Set	ts with	Non-I	Detects						
2		Lloor Solo	oted Options													
3	Date	User Sele	Cied Options	ProLICE 5.1	1/13/2020 2-	22-32 DM										
4	Date		From File	WorkSheet	//13/2020 2.	22.32 F 101										
5		Fi	Ill Precision	OFF	10											
6		Confidence		95%												
7	Number of	f Bootstrap	Operations	2000												
8																
9																
060			No	te: Sample si	ze is small (	e.g., <10), i	f data are c	ollecte	d usin	g ISM a	pproa	ach				
909				you may w	ant to use C	hebyshev l	JCL to estim	nate EF	PC (IT	RC, 20 ⁻	12).					
970			Che	byshev UCL	can be com	puted using	the Nonpar	rametri	c and	All UCL	. Opti	ons.				
972																
973					Nonparame	tric Distribu	tion Free U	CL Sta	tistics							
974				Data	appear Nor	mal Distribu	ited at 5% S	Significa	ance	Level						
975																
976					As	suming Nor	mal Distribu	tion								
977			95% No	ormal UCL					95%	UCLs (	Adjus	ted for S	kewne	ess)		
978		95% Student's-t UCL 8.824 95% Adjusted-CLT UCL (Chen-1995)											1	8.489		
979										95% Mo	odified	d-t UCL (	Johnso	on-1978)	1	8.829
980																
981					Nonpar	ametric Dis	tribution Fre	e UCL	.s							
982				959	% CLT UCL	8.453						95%	Jackki	nife UCL		8.824
983			95%	Standard Bo	otstrap UCL	8.328						95% B	ootstra	ap-t UCL		9.384
984			9	5% Hall's Bo	otstrap UCL	9.733				9	5% P	ercentile	Bootst	rap UCL	·	8.3
985			00% 01	95% BCA Bo	otstrap UCL	8.2				050					<u> </u>	10.50
986			90% Ch	ebysnev(Mea		9.485				95%	Che	bysnev(N	/lean, :			10.52
987			97.5% Ch	ebysnev(Mea	in, Sa) UCL	11.96				99%	o Che	bysnev(N	/lean, :	Sa) UCL		14.78
988						Suggested										
989				Data	annear No	mal May w	ant to try N	, ormal F	Vietrih	ution						
990				Data		mai, way w			Jiau ID	uuon						
991	N	ote: Suaae	stions regard	ing the select	ion of a 95%	UCL are pr	ovided to he	Ip the i	user to	select t	the m	ost appro	priate	95% UC	L.	
992			R	ecommenda	tions are bas	ed upon da	a size, data	distribu	ution, a	and ske	wness	5.				
993		These reco	mmendations	are based u	pon the resu	Its of the sin	ulation stud	ies sun	nmariz	zed in Si	ngh,	Maichle,	and Le	e (2006	).	
994	Но	wever, simu	ulations result	s will not cov	er all Real W	orld data se	ts; for addition	onal ins	sight th	ne user r	may v	vant to co	onsult a	a statistic	cian.	
996															-	
997																
998	Copper															
999																
1000						General	Statistics									
1001			Total	Number of O	bservations	5				Nur	mber	of Distinc	t Obse	ervations	1	5
1002										Nur	nber	of Missing	g Obse	ervations		0
1003					Minimum	20								Mean	Ę	50.8
1004					Maximum	73								Median	6	31
1005					SD	24.64						Std	Error	of Mean		11.02
1006				Coefficient	of Variation	0.485						~~	SI	(ewness	-(	J.538
1007				Mean of I	ogged Data	3.805						SD	ot logg	jea Data		v.588
1008			<b>L</b> I = 2	a Camela -	no lo cmoll d	a (10)	f data are -	allasta	duale	a 1014 -		- ch				
1009			NO	e. Sample S	ze is small (	e.g., <10),	I uata are c					acn				
1010			Cha	you may W	can be com	nebysnev (	the Nonno	rametri	- u (II n and		1 <i>2)</i> .	one				
1011			Crie	oyanev UCL	can be com	pateu usirig	are notipal	aneu	o and		. opa	JII3.				
1012					Nonnereme	tric Dietribu	tion Free L		tistice							
1013				Data	appear Nor	mal Distribu	ited at 5% S		ance	evel						
1014				Data												
1015																

	A	В	U	D	E	F	G	H		J K		L
1				Nonparar	metric UC	L Statistics	for Data Set	s with Non-	Detects			
2												
3		User Sele	cted Options									
4	Dat	e/Time of Co	omputation	ProUCL 5.11/1	13/2020 2:	22:32 PM						
5			From File	WorkSheet.xls	5							
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
,	Number o	f Bootstrap	Operations	2000								
。 。												
9												
10					Ass	sumina Nor	mal Distribut	ion				
1016			95% N	ormal UCL			1	95%	6 UCLs (Adi	usted for Skewness)		
1017				95% Studer	nt's_t LICI	74 29			95% Adjust	ad-CLTUCL (Chen-19	951	66.09
1018				55% 614461	113-1 00L	74.25			95% Modifi	ied_t IICL (Johnson-19	178)	73.85
1019									5570 WOOIII		//0)	75.05
1020					Mannan	anatria Dia	Aribusian Fra	- 1101 -				
1021				050/				eucls		050/ 1		74.00
1022			05%	95%		68.93				95% Jackknife (		74.29
1023			95%	Standard Boots	suap UCL	07.04			0.50	95% BOOtstrap-t l	JUL	70.49
1024			9	5% Hall's Boots	strap UCL	60.79			95%	Percentile Bootstrap (	JCL	b/.4
1025			(	95% BCA Boots	strap UCL	63.8	ļ		-			
1026			90% Ch	ebyshev(Mean,	, Sd) UCL	83.86			95% CI	hebyshev(Mean, Sd) l	JCL	98.83
1027			97.5% Ch	ebyshev(Mean,	, Sd) UCL	119.6			99% CI	hebyshev(Mean, Sd) l	JCL	160.4
1028												
1029						Suggested	UCL to Use					
1030				Data a	ppear Nor	mal, May w	ant to try No	ormal Distrib	oution			
1031												
1032	Ν	lote: Sugges	stions regard	ling the selection	n of a 95%	UCL are p	rovided to he	p the user t	o select the	most appropriate 95%	UCL	
1033			F	Recommendation	ns are bas	ed upon da	ta size, data	distribution,	and skewne	ess.		
1034		These recor	mmendations	s are based upo	on the resu	Its of the sir	nulation studi	es summari	ized in Singł	n, Maichle, and Lee (2	006).	
1035	Ho	wever, simu	lations result	te will not cover	all Bool W							
1026						orld data se	ets; for addition	onal insight t	he user may	want to consult a sta	isticia	an.
1000				is will not cover		orld data se	ets; for additio	nal insight t	he user may	want to consult a sta	isticia	an.
1037		Note: For	highly negat	ively-skewed da	ata, confid	orld data se	ets; for additic	onal insight t Johnson, I	he user may	v want to consult a sta and Gamma) may no	isticia t <b>be</b>	an.
1037		Note: For I	highly negat reliable.	ively-skewed da Chen's and Joh	ata, confid	orld data se lence limits othods prov	ets; for additions (e.g., Chen, ide adjustme	Johnson, I ants for posi	he user may .ognormal, a	want to consult a sta and Gamma) may no ad data sets.	isticia t <b>be</b>	an.
1030 1037 1038 1039		Note: For I	highly negat reliable. (	ively-skewed da Chen's and Joh	ata, confid	orld data se lence limits othods prov	ets; for additic (e.g., Chen, ide adjustme	Johnson, I Johnson, I	the user may .ognormal, a	want to consult a sta and Gamma) may no ad data sets.	isticia t <b>be</b>	an.
1037 1038 1039		Note: For I	highly negat reliable.(	ively-skewed da	ata, confid	orld data se lence limits ethods prov	ets; for additic	Johnson, I	he user may .ognormal, a	r want to consult a sta and Gamma) may no ad data sets.	isticia t <b>be</b>	an.
1037 1038 1039 1040	Lead	Note: For I	highly negat reliable.(	ively-skewed da	ata, confid	orld data se	ets; for additic	Johnson, I	he user may ognormal, a	r want to consult a sta and Gamma) may no ad data sets.	t <b>be</b>	an.
1037 1038 1039 1040 1041	Lead	Note: For I	highly negat reliable.(	ively-skewed da	ata, confid	orld data se	tts; for additic	Johnson, I Johnson, I	ihe user may _ognormal, i	v want to consult a sta and Gamma) may no od data sets.	t <b>be</b>	an.
1037 1038 1039 1040 1041 1042	Lead	Note: For I	highly negat reliable.(	ively-skewed da Chen's and Joh	ata, confid	orld data se dence limits athods prov	tts; for additic (e.g., Chen, ide adjustme Statistics	Johnson, I Johnson, I Ints for posi	he user may _ognormal, i	v want to consult a sta and Gamma) may no ad data sets.	t <b>be</b>	an.
1037 1038 1039 1040 1041 1042 1043	Lead	Note: For I	highly negat reliable. (	ively-skewed da Chen's and Joh	ata, confid inson's me	dence limits athods prov General	tts; for additic (e.g., Chen, ide adjustme Statistics	Johnson, I Johnson, I	he user may ognormal, ( itvely skewe Numbe	r want to consult a sta and Gamma) may no od data sets. er of Distinct Observat	isticia be	an.
1037 1037 1038 1039 1040 1041 1042 1043 1044	Lead	Note: For I	highly negat reliable. (	ively-skewed da Chen's and Joh	ata, confid	lence limits athods prov General	tts; for additic (e.g., Chen, ide adjustme Statistics	nal insight t Johnson, I onts for posi	he user may ognormal, ( itvely skewe Numbe Numbe	r want to consult a sta and Gamma) may no od data sets. er of Distinct Observat er of Missing Observat	ons ons	5 0
1030 1037 1038 1039 1040 1041 1042 1043 1044	Lead	Note: For I	highly negat reliable. (	ively-skewed da Chen's and Joh	ata, confid nson's me servations Minimum	In the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	Statistics	nal insight t Johnson, I Ints for posi	he user may ognormal, ( itvely skewe Numbe Numbe	r want to consult a sta and Gamma) may no od data sets. er of Distinct Observat er of Missing Observat M	ons ean	5 0 42.82
1037 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs	ata, confid nson's me servations Minimum Maximum	Ince limits Sethods prov General 5 6.1 100	Statistics	nal insight t Johnson, I Ints for posi	he user may .ognormal, i itvely skewe Numbe Numbe	r want to consult a sta and Gamma) may no od data sets. er of Distinct Observat er of Missing Observat Me	ons ean dian	5 0 42.82 29
1033 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs	ata, confid inson's me servations Minimum Maximum SD	General General 6.1 100 37.39	Statistics	Johnson, I Johnson, I Ints for posi	he user may .ognormal, i itvely skewe Numbe Numbe	r want to consult a sta and Gamma) may no od data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M	ons ons ean dian ean	5 0 42.82 29 16.72
1033 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs	ata, confid inson's me servations Minimum Maximum SD : Variation	General 6.1 100 37.39 0.873	Statistics	Johnson, I Johnson, I Ints for posi	he user may .ognormal, i itvely skewe Numbe Numbe	r want to consult a sta and Gamma) may no ad data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M Skewr	isticia t be ons ean dian ean ess	5 0 42.82 29 16.72 1.014
1033 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs	ata, confid inson's me servations Minimum Maximum SD i Variation iged Data	General 6.1 100 37.39 0.873 3.371	Statistics	Johnson, I Johnson, I Ints for posi	he user may ognormal, i itvely skewe Numbe Numbe	r want to consult a sta and Gamma) may no ad data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M Skewr SD of logged F	ons ons ean dian ess Data	5 0 42.82 29 16.72 1.014 1.073
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs	ata, confid inson's me servations Minimum Maximum SD Variation iged Data	General           5           6.1           100           37.39           0.873           3.371	Statistics	Johnson, I Johnson, I Ints for posi	he user may ognormal, i itvely skewe Numbe Numbe	r want to consult a sta and Gamma) may no ad data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M Skewr SD of logged D	ons ons ean dian eas Data	5 0 42.82 29 16.72 1.014 1.073
1030 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs	ata, confid inson's me servations Minimum Maximum SD Variation iged Data	General           5           6.1           100           37.39           0.873           3.371	Statistics	Johnson, I Johnson, I Ints for posi	ng ISM epor	r want to consult a sta and Gamma) may no ad data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M Skewr SD of logged D	ons ean dian ess oata	5 0 42.82 29 16.72 1.014 1.073
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051	Lead	Note: For I	highly negat reliable. ( Total	Number of Obs	ata, confid inson's me servations Minimum Maximum SD Variation iged Data a Is small (	General           5           6.1           100           37.39           0.873           3.371           (e.g., <10),	Statistics	Dilected using the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the provided the	ng ISM appr	and Gamma) may no and Gamma) may no ad data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M Skewr SD of logged D oach	ons ons ean dian ess Data	an. 5 0 42.82 29 16.72 1.014 1.073
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052	Lead	Note: For I	highly negat reliable. ( Total	Number of Obs	ata, confid inson's me servations Minimum Maximum SD Variation iged Data a is small ( it to use C	General 6.1 100 37.39 0.873 3.371 (e.g., <10), Chebyshev I	Statistics	Dilected usinate EPC (I	ng ISM appr TRC, 2012).	r want to consult a sta and Gamma) may no ad data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M Stewr SD of logged D SD of logged D	ons ons ean dian ess Data	an. 5 0 42.82 29 16.72 1.014 1.073
1033 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca	ata, confid inson's me servations Minimum Maximum SD Variation iged Data a is small ( it to use C an be com	General 5 6.1 100 37.39 0.873 3.371 (e.g., <10), chebyshev l puted using	Statistics  If data are co UCL to estim	Dilected usinate EPC (I	ng ISM appr TRC, 2012).	and Gamma) may no and Gamma) may no ad data sets. er of Distinct Observat er of Missing Observat Me Std. Error of M Skewr SD of logged D Sb of logged D oach	ons ons ons ean Jian ess Data	5 0 42.82 29 16.72 1.014 1.073
1033 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1053 1054 1055	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca	ata, confid inson's me servations Minimum Maximum SD Variation iged Data e is small ( int to use C an be com	General 5 6.1 100 37.39 0.873 3.371 6.9, <10), hebyshev l puted using	Statistics Statistics If data are co UCL to estim the Nonpar	Dilected using ate EPC (In ametric and	ng ISM appr TRC, 2012).	and Gamma) may no and Gamma) may no ad data sets.	ons ons ons ean dian ess Data	an. 5 0 42.82 29 16.72 1.014 1.073
1033 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1050 1055 1056	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca	ata, confid inson's me servations Minimum Maximum SD Variation iged Data e is small ( int to use C an be com onparame	General 5 6.1 100 37.39 0.873 3.371 6.9, <10), chebyshev l puted using	Statistics  If data are co UCL to estim the Nonpar	Dilected usinate EPC (I' ametric and	ng ISM appr TRC, 2012).	and Gamma) may no and Gamma) may no ad data sets.	ons ons ons ean dian ess Data	5 0 42.82 29 16.72 1.014 1.073
1033 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca Na Data aj	ata, confid inson's me servations Minimum Maximum SD Variation iged Data e is small ( int to use C an be com onparame ppear Nor	General 5 6.1 100 37.39 0.873 3.371 6.g., <10), chebyshev l puted using tric Distribu	Statistics Statistics If data are cc UCL to estim the Nonpar Ition Free UC Uted at 5% S	Dilected usinate EPC (I' ametric and CL Statistica	he user may ognormal, i itvely skewe Numbe Numbe Numbe ISM appr TRC, 2012). d All UCL Op 3 Level	and Gamma) may no and Gamma) may no ad data sets.	ons ons ons ean dian ess Data	an. 5 0 42.82 29 16.72 1.014 1.073
1033           1037           1038           1039           1040           1041           1042           1043           1044           1045           1046           1047           1048           1049           1050           1051           1052           1053           1054           1055           1056           1057           1058	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca Na Data aj	ata, confid inson's me servations Minimum Maximum SD Variation iged Data e is small ( int to use C an be comp onparame ppear Nor	General 5 6.1 100 37.39 0.873 3.371 6.g., <10), chebyshev I puted using tric Distribu	Statistics Statistics If data are cc UCL to estim tion Free UC uted at 5% S	Dilected usinate EPC (I' ametric and CL Statistics	he user may ognormal, i itvely skewe Numbe Numbe Numbe Numbe 1 1 1 1 1 1 1 1 1 1 1 1 1	r want to consult a sta and Gamma) may no ad data sets.	ons ons ean dian eas bata	an. 5 0 42.82 29 16.72 1.014 1.073
1033           1037           1038           1039           1040           1041           1042           1043           1044           1045           1046           1047           1048           1049           1050           1051           1052           1053           1054           1055           1056           1057           1058           1059	Lead	Note: For I	highly negat reliable. ( Total	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca Na Data aj	ata, confid inson's me servations Minimum Maximum SD Variation iged Data b is small ( int to use C an be comp onparame ppear Nor Ass	General 5 6.1 100 37.39 0.873 3.371 6.9, <10), chebyshev I puted using tric Distribu mal Distribu	If data are co UCL to estim tion Free UC uted at 5% S	Dilected using ante EPC (I ametric and CL Statistics ignificance	he user may ognormal, i itvely skewe Numbe Numbe Numbe Numbe IRC, 2012). d All UCL O s Level	and Gamma) may no and Gamma) may no ad data sets.	ons ons ean dian ess Data	an. 5 0 42.82 29 16.72 1.014 1.073
1033           1037           1038           1039           1040           1041           1042           1043           1044           1045           1046           1047           1048           1049           1050           1051           1052           1053           1054           1055           1055           1056           1057           1058           1059           1060	Lead	Note: For I	highly negat reliable. ( Total No Che 95% No	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca Na Data aj	ata, confid inson's me servations Minimum Maximum SD Variation iged Data b is small ( int to use C an be com onparame ppear Nor Ass	General 5 6.1 100 37.39 0.873 3.371 6.e.g., <10), chebyshev I puted using tric Distribu mal Distribu	If data are co UCL to estim tion Free UC uted at 5% S	Dilected using ante EPC (I ametric and cl. Statistics ignificance ion 95%	he user may ognormal, i itvely skewe Numbe Numbe Numbe IRC, 2012). d All UCL O s Level	and Gamma) may no and Gamma) may no ad data sets.	ons ons ons ean dian eas Data	an. 5 0 42.82 29 16.72 1.014 1.073
1033           1037           1038           1039           1040           1041           1042           1043           1044           1045           1046           1047           1048           1049           1050           1051           1052           1053           1054           1055           1055           1056           1057           1058           1059           1060           1061	Lead	Note: For I	highly negat reliable. ( Total No Che 95% No	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca Na Data aj ormal UCL 95% Studer	ata, confid inson's me servations Minimum Maximum SD Variation iged Data b is small ( int to use C an be com onparame ppear Nor Ass Ass at's-t UCL	General 5 6.1 100 37.39 0.873 3.371 6.9 6.1 100 37.39 0.873 3.371 6.9 6.1 100 37.39 0.873 3.371 7 6.9 100 37.39 0.873 3.371 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	If data are co UCL to estim tion Free UC uted at 5% S	Dilected using ante EPC (IT ametric and CL Statistics ignificance 95%	he user may ognormal, i itvely skewe Numbe Numbe Numbe Numbe S Itevel S Level S UCLs (Adj 95% Adjust	r want to consult a sta and Gamma) may no ad data sets.	ons ons ons ean dian eas Data	an. 5 0 42.82 29 16.72 1.014 1.073 78.42
1033           1037           1038           1039           1040           1041           1042           1043           1044           1045           1046           1047           1048           1049           1050           1051           1052           1053           1054           1055           1055           1056           1057           1058           1060           1061           1062	Lead	Note: For I	highly negat reliable. ( Total No Che 95% No	ively-skewed da Chen's and Joh Number of Obs Coefficient of Mean of log te: Sample size you may wan byshev UCL ca Nu Data aj Ormal UCL 95% Studer	ata, confid inson's me servations Minimum Maximum SD Variation iged Data b is small ( int to use C an be com onparame ppear Nor Ass nt's-t UCL	General 5 6.1 100 37.39 0.873 3.371 6.9 6.1 100 37.39 0.873 3.371 6.9 6.1 100 37.39 0.873 3.371 7 6.9 100 37.39 0.873 3.371 7 8 100 100 37.39 0.873 3.371 7 8 100 100 37.39 0.873 3.371 7 8 100 7 8 100 7 8 100 7 8 100 7 8 100 7 8 100 7 8 100 7 8 100 7 8 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 100	If data are co UCL to estim tion Free UC uted at 5% S	Dilected using atte EPC (IT ametric and CL Statistics ignificance 95%	he user may ognormal, i itvely skewe Numbe Numbe Numbe Sumbe Sumbe Numbe Sumbe Numbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe Sumbe	and Gamma) may no and Gamma) may no ad data sets.	ons ons ons ean dian eas oata 0ata 0ata	an. 5 0 42.82 29 16.72 1.014 1.073 78.42 79.73

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonpa	rametric UC	L Statistics	for Data Set	s with No	n-Detects			
2				1								
3		User Sele	cted Options									
4	Date	e/Time of Co	omputation	ProUCL 5.1	1/13/2020 2:	22:32 PM						
5			From File	WorkSheet.	XIS							
6		Fu	Coofficient									
7	Number of	Bootetran	Operations	2000								
8	Number of	Dootstrap	Operations	2000								
9												
10					Nonpar	ametric Dis	tribution Fre	e UCLs				
1064				95	% CLT UCL	70.32				95% Jackkr	nife UCL	78.47
1065			95%	Standard Bo	otstrap UCL	66.74				95% Bootstra	ip-t UCL	130.5
1067			9	5% Hall's Bo	otstrap UCL	282.1			95%	Percentile Bootstr	rap UCL	69.4
1068			ę	95% BCA Bo	otstrap UCL	71.6						
1069			90% Ch	ebyshev(Mea	an, Sd) UCL	92.98			95% CI	nebyshev(Mean, S	3d) UCL	115.7
1070			97.5% Ch	ebyshev(Mea	an, Sd) UCL	147.2			99% CI	nebyshev(Mean, S	3d) UCL	209.2
1071												
1072						Suggested	UCL to Use					
1073				Data	a appear Noi	mal, May w	ant to try No	ormal Dist	ribution			
1074					tion of a OF0/							
1075	N	ote: Sugge	stions regard	ing the selec	tion of a 95%	OCL are pr	ovided to he	lp the use	r to select the	most appropriate	95% UCI	
1076		Those reco	n mmendations	are based u	mon the resu	lts of the sin	a size, uata		arized in Singk	Maichle and Le	a (2006)	
1077	Ho		lations result	s will not cov		orld data se	ts: for additio	nal insidh	anzeu in Singi	want to consult a	e (2000).	ian
1078	110			5 101 101 001			13, 101 200110	inan maigi			1 3121131101	
1079												
1080	Molybdenur	n										
1081	-											
1082						General	Statistics					
1084			Total	Number of C	Observations	21			Numbe	er of Distinct Obse	rvations	14
1085									Numbe	r of Missing Obse	rvations	0
1086					Minimum	0.1					Mean	1
1087					Maximum	3.3					Median	0.9
1088					SD	0.722				Std. Error	of Mean	0.158
1089				Coefficient	of Variation	0.722				Sk	ewness	1.938
1090				Mean of	logged Data	-0.241				SD of logg	ed Data	0.771
1091					Mannarana	telo Diotelhu	tion Free LI		100			
1092				Data	Nonparame	ama Distrib	utod at 5% 9		ics oo Lovel			
1093				Data				Ignitioun				
1094					As	sumina Nor	mal Distribu	tion				
1095			95% No	ormal UCL				95	5% UCLs (Adj	usted for Skewne	ess)	
1090				95% Stu	dent's-t UCL	1.272			95% Adjuste	ed-CLT UCL (Che	en-1995)	1.33
1097									95% Modifi	ed-t UCL (Johnso	on-1978)	1.283
1099							1					
1100					Nonpar	ametric Dis	tribution Fre	e UCLs				
1101				95	% CLT UCL	1.259				95% Jackkr	nife UCL	1.272
1102			95%	Standard Bo	otstrap UCL	1.25				95% Bootstra	ip-t UCL	1.435
1103			9	5% Hall's Bo	otstrap UCL	2.724			95%	Percentile Bootst	rap UCL	1.267
1104			ę	95% BCA Bo	otstrap UCL	1.329						
1105			90% Ch	ebyshev(Mea	an, Sd) UCL	1.473			95% CI	nebyshev(Mean, S	3d) UCL	1.687
1106			97.5% Ch	ebyshev(Mea	an, Sd) UCL	1.984			99% CI	nebyshev(Mean, S	5d) UCL	2.567
1107						0						
1108				Dat-	00000-0	Suggested	UCL to Use	mmc D'-	tribution			
1109				Data	appear Gan	ппа, мау w	ant to try Ga	amma Dis	u IDUŭON			
1110												

	А	В	С	D		F	G	Н		J	K	L
1				Nonparamet	ric UCI	_ Statistics	for Data Set	s with Non-	Detects			
2												
3		User Sele	cted Options									
4	Dat	te/Time of C	omputation	ProUCL 5.11/13/2	020 2:2	22:32 PM						
4 E			From File	WorkSheet.xls								
5		Fu	II Precision	OFF								
0		Confidence	Coefficient	95%								
/	Number o	of Bootstran	Operations	2000								
8	- Number e	Doototrup	operatione	2000								
9												
10	N	loto: Suggo	ctions record	ing the coloction of	0.0E%		ovided to be	In the upper to	coloct the r	noct oppropri	ata 0.5% LIC	
1111	1	vote. Sugge			a 35 /0			distribution				L.
1112		Th			ile bas					SS.		
1113		These recoi	Inmenuations				tulation stud	ies summan.	zeu in Singn	, Maichie, and		
1114	нс	wever, simu	liations result	s will not cover all f	Real W	oria data se	ts; for additio	onal insight ti	ne user may	want to cons	uit a statistic	lan.
1115												
1116												
1117	Nickel											
1118												
1119						General	Statistics					
1120			Total	Number of Observ	ations	5			Numbe	r of Distinct C	bservations	5
1121									Number	r of Missing C	bservations	0
1122				Min	imum	10					Mean	17.4
1123				Мах	imum	23					Median	18
1124					SD	5.128				Std. E	rror of Mean	2.293
1125				Coefficient of Va	riation	0.295					Skewness	-0.607
1126				Mean of logged	Data	2.816				SD of	logged Data	0.33
1127												
1128			Not	te: Sample size is	small (	e.g., <10), i	f data are co	ollected usir	g ISM appro	bach		
1120				you may want to	use C	hebyshev l	JCL to estim	ate EPC (IT	RC, 2012).			
1120			Che	byshev UCL can b	e com	outed using	the Nonpar	ametric and	All UCL Op	tions.		
1131												
1132				Nonp	arame	tric Distribu	tion Free UC	CL Statistics				
1133				Data appe	ar Nor	mal Distribu	ited at 5% S	ignificance	Level			
1134												
1135					Ass	uming Nor	mal Distribut	tion				
1136			95% No	ormal UCL				95%	UCLs (Adju	isted for Ske	wness)	
1137				95% Student's-	t UCL	22.29			95% Adjuste	d-CLT UCL (	Chen-1995)	20.51
1132									95% Modifie	ed-t UCL (Joh	nnson-1978)	22.19
1120												
1140				N	lonpar	ametric Dis	tribution Fre	e UCLs				
1140				95% CL1	UCL	21.17				95% Ja	ckknife UCL	22.29
1141			95%	Standard Bootstrar	UCL	20.79				95% Boo	tstrap-t UCL	21.48
1142			9	5% Hall's Bootstrar	UCL	20.89			95% F	Percentile Bo	otstrap UCL	20.6
1143			ç	95% BCA Bootstrar	UCL	20						
1144			90% Ch	ebvshev(Mean_Sd	) UCI	24.28			95% Ch	ebyshev(Me:	an, Sd) UCI	27.4
1145			97.5% Ch	ebyshev(Mean, Sd		31.72			99% Ch	ehvshev(Me	an, Sd) UCL	40.22
1146			07.070 011		,002	01.72			0070 011	ebyonev(met		40.22
1147						Suggested	LICL to Liea					
1148				Data anno	ar Nor	mal May w	ant to to N	rmal Dietrik	ution			
1149	ļ			Data appe		mai, ividy W	ant to try NC	amai Distrib	auvil			
1150	ļ	lata: Surra	otione re '	ing the selection of	0 0E0/		ovided to b	In the ware t		noot on read		
1151	r	NOIE. SUGGE	suoris regard	ing the selection of	a 95%	occ are pr	ovidea to he	diotribution	and electric	nosi appropri	ate 95% UC	L.
1152		<b>T</b> h -	R	ecommendations a	ire bas	ea upon dai	la size, data	uistribution,	and skewne	ss.		
1153		i nese recoi	mmendations	are based upon th	e resul	ts of the sin	ulation studi	ies summari	zea in Singh	, waichle, and	u Lee (2006)	·
1154	Нс	owever, simu	lations result	s will not cover all F	Real W	orid data se	ts; for additic	onal insight t	ne user may	want to cons	ult a statistic	ian.
1155												
1156		Note: For	highly negati	vely-skewed data,	confid	ence limits	(e.g., Chen,	, Johnson, L	ognormal, a	nd Gamma)	may not be	
1157			reliable. C	Chen's and Johnso	n's me	thods provi	de adjustme	ents for posi	tvely skewe	d data sets.		
1150												

## Appendix "A" to Report PW19008(g)/LS19004(f) Page 378 of 486

	А	В	С	D	E	F	G	Н		J	K	L
1				Nonpara	metric UC	L Statistics	for Data Set	ts with Non-	Detects			
2												
3		User Sele	cted Options	5 1101 5 111								
4	Da	ate/Time of C	omputation	ProUCL 5.11/	13/2020 2:	22:32 PM						
5			From File	WorkSheet.xk	S							
6		Confidonoo										
7	Number	of Bootstran		2000								
8	Number	oi Dootatiap	operations	2000								
9												
1150	Selenium											
1160												
1161						General	Statistics					
1162			Total	Number of Ob	servations	21			Numbe	r of Distinct C	bservations	2
1163				Number	of Detects	3				Number of N	Ion-Detects	18
1164			Nu	umber of Distin	ct Detects	2			Numbe	er of Distinct N	Ion-Detects	1
1165				Minim	um Detect	0.7				Minimum	Non-Detect	0.7
1166				Maxim	um Detect	1.5				Maximum	Non-Detect	0.7
1167				Variano	ce Detects	0.213				Percent N	Ion-Detects	85.71%
1168				Mea	an Detects	0.967					SD Detects	0.462
1169				Media	an Detects	0.7					CV Detects	0.478
1170				Skewnes	ss Detects	1.732				Kurto	osis Detects	N/A
1171				Mean of Logge	ed Detects	-0.103				SD of Log	ged Detects	0.44
1172				v	Vorning: D	ata aat haa	only 2 Data	ated Volues				
1173			Tł	v vie ie not enou	ab to comr		only 5 Dete	ble etatietice	and octima	toe		
1174					gii to comp		giui or relia	Die statistics	and counta		-	-
1175												
1176				N	lonparame	tric Distribu	tion Free U	CL Statistics	3			
1170			Det	ected Data ap	pear Appro	oximate Nor	mal Distribu	ited at 5% S	ignificance	Level		
1179				-					-		-	-
1180			Kaplan-N	Meier (KM) Sta	atistics usir	ng Normal C	ritical Value	es and other	Nonparame	etric UCLs		
1181					Mean	0.738				Standard Er	ror of Mean	0.0455
1182					SD	0.17				95% KM	(BCA) UCL	N/A
1183				95% K	(M (t) UCL	0.817			95% KM (F	Percentile Boo	tstrap) UCL	N/A
1184				95% K	M (z) UCL	0.813				95% KM Boo	istrap t UCL	N/A
1185			9	0% KM Cheby	shev UCL	0.875			ę	95% KM Chet	byshev UCL	0.937
1186			97.	.5% KM Cheby	shev UCL	1.022			(	99% KM Chel	byshev UCL	1.191
1187			0						15.			
1188			Statis		estimates	On Logged I	Data and As	suming Log				1 751
1189				KM Moo	D (logged)	0.102			95%			0.726
1190			KM Standar	rd Error of Mea	n (logged)	-0.32				95% H-UC		0.720
1191					ii (logged)	0.0101				00,011 00	E (Run Eog)	0.704
1192						Suggested	UCL to Use	)				
1193				Data	appear No	rmal, May v	vant to try N	ormal Distri	bution.			
1194		Note: Sugge	stions regard	ing the selection	on of a 95%	UCL are pr	ovided to he	Ip the user to	o select the r	nost appropri	ate 95% UC	
1195			R	ecommendatio	ons are bas	sed upon dat	ta size, data	distribution,	and skewne	SS.		
1197		These reco	mmendations	are based up	on the resu	Its of the sin	nulation stud	ies summari	zed in Singh	, Maichle, and	d Lee (2006)	
1198	н	owever, simu	ulations result	s will not cover	all Real W	orld data se	ts; for additio	onal insight t	he user may	want to cons	ult a statistici	ian.
1199	1											
1200	Silver											
1201												
1202						General	Statistics					
1203			Total	Number of Ob	servations	21			Numbe	r of Distinct C	bservations	20
1204				Number	of Detects	20				Number of N	Ion-Detects	1
1205			Nu	umber of Distin	ct Detects	19			Numbe	er of Distinct N	Non-Detects	1
1206				Minim	um Detect	0.06				Minimum	Non-Detect	0.05

## Appendix "A" to Report PW19008(g)/LS19004(f) Page 379 of 496 of 486

	A B C D E	F	G H I J K	L
1	Nonparametric UC	L Statistics	for Data Sets with Non-Detects	
2				
3	User Selected Options			
4	Date/Time of Computation ProUCL 5.11/13/2020 2:	22:32 PM		
5	From File WorkSheet.xls			
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
10	Maximum Datast	27	Mavimum Nan Dataat	0.05
1207		42.21	Maximum Non-Detect	0.05
1208	Mean Detects	42.21	SD Detects	6.407
1209	Median Detects	4.997	SD Delects	1 3
1210	Skewness Detects	2 5 2 1	Kurtosis Detects	6.922
1211	Mean of Logged Detects	0.859	SD of Logged Detects	1 / 39
1212	Wear of Logged Delects	0.055	3D of Logged Delects	1.433
1213	Nonparame	tric Distribu	tion Free LICL Statistics	
1214	Detected Data appea	r Gamma D	istributed at 5% Significance Level	
1215				
1216	Kaplan-Meier (KM) Statistics usin	na Normal C	critical Values and other Nonparametric UCLs	
1217	Mean	4.761	Standard Error of Mean	1.404
1210	SD	6.269	95% KM (BCA) UCL	7.471
1219	95% KM (t) UCL	7.182	95% KM (Percentile Bootstrap) UCL	7.155
1220	95% KM (z) UCL	7.07	95% KM Bootstrap t UCL	9.62
1221	90% KM Chebyshev UCL	8.972	95% KM Chebyshev UCL	10.88
1222	97.5% KM Chebyshev UCL	13.53	99% KM Chebyshev UCL	18.73
1223				
1224	Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution	
1225	KM SD (logged)	1.596	95% Critical H Value (KM-Log)	3.466
1220	KM Mean (logged)	0.676	KM Geo Mean	1.965
1228	KM Standard Error of Mean (logged)	0.357	95% H-UCL (KM -Log)	24.21
1229				
1230		Suggested	UCL to Use	
1231	Data appear Ga	mma, May	want to try Gamma Distribution	
1232	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL	
1233	Recommendations are bas	sed upon da	ta size, data distribution, and skewness.	
1234	These recommendations are based upon the resu	ilts of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
1235	However, simulations results will not cover all Real W	/orld data se	ts; for additional insight the user may want to consult a statisticia	an.
1236				
1238	Thallium			
1239				
1240		General	Statistics	10
1241	I otal Number of Observations	21	Number of Distinct Observations	12
1242			Number of Missing Observations	0
1243	Minimum	0.04	Mean	0.122
1244	Maximum	0.25	Median	0.11
1245	SD Coefficient of Verietion	0.0441	Sta. Enor of Mean	0.00963
1246	Coefficient of Variation	0.362	Skewness	0.999
1247	Mean of logged Data	-2.109	SD of logged Data	0.382
1248	Non-com	tric Distrike	tion Free LICL Statistics	
1249		mol Distribu	tool of E% Statistics	
1250			ateu at 3 % Signinicance Levei	
1251	A	eumina Nor	mel Dietribution	
1252	AS Q5% Normal LICI	auning NOF		
1253	9370 NOTITIAL UCL	0 120	95% Adjusted OLT LICL (Chap 1005)	0.14
1254	ap 2 gindent 2-t OCL	0.139	95 / Aujusieu-ULT UUL (UTIEN-1995) 05% Madified + LULT (Johnson 1070)	0.14
1255			95% Woullieu-t UCL (Johnson-1978)	0.139

	A B C	D E	F	G	Н		J K		L			
1	· · ·	Nonparametric UC	L Statistics	for Data Set	s with Non-	Detects			]			
2	Liner Colected Ontions											
3	Date/Time of Computation	ProLICI 5 11/13/2020 2:	22-32 DM									
4	From File	WorkSheet.xls	22.52111									
5	Full Precision	OFF										
7	Confidence Coefficient	95%										
8	Number of Bootstrap Operations	2000										
9												
10												
1256												
1257		Nonpar	rametric Dis	stribution Fre	e UCLs		050/ 1 11 1/		0.100			
1258	05%	95% CLT UCL Standard Bootstran UCL	0.138				95% Jackknife	UCL	0.139			
1259	90%	5% Hall's Bootstrap UCL	0.137			95%	Percentile Bootstrap	UCL	0.141			
1260		95% BCA Bootstrap UCL	0.14			0070		UUL				
1261	90% Ch	ebyshev(Mean, Sd) UCL	0.151			95% C	hebyshev(Mean, Sd)	UCL	0.164			
1262	97.5% Ch	ebyshev(Mean, Sd) UCL	0.182			99% C	hebyshev(Mean, Sd)	UCL	0.218			
1264			L	1								
1265	Suggested UCL to Use											
1266		Data appear Nor	rmal, May v	vant to try No	rmal Distrib	ution						
1267												
1268	Note: Suggestions regard	ing the selection of a 95%	UCL are p	rovided to hel	p the user to	select the	most appropriate 95%	% UCL				
1269	These recommendations	are based upon the resu	tea upon aa	nulation studi	distribution,	and skewn	ess. Maichle, and Lee (1	2006)				
1270	However simulations result	s will not cover all Real W	forld data se	ts: for additio	nal insight th	e user ma	want to consult a sta	atistici:	an			
1271					nui inoigitt u			2100101				
1272												
1273	Uranium											
1275												
1276			General	Statistics								
1277	Total	Number of Observations	21			Numb	er of Distinct Observa	tions	17			
1278						Numbe	er of Missing Observa	tions	0			
1279		Minimum	0.3				N	/lean	0.54			
1280		SD	0.01				Std. Error of N	lean	0.03			
1281		Coefficient of Variation	0.25				Skew	ness	0.323			
1282		Mean of logged Data	-0.648				SD of logged	Data	0.257			
1284												
1285		Nonparame	tric Distribu	ution Free UC	L Statistics	;						
1286		Data appear Nor	mal Distrib	uted at 5% S	ignificance	Level						
1287												
1288		As	suming No	rmal Distribut	ion							
1289	95% No	05% Student's turc	0 50		95%	UCLS (Ad	usted for Skewness)	0051	0.50			
1290		95% Student S-t UCL	0.59		:	95% Modif	ied-t UCL (Johnson 1	995)	0.59			
1291								570)	0.001			
1292		Nonpar	rametric Dis	stribution Fre	e UCLs							
1293		95% CLT UCL	0.588				95% Jackknife	UCL	0.59			
1295	95%	Standard Bootstrap UCL	0.586	1			95% Bootstrap-t	UCL	0.592			
1296	9	5% Hall's Bootstrap UCL	0.591			95%	Percentile Bootstrap	UCL	0.585			
1297		95% BCA Bootstrap UCL	0.591									
1298	90% Ch	ebyshev(Mean, Sd) UCL	0.628			95% C	hebyshev(Mean, Sd)	UCL	0.668			
1299	97.5% Ch	ebyshev(Mean, Sd) UCL	0.723			99% C	hebyshev(Mean, Sd)	UCL	0.832			
1300			Queen									
1301		Data annear No	Suggested	VOL TO USE	rmal Dietrik	ution						
1302		Data appear NO	mai, way v		innai Distrib	adon						
1303												

	А	В	С	D	Е	F	G	Н		J	K	L
1				Nonpara	metric UC	L Statistics	for Data Set	ts with Non-	Detects			
2												
3		User Sele	ected Options									
4	Dat	e/Time of C	omputation	ProUCL 5.11/	13/2020 2:	22:32 PM						
4 E			From File	WorkSheet.xls	5							
5		Fu	III Precision	OFF								
0		Confidence	Coefficient	95%								
/	Number o	of Bootstran	Operations	2000								
8		Beetanap	operatione	2000								
9												
10	N	loto: Suggo	ctions regard	ing the coloctio	n of a 05%		ovided to be	In the upper to	a coloct the r	noct oppropri		
1304		vote. Sugge		ing the selectio				diatribution				L.
1305		Th								55. Maiable and	(0000)	
1306		These reco	Inmenuations	are based upo				ies summan.	zeu in Singn	, Maichie, and	1 Lee (2006)	
1307	по	wever, sinu	Jiations result	s will not cover	all Real W	onu uata se	is, for addition	nai insigni i	le user may	want to cons	uit a statistic	ian.
1308												
1309												
1310	Vanadium											
1311												
1312						General	Statistics					
1313			Total	Number of Obs	servations	5			Numbe	r of Distinct O	bservations	5
1314									Number	r of Missing O	bservations	0
1315					Minimum	11					Mean	15.2
1316					Maximum	19					Median	15
1317					SD	3.347				Std. Er	ror of Mean	1.497
1318				Coefficient of	f Variation	0.22					Skewness	-0.088
1319				Mean of log	ged Data	2.701				SD of I	ogged Data	0.227
1320												
1321			Not	te: Sample size	e is small (	e.g., <10), i	if data are co	ollected usir	ig ISM appro	oach		
1221				you may war	nt to use C	hebyshev l	JCL to estim	nate EPC (II	RC, 2012).			
1222			Che	byshev UCL ca	an be com	puted using	the Nonpar	ametric and	All UCL Op	tions.		
1323												
1324				N	lonparame	tric Distribu	tion Free U	CL Statistics	;			
1325				Data a	ppear Nor	mal Distribu	uted at 5% S	Significance	Level			
1326												
1327					As	sumina Nor	mal Distribu	tion				
1328			95% No	rmal LICI	,	,		95%	UCI s (Adii	isted for Ske	wness)	
1329			00/0110	95% Stude	nt's_t LICI	18 30		0070			Chen_1995)	17.6
1330				55% Oldde	III 3-1 00L	10.00			95% Modify		unson 1078)	18.38
1331									35 /8 WOULIN		1301-1370)	10.50
1332					Nenner	omotrio Dia	tribution Ero					
1333				059/		17.66		IO OCLS		0E% las	lidenifa LICI	19.20
1334			050/	95%		17.00				95% Jac		10.39
1335			95%		strap UCL	10.4			050/	95% B001	strap-t UCL	10.00
1336			9	5% Hall'S Boots	suap UCL	17.0			95%	Percentile Boo	Distrap UCL	17.4
1337			0001 01	15% BCA Boots	suap UCL	17.2			0501 51			04 70
1338			90% Ch	ebyshev(Mean	, Sd) UCL	19.69			95% Ch	ebyshev(Mea	an, Sd) UCL	21.72
1339			97.5% Ch	ebyshev(Mean	, Sd) UCL	24.55			99% Ch	ebyshev(Mea	an, Sd) UCL	30.09
1340												
1341						Suggested	UCL to Use	)				
1342				Data a	ppear Nor	mal, May w	ant to try No	ormal Distrib	oution			
1343												
1344	١	Note: Sugge	stions regard	ing the selectio	n of a 95%	UCL are pr	ovided to he	lp the user to	select the r	nost appropri	ate 95% UC	L.
1345			R	ecommendatio	ons are bas	ed upon da	ta size, data	distribution,	and skewne	SS.		
1346		These reco	mmendations	are based upo	on the resu	Its of the sin	nulation stud	ies summari	zed in Singh	, Maichle, and	Lee (2006)	
1347	Ho	wever, simu	ulations result	s will not cover	all Real W	orld data se	ts; for additio	onal insight t	ne user may	want to cons	ult a statistic	ian.
1348												
1340		Note: For	highly negati	vely-skewed d	lata, confid	lence limits	(e.g., Chen,	, Johnson, L	ognormal, a	nd Gamma)	may not be	
10-10			reliable. C	hen's and Joh	nson's me	thods provi	ide adjustme	ents for posi	tvely skewe	d data sets.		
1250								-				

	A	В	С	D	E	F	G	ŀ	1		J	K	$\Box$	L
1				Nonpara	metric UC	L Statistics	for Data Set	ts with	Non-I	Detects				
2														
3		User Sele	ected Options											
4	Date	e/Time of C	Computation	ProUCL 5.11/1	13/2020 2:	22:32 PM								
5			From File	WorkSheet.xls	6									
6		Fi	ull Precision	OFF										
7		Confidence	e Coefficient	95%										
8	Number of	f Bootstrap	Operations	2000										
9														
10														
1352														
1353	Zinc													
1354														
1355						General	Statistics				(5)			
1356			l otal	Number of Obs	servations	5				Number	r of Distinct	Observatio	ns	5
1357										Number	of Missing	Observatio	ns	0
1358					Minimum	30						Me	an	202
1359					Maximum	339					0.1	IVIEdi	an	250
1360				0 (	SD	136.7					Std.	Error of Me	an	61.12
1361				Coefficient of	variation	0.677					05	Skewne	SS	-0.469
1362				Mean of log	ged Data	4.985					SD o	of logged Da	ita	1.04
1363			Ne				6 d	- 11 4		- 1014				
1364			NO	te: Sample size	e is small (	e.g., <10), I	r data are c		a usin	g ISM appro	bach			
1365			Oha	you may wan		nebysnev (	Abe Menner			RC, 2012).	Nama		-	
1366			Che	bysnev UCL ca	an de com	putea using	the Nonpai	rametri	c and	All UCL Op	tions.			
1367				N		tula Distribu	tion Free LI							
1368				Dete e	onparame	mel Distribu		UL SIA	usucs	evel				
1369				Data a	ppear Nor	mai Distribu	iteu at 5% c	significa	ance	Levei				
1370					A 61		mal Distribu	tion						
1371			95% N		13	suming room		uon	05%	LICLe (Adiu	eted for SI	kownose)		
1372			9070 N	05% Studer	nt's t LICI	333.3			30 /0	5% Adjuste		(Chen 100	15)	288.8
1373				35 % Studer	III S-I OCL	552.5				05% Modifie		lohnson 10	78)	200.0
1374										oo /o moune	001002(0		0)	000.2
1375					Nonnar	ametric Dis	tribution Fre	e UCI	8					
1376				95%	CLT UCL	302.5					95%	Jackknife U(	CL	332.3
1377			95%	Standard Boots	strap UCL	291.1					95% Bo	potstrap-t U(	CL	308.5
1378			9	5% Hall's Boots	strap UCL	261.3				95% F	Percentile E	Bootstrap U(	CL	289.8
1379				95% BCA Boots	strap UCL	285.6								
1380			90% Ch	ebvshev(Mean.	. Sd) UCL	385.4				95% Ch	ebvshev(M	lean. Sd) U(	CL	468.4
1381			97.5% Ch	ebyshev(Mean.	, Sd) UCL	583.7				99% Ch	ebyshev(M	lean, Sd) U(	CL	810.2
1382					,		I					, .		
1204						Suggested	UCL to Use	)						
1205				Data a	ppear No	mal, May w	ant to try No	ormal C	Distrib	ution				
1300							-							
1300	N	lote: Sugge	estions regard	ing the selection	n of a 95%	UCL are pr	ovided to he	lp the ι	user to	select the n	nost appror	priate 95% I	JCL.	
130/			F	Recommendatio	ns are bas	ed upon dat	a size, data	distribu	ution, a	and skewnes	SS.			
1380		These reco	ommendations	s are based upo	on the resu	Its of the sin	ulation stud	ies sun	nmariz	ed in Singh,	Maichle, a	and Lee (20	J6).	
1300	Но	wever, sim	ulations result	ts will not cover	all Real W	orld data se	ts; for addition	onal ins	sight th	ne user may	want to co	nsult a statis	sticia	n.
1390														
1307		Note: For	highly negat	ively-skewed d	ata, confic	lence limits	(e.g., Chen	, Johns	son, L	ognormal, a	nd Gamma	a) may not I	be	
1302			reliable. (	Chen's and Joh	Inson's me	thods provi	de adjustme	ents for	r posit	vely skewed	d data sets	j.		
130/														
1395	Ammonia a	nd Ammon	nium (as N)											
1396			-											
1307						General	Statistics							
1392			Total	Number of Obs	servations	21				Number	r of Distinct	Observatio	ns	2
1399				Number o	of Detects	16					Number o	of Non-Deter	cts	5
1000							1							

## Appendix "A" to Report PW19008(g)/LS19004(f) Page 383 of 394 of 486

	A B C	D E	F	G	Н		J	K	L
1		Nonparametric UC	L Statistics	for Data Set	ts with Non-	Detects			
2		1							
3	User Selected Options		00 00 DM						
4	Date/Time of Computation	ProUCL 5.11/13/2020 2:	22:32 PM						
5	From File								
6	Confidence Coefficient	OFF 05%							
7	Number of Bootstrap Operations	2000							
8		2000							
9									
10	N	umber of Distinct Detects	2			Numbe	er of Distinct No	n-Detects	1
1400		Minimum Detect	100				Minimum No	on-Detect	100
1401		Maximum Detect	200				Maximum No	on-Detect	100
1402		Variance Detects	2667				Percent Nor	n-Detects	23.81%
1403		Mean Detects	150				SI	D Detects	51.64
1404		Median Detects	150				C/	V Detects	0.344
1405		Skewness Detects	0				Kurtosi	s Detects	-2.308
1400		Mean of Logged Detects	4.952				SD of Logge	d Detects	0.358
1408				I					
1400		Nonparame	tric Distribu	tion Free U	CL Statistics	;			
1410		Data do not follow a D	iscernible D	istribution a	t 5% Signific	ance Level			
1411									
1412	Kaplan-	Meier (KM) Statistics usir	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
1413		Mean	138.1				Standard Erro	r of Mean	10.94
1414		SD	48.56				95% KM (B	CA) UCL	N/A
1415		95% KM (t) UCL	157			95% KM (P	ercentile Bootst	rap) UCL	N/A
1416		95% KM (z) UCL	156.1			9	95% KM Bootsti	rap t UCL	N/A
1417	ç	00% KM Chebyshev UCL	170.9			ç	5% KM Chebys	shev UCL	185.8
1418	97	.5% KM Chebyshev UCL	206.4			ç	99% KM Chebys	shev UCL	247
1419									
1420	Statis	tics using KM estimates	on Logged I	Data and As	suming Log	normal Dist	ribution		
1421		KM SD (logged)	0.337			95% (	Critical H Value	(KM-Log)	1.858
1422		KM Mean (logged)	4.869				KM G	ieo Mean	130.2
1423	KM Standa	rd Error of Mean (logged)	0.0759				95% H-UCL (	KM -Log)	158.5
1424			0						
1425		0E9/ KM (4) LICI	JEZ	UCL to Use	1		L.		1E0 E
1426		95% KM (RCA) UCL	157				ĸ	M H-UCL	158.5
1427		Warning: One or r		mended LIC	'l (e) not ave	ailablal			
1428	Note: Suggestions regard	ling the selection of a 95%		ovided to be	In the user to	select the r	nost annronriate	95% UCI	
1429	F	Recommendations are bas	sed upon dat	ta size, data	distribution.	and skewne	ss.		
1430	These recommendations	s are based upon the resu	Its of the sin	ulation stud	ies summariz	zed in Singh	Maichle, and L	ee (2006).	
1431	However, simulations result	ts will not cover all Real W	orld data se	ts; for additio	onal insight th	ne user may	want to consult	a statistici	an.
1/32					-				
1/3/	Kjeldahl Nitrogen Total								
1434									
1436			General	Statistics					
1437	Total	Number of Observations	21			Numbe	r of Distinct Obs	ervations	13
1438		Number of Detects	20				Number of Nor	n-Detects	1
1439	N	umber of Distinct Detects	12			Numbe	er of Distinct Nor	n-Detects	1
1440		Minimum Detect	200				Minimum No	on-Detect	100
1441		Maximum Detect	1500				Maximum No	on-Detect	100
1442		Variance Detects	142605				Percent Nor	n-Detects	4.762%
1443		Mean Detects	795				SI	D Detects	377.6
1444		Median Detects	750				C/	V Detects	0.475
1445		Skewness Detects	0.265				Kurtosi	s Detects	-0.605
1446		Mean of Logged Detects	6.544				SD of Logge	d Detects	0.577
1447								L	

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonparar	metric UC	L Statistics	for Data Set	ts with Non-	Detects			
2		Lisor Solo	cted Options									
3	Dat			ProUCL 5 11/1	13/2020 2-	22-32 PM						
4	Dat		From File	WorkSheet vis	15/2020 2.	22.021111						
5		Fu	Il Precision	OFF								
6		Confidence	Coefficient	95%								
, ,	Number o	f Bootstrap	Operations	2000								
0												
10												
1448				N	onparame	tric Distribu	tion Free U	CL Statistics	;			
1449				Detected Da	ata appea	r Normal Di	stributed at	5% Significa	ance Level			
1450												
1451			Kaplan-N	deier (KM) Stat	tistics usir	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
1452					Mean	761.9				Standard Err	or of Mean	86.98
1453					SD	388.5				95% KM (	(BCA) UCL	895.2
1454				95% KI	M (t) UCL	911.9			95% KM (P	ercentile Boot	strap) UCL	900
1455				95% KN	/ (z) UCL	905				95% KM Boots	strap t UCL	914.4
1456			9	0% KM Chebys	shev UCL	1023				5% KM Cheby	yshev UCL	1141
1457			97.	5% KM Chebys	snev UCL	1305			5	9% KM Cheb	ysnev UCL	1627
1458			Statie	tice using KM a	etimatae	on Logged I	Data and Ac	eumina Loa	normal Diet	dibution		
1459			Statis			0.687		Suming Log	95% (	Critical H Value	e (KM-Loa)	2 177
1460				KM Mean	(logged)	6 452			5570 (	KM	Geo Mean	633.7
1461			KM Standar	d Error of Mean	(logged)	0.154				95% H-UCL	(KM -Loa)	1121
1462					(33)						(3)	
1403						Suggested	UCL to Use	)				
1465				Data a	appear No	rmal, May w	ant to try N	ormal Distri	bution.			
1466	N	lote: Sugge	stions regard	ing the selectior	n of a 95%	UCL are pr	ovided to he	Ip the user to	o select the r	nost appropria	te 95% UC	L.
1467			R	ecommendatio	ns are bas	ed upon dat	a size, data	distribution,	and skewne	SS.		
1468		These record	mmendations	are based upo	n the resu	Its of the sim	ulation stud	ies summari	zed in Singh	, Maichle, and	Lee (2006)	
1469	Ho	wever, simu	lations result	s will not cover	all Real W	orld data se	ts; for additio	onal insight t	he user may	want to consu	It a statistic	ian.
1470												
1471												
1472	Phosphorus	5										
1473							<b>.</b>					
1474			Tatal	Number of Obs		General	Statistics		Niccostra			01
1475			l otal	Number of Obs	ervations	21			Numbe	r of Distinct Ot	oservations	21
1476					Minimum	563			INUITIDE	or missing U	Mean	1033
1477					Maximum	1820					Median	937
1478					SD	330.8				Std Fr	or of Mean	72,19
1479				Coefficient of	Variation	0.32				5.u. Ell	Skewness	1.092
1480				Mean of log	ged Data	6.895				SD of lo	ogged Data	0.304
1481					0							
1482				N	onparame	tric Distribu	tion Free U	CL Statistics	;			
1484				Data ap	opear Gar	nma Distribu	uted at 5% S	Significance	Level			
1485												
1486	1				As	suming Nori	mal Distribu	tion				
1487			95% No	ormal UCL				95%	UCLs (Adju	isted for Skew	vness)	
1488				95% Studer	nt's-t UCL	1157			95% Adjuste	d-CLT UCL (C	Chen-1995)	1170
1489									95% Modifie	ed-t UCL (Johr	nson-1978)	1160
	1											

	А	В	С	D	E	F	G	Н		J	K	L
1			-	Nonpa	rametric UC	L Statistics	for Data Set	ts with Non-	Detects	-	7	
2												
3		User Sele	cted Options									
4	Date	e/Time of Co	omputation	ProUCL 5.1	1/13/2020 2	:22:32 PM						
5			From File	WorkSheet.	xls							
6		Fu	II Precision	OFF								
7	(	Confidence	Coefficient	95%								
8	Number of	f Bootstrap (	Operations	2000								
9												
10												
1491					Nonpa	rametric Dis	tribution Fre	e UCLs				
1492				95	% CLT UCL	1151				95% Ja	ckknife UCL	1157
1493			95%	Standard Bo	otstrap UCL	1149				95% Boo	tstrap-t UCL	1186
1494			9	5% Hall's Bo	otstrap UCL	1193			95%	Percentile Bo	otstrap UCL	1160
1495			ç	95% BCA Bo	otstrap UCL	1163						
1496			90% Ch	ebyshev(Mea	an, Sd) UCL	1249			95% Ch	ebyshev(Me	an, Sd) UCL	1347
1497			97.5% Ch	ebyshev(Mea	an, Sd) UCL	1484			99% Ch	ebyshev(Me	an, Sd) UCL	1751
1498												
1499						Suggested	UCL to Use	)				
1500				Data	appear Gar	nma, May w	ant to try Ga	amma Distri	bution			
1501												
1502	N	lote: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	Ip the user to	o select the r	nost appropri	iate 95% UC	L.
1503			F	ecommenda	tions are bas	sed upon dat	ta size, data	distribution,	and skewne	SS.		
1504		These recor	nmendations	are based u	pon the resu	ults of the sim	nulation stud	ies summari	zed in Singh	, Maichle, an	d Lee (2006)	•
1505	Ho	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	onal insight t	he user may	want to cons	sult a statistic	ian.
1506												
#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 386 of 399 of 486

	A	В	С	D	E	F	G	Н		J	K	L	М
1				General Sta	itistics on U	ncensored D	Data						
2	Da	te/Time of Co	mputation	ProUCL 5.1	1/28/2020 3:	53:17 PM							
3		User Select	ted Options										
4			From File	SED 0-0.15r	mbg Chemis	try_input_v7	.xls						
5		Full	Precision	OFF									
6													
7	From File:	SED 0-0.15m	nbg Chemist	try_input_v7.	.xls								
8													
9			Ger	neral Statistic	cs for Censo	ored Data Se	et (with NDs)	) using Kapla	an Meier Me	thod			
10													
11	Vai	riable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
12		aluminum	6	17	6	0	0.00%	N/A	N/A	10842	2569377	1603	0.148
13		antimony	22	1	7	15	68.18%	0.8	0.8	0.723	0.0717	0.268	0.37
14		arsenic	22	1	22	0	0.00%	N/A	N/A	4.551	3.314	1.82	0.4
15		barium	22	1	22	0	0.00%	N/A	N/A	103.8	1069	32.69	0.315
16		beryllium	22	1	22	0	0.00%	N/A	N/A	0.44	0.01	0.1	0.227
17		boron	15	8	15	0	0.00%	N/A	N/A	17.35	15.85	3.981	0.229
18		cadmium	22	1	22	0	0.00%	N/A	N/A	1.354	4.166	2.041	1.507
19	chro	mium (III+VI)	22	1	22	0	0.00%	N/A	N/A	24.88	46.11	6.79	0.273
20		copper	15	8	15	0	0.00%	N/A	N/A	70.43	1269	35.63	0.506
21		iron	6	17	6	0	0.00%	N/A	N/A	22650	6135000	2477	0.109
22		lead	15	8	15	0	0.00%	N/A	N/A	37.67	381.1	19.52	0.518
23		manganese	6	17	6	0	0.00%	N/A	N/A	551.8	6909	83.12	0.151
24		mercury	6	17	6	0	0.00%	N/A	N/A	0.136	0.00549	0.0741	0.544
25		molybdenum	22	1	22	0	0.00%	N/A	N/A	1.216	0.256	0.506	0.416
26		nickel	15	8	15	0	0.00%	N/A	N/A	21.27	8.589	2.931	0.138
27		selenium	22	1	5	17	77.27%	0.5	0.7	0.579	0.025	0.158	0.273
28		silver	22	1	22	0	0.00%	N/A	N/A	0.721	0.777	0.881	1.223
29		sodium	6	17	6	0	0.00%	N/A	N/A	300	8910	94.39	0.315
30		thallium	22	1	22	0	0.00%	N/A	N/A	0.158	0.00284	0.0533	0.338
31		tin	6	17	6	0	0.00%	N/A	N/A	3.605	3.855	1.963	0.545
32		titanium	6	17	6	0	0.00%	N/A	N/A	126.8	279	16.7	0.132
33		uranium	22	1	22	0	0.00%	N/A	N/A	0.645	0.0139	0.118	0.183
34		vanadium	15	8	15	0	0.00%	N/A	N/A	19.33	18.6	4.313	0.223
35		zinc	15	8	15	0	0.00%	N/A	N/A	298.1	12894	113.6	0.381
36	ace	enaphthylene	22	1	8	14	63.64%	0.1	0.1	0.0273	0.00151	0.0389	1.425
37	a	cenaphthene	22	1	11	11	50.00%	0.1	0.1	0.189	0.111	0.333	1.764
38		anthracene	22	1	16	6	27.27%	0.1	0.1	0.426	0.917	0.957	2.248
39	benz(a	a)anthracene	22	1	22	0	0.00%	N/A	N/A	1.133	1.946	1.395	1.232
40	benzo(b)	fluoranthene	22	1	22	0	0.00%	N/A	N/A	1.593	2.987	1.728	1.085
41	benzo(b+j)fl	luoranthenes	6	17	6	0	0.00%	N/A	N/A	1.163	0.0401	0.2	0.172
42	benzo(g	j,h,i)perylene	22	1	22	0	0.00%	N/A	N/A	0.699	0.764	0.874	1.251
43	benzo(k)	fluoranthene	22	1	17	5	22.73%	0.2	0.2	0.514	0.235	0.485	0.945
44	ber	nzo(a)pyrene	22	1	22	0	0.00%	N/A	N/A	1.068	1.515	1.231	1.153
45		chrysene	22	1	22	0	0.00%	N/A	N/A	1.379	2.151	1.467	1.064
46	dibenz(a,ł	n)anthracene	22	1	13	9	40.91%	0.1	0.1	0.172	0.0226	0.15	0.875
47		fluoranthene	22	1	22	0	0.00%	N/A	N/A	3.49	25.55	5.055	1.449
48		fluorene	22	1	13	9	40.91%	0.1	0.1	0.229	0.146	0.382	1.668
49	indeno(1,2	,3-cd)pyrene	22	1	22	0	0.00%	N/A	N/A	0.603	0.487	0.698	1.157
50	methylna	phthalene, 1-	16	7	2	14	87.50%	0.1	0.1	0.109	6.9336E-4	0.0263	0.241
51	methylna	phthalene, 2-	22	1	9	13	59.09%	0.1	0.1	0.0554	0.00655	0.0809	1.462
52		naphthalene	22	1	11	11	50.00%	0.1	0.1	0.0975	0.0419	0.205	2.1

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 387eo 5498 of 486

	A	В	С	D	E	F	G	Н		J	K	L	М
1				General Sta	atistics on U	ncensored L	Data						
2	Dat	e/Time of Co	mputation	ProUCL 5.1	1/28/2020 3:	53:17 PM							
3		User Selec	ted Options										
4			From File	SED 0-0.15	mbg Chemis	try_input_v7	.xls						
5		Ful	Precision	OFF									
6					1		1		1	1			
53	pl	nenanthrene	22	1	22	0	0.00%	N/A	N/A	2.293	14.18	3.766	1.642
54		pyrene	22	1	22	0	0.00%	N/A	N/A	2.696	15.11	3.887	1.441
55	PAHs (	sum of total)	22	1	22	0	0.00%	N/A	N/A	14.8	428.8	20.71	1.399
56	a and ammo	onium (as N)	16	/	6	10	62.50%	100	100	150	/500	86.6	0.577
57	an	nmonia as N	6	17	6	0	0.00%	N/A	N/A	64.93	5858	76.54	1.179
58	kjeldani r	ntrogen total	22	17	22	0	0.00%	N/A	N/A	054.2	245131	495.1	0.757
59	nit	rogen (total)	6	17	3	3	50.00%	2000	2000	2007	1 571	/45.4	0.28
60	organic	phosphorus	22	17	2	0	0.00%		I N/A	2.317	1.571	1.204	0.341
61	For	21 Coliforms	17	6	16	1	5.88%	1000	1000	20204	1 703E+8	13380	0.515
62	1.60		17	0	10	I	5.00 /0	1000	1000	20234	1.755210	15565	0.00
63				Genera	Statistics f	or Raw Data	Sets using	Detected D	ata Only				
64				001010			sets doing	_ 0.00.04 D					
65	Var	iable	NumObs	# Missina	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	cv
67		aluminum	6	17	9030	13200	10842	10600	2569377	1603	2039	0.492	0.148
68		antimony	7	1	0.53	1.54	0.997	0.92	0.124	0.352	0.385	0.257	0.353
60		arsenic	22	1	3	12	4.551	4	3.314	1.82	0.593	3.536	0.4
70		barium	22	1	69	210	103.8	95.5	1069	32.69	26.83	1.703	0.315
70		beryllium	22	1	0.28	0.67	0.44	0.425	0.01	0.1	0.089	0.645	0.227
72		boron	15	8	11	23.5	17.35	17	15.85	3.981	4.448	0.358	0.229
73		cadmium	22	1	0.27	8.5	1.354	0.616	4.166	2.041	0.297	2.883	1.507
74	chror	nium (III+VI)	22	1	16	41	24.88	22	46.11	6.79	3.855	1.077	0.273
75		copper	15	8	30	170	70.43	63	1269	35.63	19.27	1.855	0.506
76		iron	6	17	18800	25600	22650	22800	6135000	2477	2743	-0.496	0.109
77		lead	15	8	13	87	37.67	34	381.1	19.52	17.94	1.073	0.518
78		manganese	6	17	390	623	551.8	577	6909	83.12	32.62	-1.96	0.151
79		mercury	6	17	0.057	0.255	0.136	0.104	0.00549	0.0741	0.0378	0.953	0.544
80	r	nolybdenum	22	1	0.6	2.4	1.216	1.075	0.256	0.506	0.282	1.258	0.416
81		nickel	15	8	16	26.6	21.27	21	8.589	2.931	1.927	-0.0158	0.138
82		selenium	5	1	0.7	1	0.848	0.8	0.0205	0.143	0.148	0.342	0.169
83		silver	22	17	0.083	3.3	0./21	0.379	0.///	04.20	0.289	2.1/1	1.223
84		thallium	22	1/	209	447	0 150	203	0.00204	94.39	0.0445	0.078	0.315
85		tin	6	17	1.00	6.203	3 605	3.64	3 855	1 963	2 535	0.554	0.536
86		titanium	6	17	101	150	126.8	125	279	16.7	13 34	-0.208	0.343
87		uranium	22	1	0.46	0.886	0.645	0.645	0.0139	0 118	0.0964	0.525	0.132
88		vanadium	15	8	13	28 7	19.33	18	18.6	4,313	3,558	0.489	0.223
89		zinc	15	8	167	532	298.1	272	12894	113.6	88.95	0.983	0.381
90	ace	naphthylene	8	1	0.011	0.18	0.0479	0.018	0.00396	0.0629	0.00815	1.787	1.314
91	ac	enaphthene	11	1	0.03	1.49	0.329	0.25	0.201	0.448	0.298	2.143	1.364
92		anthracene	16	1	0.08	4.69	0.556	0.155	1.279	1.131	0.0964	3.687	2.035
93	benz(a	)anthracene	22	1	0.18	6.6	1.133	0.645	1.946	1.395	0.363	3.208	1.232
94	benzo(b)	fluoranthene	22	1	0.32	8.37	1.593	1	2.987	1.728	0.549	3.171	1.085
90	penzo(b+j)fl	uoranthenes	6	17	0.9	1.4	1.163	1.2	0.0401	0.2	0.222	-0.236	0.172
97	benzo(g	,h,i)perylene	22	1	0.13	4.36	0.699	0.435	0.764	0.874	0.245	3.822	1.251
98	benzo(k)	fluoranthene	17	1	0.23	2.29	0.606	0.41	0.284	0.533	0.237	2.328	0.879

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 388 of 399 of 486

SLR Project No.: 209.40666 January 2020

	A	В	С	D	E	F	G	Н		J	K	L	М
1				General Sta	atistics on U	ncensored [	Data						
2	Da	te/Time of Co	mputation	ProUCL 5.1	1/28/2020 3:	53:17 PM							
3		User Select	ted Options										
4			From File	SED 0-0.15	mbg Chemis	try_input_v7	.xls						
5		Full	Precision	OFF									
6													
99	ber	nzo(a)pyrene	22	1	0.18	6.01	1.068	0.69	1.515	1.231	0.408	3.391	1.153
100		chrysene	22	1	0.26	7.15	1.379	0.875	2.151	1.467	0.615	3.209	1.064
101	dibenz(a,ł	n)anthracene	13	1	0.1	0.79	0.222	0.16	0.0348	0.187	0.0593	2.723	0.843
102		fluoranthene	22	1	0.59	24.5	3.49	1.955	25.55	5.055	1.223	3.783	1.449
103		fluorene	13	1	0.047	1.76	0.343	0.11	0.232	0.482	0.0934	2.493	1.405
104	indeno(1,2	,3-cd)pyrene	22	1	0.11	3.45	0.603	0.42	0.487	0.698	0.237	3.547	1.157
105	methylnap	ohthalene, 1-	2	7	0.15	0.2	0.175	0.175	0.00125	0.0354	0.0371	N/A	0.202
106	methylnap	ohthalene, 2-	9	1	0.0096	0.3	0.096	0.034	0.0142	0.119	0.0362	1.382	1.244
107		naphthalene	11	1	0.0089	0.98	0.177	0.13	0.0782	0.28	0.159	2.779	1.578
107	р	henanthrene	22	1	0.25	16.5	2.293	0.875	14.18	3.766	0.415	3.124	1.642
100		pyrene	22	1	0.47	18.9	2.696	1.49	15.11	3.887	0.912	3.804	1.441
110	PAHs (	(sum of total)	22	1	2.97	98.7	14.8	7.55	428.8	20.71	3.773	3.549	1.399
111	a and amm	onium (as N)	6	7	100	400	233.3	200	10667	103.3	74.13	0.666	0.443
110	ar	mmonia as N	6	17	3.6	190	64.93	26.5	5858	76.54	26.98	1.169	1.179
112	kjeldahl i	nitrogen total	22	1	5.8	1900	654.2	600	245131	495.1	444.8	0.85	0.757
113	ni	trogen (total)	3	17	3000	4000	3333	3000	333333	577.4	0	1.732	0.173
114	organic	phosphorus	5	17	1.1	4.6	2.58	2.4	1.837	1.355	1.038	0.745	0.525
115		phosphorus	22	1	598	1622	904.4	816	81035	284.7	209	1.383	0.315
110	Fe	cal Coliforms	16	6	3000	45000	21500	18000	1.768E+8	13297	11861	0.572	0.618
110													
110				Perc	entiles using	g all Detects	(Ds) and No	on-Detects (	NDs)				
120													
121	Var	riable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
122		aluminum	6	17	9225	9420	9690	10600	11825	12200	12700	12950	13150
122		antimony	22	1	0.8	0.8	0.8	0.8	0.8	0.896	1.091	1.291	1.49
124		arsenic	22	1	3.564	3.62	3.703	4	4.675	4.916	5.68	5.757	10.69
125		barium	22	1	75.65	78.24	80	95.5	122.3	128.6	133.6	140.7	195.5
126		beryllium	22	1	0.332	0.362	0.373	0.425	0.513	0.546	0.568	0.599	0.655
127		boron	15	8	13.4	14.72	14.95	17	20.9	21.88	23.08	23.43	23.49
128		cadmium	22	1	0.39	0.44	0.56	0.616	0.848	0.903	2.922	5.95	7.996
129	chro	mium (III+VI)	22	1	19.08	20	20.25	22	29.75	31.4	35.51	36.95	40.16
130		copper	15	8	40.7	48.92	50.5	63	76	81.94	109.3	138.5	163.7
131		iron	6	17	19950	21100	21475	22800	24350	24800	25200	25400	25560
132		lead	15	8	17.6	21.6	23.25	34	48.05	50.26	55.92	67.4	83.08
133		manganese	6	17	470	550	554	577	592.5	594	608.5	615.8	621.6
134		mercury	6	17	0.0785	0.1	0.101	0.104	0.174	0.197	0.226	0.241	0.252
135		molybdenum	22	1	0.8	0.876	0.9	1.075	1.418	1.498	1.98	2.323	2.387
136		nickel	15	8	17.4	19.6	20	21	22.65	23.2	24.96	25.9	26.46
137		selenium	22	1	0.5	0.54	0.7	0.7	0.7	0.7	0.794	0.99	1
138		silver	22	1	0.112	0.205	0.265	0.379	0.6	1.065	1.57	2.93	3.237
139		sodium	6	17	212	215	222.5	283	352.5	363	405	426	442.8
140		thallium	22	1	0.11	0.112	0.12	0.135	0.2	0.203	0.228	0.254	0.261
141		tin	6	17	1.495	1.63	1.963	3.64	4.868	5.05	5.68	5.995	6.247
												1	1
142		titanium	6	17	111	121	121.8	125	135.8	139	144.5	147.3	149.5
142 143		titanium uranium	6 22	17 1	111 0.49	121 0.564	121.8 0.58	125 0.645	135.8 0.688	139 0.746	144.5 0.795	147.3 0.876	149.5 0.885

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 389 of 400 of 486

	А	В	С	D	E	F	G	Н		J	K	L	М
1				General Sta	atistics on U	ncensored [	Data						
2	Da	te/Time of Co	mputation	ProUCL 5.1	1/28/2020 3:	53:17 PM							
3		User Selec	ted Options										
4			From File	SED 0-0.15	mbg Chemis	try_input_v7	.xls						
5		Full	Precision	OFF									
6													
145		zinc	15	8	193	211.6	214.5	272	335.5	356.6	473.8	513.1	528.2
146	ace	naphthylene	22	1	0.0133	0.0202	0.0408	0.1	0.1	0.1	0.1	0.11	0.165
147	a	cenaphthene	22	1	0.0454	0.0872	0.1	0.1	0.213	0.258	0.27	0.802	1.351
148		anthracene	22	1	0.1	0.1	0.1	0.12	0.28	0.4	0.664	0.975	3.913
149	benz(a	a)anthracene	22	1	0.38	0.424	0.443	0.645	1.1	1.572	1.97	2.912	5.836
150	benzo(b)	fluoranthene	22	1	0.54	0.642	0.695	1	1.73	2.08	2.763	3.55	7.366
151	penzo(b+j)fl	uoranthenes	6	17	0.94	0.98	1.01	1.2	1.3	1.3	1.35	1.375	1.395
152	benzo(g	,h,i)perylene	22	1	0.221	0.322	0.373	0.435	0.713	0.764	0.989	1.427	3.749
153	benzo(k)	fluoranthene	22	1	0.2	0.206	0.23	0.305	0.603	0.686	0.963	1.351	2.097
154	ber	zo(a)pyrene	22	1	0.363	0.408	0.485	0.69	1.023	1.41	1.708	2.366	5.252
155		chrysene	22	1	0.452	0.532	0.665	0.875	1.46	1.708	2.118	3.185	6.329
156	dibenz(a,ł	)anthracene	22	1	0.1	0.1	0.1	0.115	0.168	0.194	0.256	0.365	0.702
157		fluoranthene	22	1	1.101	1.202	1.418	1.955	3.148	3.6	5.175	8.889	21.26
158		fluorene	22	1	0.0641	0.0896	0.1	0.1	0.223	0.284	0.454	0.822	1.567
159	indeno(1,2	,3-cd)pyrene	22	1	0.191	0.254	0.27	0.42	0.608	0.646	0.898	1.318	3.007
160	methylnap	ohthalene, 1-	16	7	0.1	0.1	0.1	0.1	0.1	0.1	0.125	0.163	0.193
161	methylnap	ohthalene, 2-	22	1	0.0153	0.0406	0.0753	0.1	0.1	0.1	0.1	0.29	0.3
162		naphthalene	22	1	0.0149	0.0432	0.1	0.1	0.123	0.138	0.213	0.239	0.825
163	р	henanthrene	22	1	0.463	0.6	0.62	0.875	2.165	3.084	3.599	9.235	15.04
164		pyrene	22	1	0.851	0.956	1.108	1.49	2.638	2.902	4.002	6.616	16.35
165	PAHs (	sum of total)	22	1	4.921	5.3	5.4	7.55	15.25	16	22.75	41.24	86.84
166	a and amm	onium (as N)	16	7	100	100	100	100	200	200	250	325	385
167	ar	nmonia as N	6	17	8.3	13	16.25	26.5	104.3	130	160	175	187
168	kjeldahl i	nitrogen total	22	1	51.8	210	347.5	600	900	980	1180	1580	1837
169	ni	trogen (total)	6	17	2000	2000	2000	2500	3000	3000	3500	3750	3950
170	organic	phosphorus	6	17	1.05	1.1	1.25	2.05	2.925	3.1	3.85	4.225	4.525
171		phosphorus	22	1	643.8	695	715.8	816	989.3	1095	1251	1545	1609
172	Fee	cal Coliforms	17	6	6000	10000	10000	17000	30000	35600	40000	43400	44680

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 390 of 401 of 486

	A	В	С	D	E	F	G	Н		J	К	L	М
1				General Sta	tistics on U	ncensored D	ata						
2	Dat	te/Time of Co	mputation	ProUCL 5.1	1/28/2020 3:	56:56 PM							
3		User Selec	ted Options										
4			From File	SED 0.15+m	nbg Chemist	ry_input_v2.>	ds						
5		Ful	I Precision	OFF									
6													
7	From File: \$	SED 0.15+m	bg Chemistr	y_input_v2.x	ls								
/			-										
0			G	eneral Statis	tics for Cens	sored Data S	Set (with NDs	s) usina Kap	lan Meier Me	ethod			
9								,					
10	Vari	iable	NumObs	# Missina	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
11		antimony	21	0	11	10	47.62%	0.8	0.8	1 019	0 109	0.33	0.324
12		arsenic	21	0	21	0	0.00%	N/A	N/A	5 867	9,009	3 002	0.512
13		harium	21	0	21	0	0.00%	Ν/Δ	N/A	160.7	11144	105.6	0.657
14		bervillium	21	0	21	0	0.00%	Ν/Δ	N/A	0.398	0.0205	0 143	0.36
15		boron	21	0	21	0	0.00%	N/A	N/A	22.1	1/6.8	12 12	0.548
16		noroda	21	0	21	0	0.00%	N/A	N/A	13 /2	301.1	17.12	1 202
17	ohron		21	0	21	0	0.00%			25 00	524	22.00	1.282
18	Children	(III+VI)	21	0	21	0	0.00%	IN/A		106.0	6222	22.09 70.59	0.038
19		copper	21	U	21	0	0.00%	IN/A	IN/A	100.2	4000	/9.58	0.749
20		lead	21	U	21	U	0.00%	IN/A	N/A	112	4030	0.700	0.608
21	r	nolybdenum	21	U	21	U	0.00%	N/A	N/A	1	0.521	0.722	0.722
22		nickel	21	U	21	0	0.00%	N/A	N/A	38.93	5/4.7	23.97	0.616
23		selenium	21	0	3	18	85.71%	0.7	0.7	0.738	0.029	0.17	0.231
24		silver	21	0	20	1	4.76%	0.05	0.05	4.761	39.3	6.269	1.317
25		thallium	21	0	21	0	0.00%	N/A	N/A	0.122	0.00195	0.0441	0.362
26		uranium	21	0	21	0	0.00%	N/A	N/A	0.54	0.0181	0.135	0.25
27		vanadium	21	0	21	0	0.00%	N/A	N/A	17.95	24.45	4.944	0.275
28		zinc	21	0	21	0	0.00%	N/A	N/A	361.5	48645	220.6	0.61
29	ia and ammo	onium (as N)	21	0	16	5	23.81%	100	100	138.1	2358	48.56	0.352
30	kjeldahl r	nitrogen total	21	0	20	1	4.76%	100	100	761.9	150930	388.5	0.51
31		phosphorus	21	0	21	0	0.00%	N/A	N/A	1033	109452	330.8	0.32
32	Feo	cal Coliforms	21	0	3	18	85.71%	1000	1000	1381	2902494	1704	1.234
33	ace	naphthylene	21	0	0	21	100.00%	0.05	0.1	N/A	N/A	N/A	N/A
34	ac	cenaphthene	21	0	13	8	38.10%	0.05	0.1	0.253	0.085	0.292	1.153
35		anthracene	21	0	17	4	19.05%	0.05	0.1	0.291	0.0834	0.289	0.991
36	benz(a	)anthracene	21	0	19	2	9.52%	0.05	0.05	0.937	0.604	0.777	0.829
37	benzo(b)	fluoranthene	21	0	19	2	9.52%	0.05	0.05	1.376	1.134	1.065	0.774
38	benzo(g	,h,i)perylene	21	0	18	3	14.29%	0.1	0.1	0.515	0.0902	0.3	0.583
39	benzo(k)	fluoranthene	21	0	18	3	14.29%	0.05	0.2	0.436	0.114	0.337	0.773
40	ben	izo(a)pyrene	21	0	19	2	9.52%	0.05	0.05	0.864	0.458	0.677	0.783
41	L	chrysene	21	0	19	2	9.52%	0.05	0.05	1.076	0.769	0.877	0.815
12	dibenz(a,h	)anthracene	21	0	13	8	38.10%	0.06	0.1	0.123	0.00548	0.074	0.601
12	1	fluoranthene	21	0	19	2	9.52%	0.05	0.05	2.589	5.153	2.27	0.877
43		fluorene	21	0	16	5	23.81%	0.05	0.1	0.327	0.0882	0.297	0.908
44	indeno(1,2	,3-cd)pyrene	21	0	18	3	14.29%	0.1	0.1	0.441	0.0788	0.281	0.636
40	methylnar	ohthalene, 1-	21	0	13	8	38.10%	0.05	0.1	0.277	0.0763	0.276	0.998
40	methylnar	ohthalene, 2-	21	0	13	8	38.10%	0.05	0.2	0.555	0.387	0.622	1.121
4/	- J	naphthalene	21	0	10	11	52.38%	0.05	0.1	0.168	0.0662	0.257	1.527
48	n	henanthrene	21	0	19	2	9.52%	0.05	0.05	2,248	5,606	2,368	1.053
49	pi	nyrene	21	0	19	2	9.52%	0.05	0.05	2 096	3 093	1 759	0.839
50		Total PAHe	21	0	21	0	0.00%	N/A	N/A	12.5	118.6	10.89	0.871
51				Ŭ		Ŭ	0.0070	1073	1071	12.0	110.0	10.00	0.071
52													

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 391 of 402 of 486

	A I	В	С	D	E	F	G	Н	I	J	K	L	М
1				General Sta	atistics on U	ncensored D	ata						
2	Date/Time	e of Co	mputation	ProUCL 5.1	1/28/2020 3:	56:56 PM							
3	User	Selec	ted Options										
4			From File	SED 0.15+n	nbg Chemist	ry_input_v2.>	ds						
5		Ful	Precision	OFF									
6													
53				Gene	ral Statistics	for Raw Dat	a Sets using	Detected D	Data Only				
54													
55	Variable		NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	CV
56	ant	imony	11	0	0.8	1.9	1.218	1.1	0.138	0.371	0.445	0.615	0.305
57	а	rsenic	21	0	1.7	16	5.867	5.4	9.009	3.002	2.076	1.942	0.512
58	b	parium	21	0	16	398	160.7	143	11144	105.6	97.85	0.925	0.657
50	ber	ryllium	21	0	0.16	0.85	0.398	0.39	0.0205	0.143	0.119	1.336	0.36
60		boron	21	0	4	45	22.1	21	146.8	12.12	11.86	0.328	0.548
61	cad	dmium	21	0	0.07	68	13.43	7.6	301.1	17.35	9.637	2.073	1.292
62	chromium (	III+VI)	21	0	6.3	97	35.89	32	524	22.89	19.27	1.36	0.638
62	c	copper	21	0	18	358	106.2	82	6333	79.58	42.99	1.991	0.749
64		lead	21	0	6.1	241	112	115	4636	68.09	71.16	0.155	0.608
65	molybd	denum	21	0	0.1	3.3	1	0.9	0.521	0.722	0.445	1.938	0.722
66	· · · ·	nickel	21	0	7.5	93	38.93	35	574.7	23.97	25.2	0.853	0.616
00	sel	enium	3	0	0.7	1.5	0.967	0.7	0.213	0.462	0	1.732	0.478
0/		silver	20	0	0.06	27	4.997	3.25	42.21	6.497	3.284	2.521	1.3
80	th	allium	21	0	0.04	0.25	0.122	0.11	0.00195	0.0441	0.0297	0.999	0.362
70	ura	anium	21	0	0.3	0.81	0.54	0.53	0.0181	0.135	0.104	0.323	0.25
70 ⊐4	van	adium	21	0	11	30	17.95	18	24.45	4.944	5.93	0.789	0.275
71		zinc	21	0	30	922	361.5	324	48645	220.6	117.1	0.957	0.61
72	ia and ammonium	(as N)	16	0	100	200	150	150	2667	51.64	74.13	0	0.344
73	kjeldahl nitroge	n total	20	0	200	1500	795	750	142605	377.6	296.5	0.265	0.475
75	phosp	ohorus	21	0	563	1820	1033	937	109452	330.8	217.9	1.092	0.32
70	Fecal Coli	iforms	3	0	1000	9000	3667	1000	21333333	4619	0	1.732	1.26
70 77	acenaphth	hylene	0	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
70	acenaph	thene	13	0	0.11	0.97	0.378	0.23	0.105	0.323	0.104	1.308	0.856
/ð 70	anthr	acene	17	0	0.13	1.12	0.348	0.26	0.0915	0.303	0.119	2.066	0.869
/9	benz(a)anthr	acene	19	0	0.12	3.54	1.031	0.77	0.608	0.78	0.311	2.303	0.757
00	benzo(b)fluoran	thene	19	0	0.21	4.96	1.516	1.28	1.107	1.052	0.474	2.167	0.694
01	benzo(q,h,i)pe	rylene	18	0	0.24	1.23	0.584	0.515	0.076	0.276	0.2	1.406	0.472
82	benzo(k)fluoran	thene	18	0	0.06	1.48	0.501	0.41	0.11	0.332	0.141	1.908	0.663
83	benzo(a)n	ovrene	19	0	0.12	3.11	0.95	0.76	0.453	0.673	0.208	2.174	0.708
84 05	chr	vsene	19	0	0.11	4.04	1.184	0.96	0.768	0.876	0.356	2.205	0.74
85	dibenz(a.h)anthr	acene	13	0	0.09	0.35	0.159	0.13	0.00582	0.0763	0.0445	1.651	0.479
86	fluoran	nthene	19	0	0.3	10.3	2.856	2.39	5.22	2.285	1.082	2.196	0.8
87	flu	lorene	16	0	0.1	1.06	0.414	0.31	0.0899	0.3	0.215	1.23	0.724
88	indeno(1 2 3-cd)	ovrene	18	0	0.19	1.25	0.498	0.405	0.0734	0.271	0.133	1.78	0.543
89	methvlnanhthale	ene 1.	13	0	0.11	0.89	0.416	0.29	0.0782	0.28	0 267	0.601	0.672
90	methylnaphthale	ane 2-	13	0	0.17	1.94	0.864	0.73	0 406	0.638	0 712	0.65	0.738
91	nanhth	nalene	10	0	0.06	1.0-1	0.294	0.155	0 121	0.348	0 104	2,339	1 183
92	nhenant	threne	19	0	0.06	10	2 479	1 95	5 947	2 439	1 438	2.036	0.984
93	r	ovrene	19	0	0.25	7 83	2 312	1.00	3 095	1 759	0 726	2.000	0 761
94	۲ IctoT	PAHe	21	0	0.20	47.46	12.5	10.04	118.6	10.89	5.041	1,995	0.871
95	10121	1 7113	21	U U	0.00	-7.40	12.0	10.04	110.0	10.03	0.041	1.335	0.071
96													

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 392 of 403 of 486

	A B	С	D	E	F	G	Н		J	K	L	M
1			General Sta	atistics on U	ncensored [	Data						
2	Date/Time of	Computation	ProUCL 5.1	1/28/2020 3:	56:56 PM							
3	User Se	elected Options	<b>B</b>									
4		From File	SED 0.15+n	nbg Chemist	ry_input_v2.	xls						
5		Full Precision	OFF									
6						te (De) and I	Les Detente	(10-)				
97			Pe	rcentiles usi	ing all Deteo	ts (Ds) and I	Non-Detects	(NDS)				
98	Variable	NumObe	# Missing	10%ile	20%ile	25%ile(01)	50%ile(02)	75%ile(03)	80%ile	90%ile	95%ile	00%ile
99	valiable	21		0.8	20%110	2370110(0(1)	0.8	1 1	1 3	1.5	1 7	1.86
100	2150	nic 21	0	3.1	3.7	4.2	5.4	6.8	6.9	0	0.1	14.62
101	hariu	um 21	0	40	80	4.2 80	143	217	228	265	397	397.8
102	benylli	um 21	0	0.24	0.3	0.31	0.30	0.45	0.48	0.51	0.52	0.784
103	beryini	in 21	0	5	13	15	21	32	32	40	40	0.704
104	oodmir	um 21	0	0.4	11	10	76	10	20	20	40	64.2
105	chromium (III+	VI) 21	0	12	21	23	32	45	49	52	87	95
106		vij 21	0	20	6F	20 60	92	126	40	175	265	320 4
107	copt	21 21	0	29	50	67	115	1/1	173	10/	200	238 /
108	maluhdar	au 21	0	20	0.6	07	0.0	141	1.0	1.54	220	2 10
109	molypden	kol 21	0	15	10	10	0.9	52	55	1.0	2.4	02.0
110	nic		0	15	18	19	30	52	07	00	89	92.2
111	selerili	um 21	0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	1.34
112	SIN	/er 21	0	0.37	0.47	0.87	3.2	4.5	0.7	8.3	17	25
113	triailit		0	0.08	0.1	0.1	0.11	0.14	0.15	0.17	0.18	0.230
114	uranii	um 21	0	0.42	0.43	0.46	0.53	0.6	0.64	0.73	0.78	0.804
115	vanadi	um 21	0	13	14	14	18	20	22	25	20	29.2
116	Z		0	00	250	203	324	437	489	240	010	901.2
117	a and ammonium (as	N) 21	0	100	100	100	100	200	200	200	200	200
118	kjeldahl nitrogen to	otal 21	0	200	500	600	/00	1000	1200	1300	1400	1480
119	pnosphoi	rus 21	0	637	827	881	937	1090	1140	1444	1/60	1808
120	Fecal Collion		0	1000	1000	1000	1000	1000	1000	1000	1000	7400
121	acenaphthyle		0	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1
122	acenaphtne		0	0.05	0.1	0.1	0.16	0.28	0.29	0.91	0.92	0.96
123	anthrace	ne 21	0	0.05	0.13	0.13	0.21	0.31	0.34	0.56	1.08	1.112
124			0	0.12	0.50	0.0	0.75	0.99	1.01	1.01	2.48	3.328
125			0	0.21	0.93	0.90	1.10	1.0	0.0	2.37	2.92	4.002
126	benzo(k)fluorontha	21 21	0	0.06	0.30	0.37	0.40	0.0	0.00	0.69	1.2	1.224
127		21 no 21	0	0.00	0.20	0.0	0.34	0.0	0.02	1.20	2.00	2 006
128		21	0	0.12	0.50	0.59	0.72	0.9	1.92	1.30	2.09	2.300
129	dibonz(o b)onthroop	ne 21	0	0.11	0.7	0.71	0.88	0.14	0.14	0.21	2.51	3.734
130			0	0.00	U.I 1 0	U. I	0.1	0.14	0.14 2.0F	0.21	0.27	0.334
131	fluoranthe		0	0.5	1.3	1.44	1.98	2.70	2.95	4.65	0.15	9.47
132	TIUOR		0	0.05	0.1	0.1	0.25	0.44	0.54	0.07	1.04	1.050
133	mueno(1,2,3-cu)pyre		0	0.1	0.31	0.31	0.30	0.5	0.01	0.71	0.95	1.200
134	metriyinaphtnalene,	1- ZI	0	0.05	0.1	0.1	0.12	0.42	0.47	0.73	0.85	0.882
135	methyinaphthalene,	Z- Z1	0	0.05	0.1	0.1	0.24	0.76	1.16	1.5/	1.92	1.936
136	naphthale		0	0.05	0.07	0.1	0.1	0.14	0.17	0.44	0.45	1.05
137	pnenanthre		0	0.06	0.62	0.85	1.31	2.9	2.92	4.39	0.88	9.370
138	pyre		0	0.25	1.24	1.24	1.04	2.24	2.31	3.09	5.35	/.334
139	i otai PA		U	1.53	0.04	7.54	10.04	13.58	14.87	21.11	32.77	44.52

SLR Project No.: 209.40666 January 2020

SE	D 0-0.15 mbss	
Parameter	95% UCLM	ProUCL Method applied
aluminum	11987	95% BCA Bootstrap
antimony	0.932	95% KM (BCA)
arsenic	5.517	95% BCA Bootstrap
barium	117.9	95% BCA Bootstrap
beryllium	0.477	95% BCA Bootstrap
boron	19	95% BCA Bootstrap
cadmium	2.427	95% BCA Bootstrap
chromium (III+VI)	27.52	95% BCA Bootstrap
copper	91.01	95% BCA Bootstrap
iron	23967	95% BCA Bootstrap
lead	57.9	95% BCA Bootstrap
manganese	589	95% BCA Bootstrap
mercury	0.187	95% BCA Bootstrap
molybdenum	1.407	95% BCA Bootstrap
nickel	24.34	95% BCA Bootstrap
selenium	N/A	-
silver	1.126	95% BCA Bootstrap
sodium	360.7	95% BCA Bootstrap
thallium	0.177	95% BCA Bootstrap
tin	4.822	95% BCA Bootstrap
titanium	137.3	95% BCA Bootstrap
uranium	0.687	95% BCA Bootstrap
vanadium	21.05	95% BCA Bootstrap
zinc	349.3	95% BCA Bootstrap
acenaphthylene	0.0423	95% KM (BCA)
acenaphthene	0.341	95% KM (BCA)
anthracene	0.867	95% KM (BCA)
benz(a)anthracene	1.83	95% BCA Bootstrap
benzo(b)fluoranthene	2.517	95% BCA Bootstrap
benzo(b+j)fluoranthenes	1.267	95% BCA Bootstrap
benzo(g,h,i)perylene	1.236	95% BCA Bootstrap
benzo(k)fluoranthene	0.71	95% KM (BCA)
benzo(a)pyrene	1.712	95% BCA Bootstrap
chrysene	2.155	95% BCA Bootstrap
dibenz(a,h)anthracene	0.242	95% KM (BCA)
fluoranthene	6.834	95% BCA Bootstrap
fluorene	0.395	95% KM (BCA)
indeno(1,2,3-cd)pyrene	0.997	95% BCA Bootstrap
methylnaphthalene, 1-	N/A	-
methylnaphthalene, 2-	0.0877	95% KM (BCA)
naphthalene	0.191	95% KM (BCA)
phenanthrene	4.336	95% BCA Bootstrap
pyrene	4.973	95% BCA Bootstrap
PAHs (sum of total)	26.41	95% BCA Bootstrap
ammonia and ammonium (as N)	N/A	-
ammonia as N	122.7	95% BCA Bootstrap
kjeldahl nitrogen total	841.8	95% BCA Bootstrap
nitrogen (total)	N/A	-
organic phosphorus	3.25	95% KM (BCA)
phosphorus	1020	95% BCA Bootstrap
Fecal Coliforms	25529	95% KM (BCA)

SLR Project No.: 209.40666 January 2020

SEL	0.15+ mbss		
Parameter	95% UCLM	ProUCL Method applied	
aluminum			
antimony	1.157	95% KM (BCA)	
arsenic	7.205	95% BCA Bootstrap	
barium	205	95% BCA Bootstrap	
beryllium	0.458	95% BCA Bootstrap	
boron	12.8	95% BCA Bootstrap	
cadmium	21.49	95% BCA Bootstrap	
chromium (III+VI)	46.36	95% BCA Bootstrap	
copper	63.8	95% BCA Bootstrap	only 5 samples
iron			
lead	71.6	95% BCA Bootstrap	
manganese			
mercury			
molybdenum	1.329	95% BCA Bootstrap	
nickel	20	95% BCA Bootstrap	only 5 samples
selenium	NC	only 3 samples detected	
silver	7.471	95% KM (BCA)	
sodium			
thallium	0.14	95% BCA Bootstrap	
tin			
titanium			
uranium	0.591	95% BCA Bootstrap	
vanadium	17.2	95% BCA Bootstrap	only 5 samples
zinc	285.6	95% BCA Bootstrap	only 5 samples
acenaphthylene	NC	ND	
acenaphthene	0.389	95% BCA Bootstrap	
anthracene	0.438	95% BCA Bootstrap	
benz(a)anthracene	1.316	95% BCA Bootstrap	
benzo(b)fluoranthene	1.88	95% BCA Bootstrap	
benzo(b+j)fluoranthenes			
benzo(g,h,i)perylene	0.644	95% BCA Bootstrap	
benzo(k)fluoranthene	0.602	95% BCA Bootstrap	
benzo(a)pyrene	1.2	95% BCA Bootstrap	
chrysene	1.511	95% BCA Bootstrap	
dibenz(a,h)anthracene	0.164	95% BCA Bootstrap	
fluoranthene	3.594	95% BCA Bootstrap	
fluorene	0.459	95% BCA Bootstrap	
indeno(1,2,3-cd)pyrene	0.569	95% BCA Bootstrap	
methylnaphthalene, 1-	0.4	95% BCA Bootstrap	
methylnaphthalene, 2-	0.834	95% BCA Bootstrap	
naphthalene	0.33	95% BCA Bootstrap	
phenanthrene	3.394	95% BCA Bootstrap	
pyrene	2.878	95% BCA Bootstrap	
PAHs (sum of total)	19.31	95% BCA Bootstrap	
ammonia and ammonium (as N)	NC	-	
ammonia as N	-		
kjeldahl nitrogen total	895.2	95% BCA Bootstrap	
nitrogen (total)	N/A	-	
organic phosphorus		95% KM (BCA)	
phosphorus	1163	95% BCA Bootstrap	
Fecal Coliforms	0	95% KM (BCA)	

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 395 of 408 of 486

1 1

City of Hamilton Ecological Risk Assessment – Chedoke Creek SLR Project No.: 209.40666 January 2020

Deep sample > shallow

Deep sample < shallow

Parameter     95% UCM     05% UCM     01fference (Shallow - Deep)       antimony     1932     NC, deep not sampled       arsenic     5.517     7.00     -1.688       barium     11.79     0.458     0.019       beryllium     0.477     0.458     0.019       boron     19     12.8     6.2       cadmium     2.427     21.49     -19.63       chronium (III+VI)     27.52     46.36     -18.84       copper     90.45     6.38     0.265       iron     2367     NC, deep not sampled       mercury     0.187     NC, deep not sampled       molybdenum     1.407     1.232     0.078       nickel     2.47     20     2.47       solum     30.7     NC, deep not sampled       thallum     0.172     0.385       solum     3.66     0.078       usendum     1.40     NC, deep not sampled       molybdenum     1.126     7.471     6.345       solenum     0.043     NC, dee		SED 0-0.15 mbss	SED 0.15+ mbss		
aluminum     11987     NC, deep not sampled       artimory     0.932     1.157     -0.225       arsenic     5.517     7.205     -1.688       barium     117.9     205     -3.71     95% UCLM < T1 b/nd       beryllium     0.477     20.458     0.019       boron     19     12.8     6.2       cadmium     2.427     21.49     -19.063       chronium (II+VI)     27.52     46.36     -1.8.84       copper     90.45     63.8     26.65       iron     23967     NC, deep not sampled     -24.13       mercury     0.187     NC, deep not sampled     -24.13       mercury     0.187     NC, deep not sampled     -24.13       silver     1.126     7.471     -6.345       solum     360.7     NC, deep not sampled     -0.0137       tinin     4.822     NC, deep not sampled     -0.014       vanalum     0.687     0.591     0.0086       vanalum     0.687     0.592     -0.665	Parameter	95% UCLM	95% UCLM	Difference (Shallow - Deep)	
antimony     0.932     1.157     -0.255       arsenic     5.517     7.205     -1.688       barium     0.477     0.458     0.019       beryllium     0.477     0.458     0.019       beryllium     2.427     21.49     -19.063       common     19     2.28     6.2       cadmium     2.427     21.49     -19.063       corpor     90.45     63.8     2.6.65       iron     2.3967     NC, deep not sampled     -24.13       manganese     589     NC, deep not sampled     -24.13       molybdenum     1.407     1.329     0.078       nickel     2.47     20     2.47       selenium     N/A     NC     MC peep not sampled       tinker     1.126     7.421     NC, deep not sampled       tinker     1.25     7.42     3.55       softim     3.51     7.52     3.55       tin     3.52     7.52     3.55       tinker     3.51     7.52	aluminum	11987		NC, deep not sampled	
arsenic5.5177.2051.1.688barium117.92005.637.1.95% UCLM < T1 blnd	antimony	0.932	1.157	-0.225	
barium     117.9     205     -47.1 95% UCLM <t1 blad<="" td="">       beryllium     0.477     0.458     0.019       beryllium     2.427     12.49     -19.063       cadmium     2.427     12.49     -19.063       corponta     23967     NC, deep not sampled       corponta     23967     NC, deep not sampled       mercury     0.187     NC, deep not sampled       molybdenum     1.407     1.329     0.078       nickel     22.47     0.078     0.037       silver     1.126     7.471     6.345       sodum     306.7     NC, deep not sampled     0.037       tin     4.822     NC, deep not sampled     0.037       tin     4.822     NC, deep not sampled     0.043       uranium     0.687     0.591     0.0043       vanadium     21.05     22.1     3.85       cinc     32.1     28.6     0.657       acenaphthylene     0.431     0.391     0.044       benzolyli/luoranthene     2.517     1</t1>	arsenic	5.517	7.205	-1.688	
beryllum0.4770.4880.019boron1912.86.2cadmium2.42721.49-19.063chronium (II+VI)27.5246.36-18.84copper09.4563.826.65iron23967-C4.13manganese589NC, deep not sampledmercury0.187-C4.13molybdenum1.4071.3290.078nickel2.247202.247seleniumN/ANCNC, deep not sampledsilver1.1267.471-6.345sodium360.7-C. (deep not sampledtinand360.7-C. (deep not sampledtitanium137.3NC, deep not sampleduranium0.6870.5910.096vanadium21.0517.723.85zinc352.1285.666.5acenaphthylene0.4310.314benzolg/hloranthenes1.267NC, deep not sampledauthracene0.3410.351benzolg/hloranthenes1.267NC, deep not sampledbenzolg/hloranthenes1.267NC, deep not sampled <t< td=""><td>barium</td><td>117.9</td><td>205</td><td>-87.1</td><td>95% UCLM &lt; T1 bknd</td></t<>	barium	117.9	205	-87.1	95% UCLM < T1 bknd
boron     19     12.8     6.2       cadmium     2.427     21.49     -19.063       corper     90.45     6.3.8     C.65       iron     23967     NC, deep not sampled       mercury     0.187     NC, deep not sampled       mercury     0.187     NC, deep not sampled       molybdenum     1.407     1.329     0.0778       molybdenum     1.407     1.329     0.0778       selenium     N/A     NC     NC, deep not sampled       molybdenum     1.407     0.141     0.037       siker     1.126     7.47     0.025%       sodium     3607     NC, deep not sampled       thallum     0.177     0.14     0.037       tinn     4.82     NC, deep not sampled       uranium     0.687     0.591     0.096       vanadium     21.05     17.2     3.85       zinc     352.1     285.6     66.55       acenaphthylene     0.042     0.048       anthracene     0.867	beryllium	0.477	0.458	0.019	
cadmium2.42721.49-19.063chromium (III+VI)27.5246.36-74.8.84copper90.4563.8NC, deep not sampledlead47.4771.6-24.13manganese589NC, deep not sampledmercury0.187NC, deep not sampledmolybdenum1.4071.3290.078nickel22.47202.47seleniumN/ANCNC, deep not sampledsolium360.7NC, deep not sampledsolium360.7NC, deep not sampledthallium0.1770.140.037thallium360.7NC, deep not sampleduranium362.7NC, deep not sampledtallium137.3NC, deep not sampledvandum21.0517.23.85zinc352.125.666.5acenaphthene0.4310.3890.048anthracene0.8670.4380.048anthracene0.8670.4380.048benzol(b/fluoranthene2.5171.880.637benzol(b/fluoranthene1.267NC, deep not sampledbenzol(b/fluoranthene0.710.6020.108benzol(b/fluoranthene0.8310.514benzol(b/fluoranthene0.4380.048benzol(b/fluoranthene0.4390.448benzol(b/fluoranthene0.4390.448benzol(b/fluoranthene0.4390.448benzol(b/fluoranthene0.4390.448ben	boron	19	12.8	6.2	
chronium (III+VI)27.5246.36-18.84copper90.4563.826.65iron23967NC, deep not sampledmanganese589NC, deep not sampledmercury0.187NC, deep not sampledmolybdenum1.4071.3290.078nickel22.47202.47seleniumN/ANCNC, deep not sampledsilver1.1267.471-6.345sodium3607NC, deep not sampledthallum0.177NC, deep not sampledtiltanium137.3NC, deep not sampledtiltanium0.8670.5910.096vanadium20.5517.23.85zinc352.1285.666.5acenaphtylene0.423NC, deep not sampleduranium0.6870.4380.429vanadium137.3NC, deep not sampleduranium0.63717.23.85zinc352.1285.666.5acenaphtylene0.4310.389-0.048anthracene0.8671.3860.429benzo(b/ljuoranthene1.2751.880.637benzo(b/ljuoranthene0.1710.6020.108benzo(b/ljuoranthene0.4130.5440.592benzo(b/ljuoranthene0.4250.5490.428benzo(b/ljuoranthene0.4120.6440.592benzo(b/ljuoranthene0.4250.5490.428benzo(b/ljuoranthene0.4350.4	cadmium	2.427	21.49	-19.063	
copper90.4563.820.65iron23967NC, deep not sampledlead47.4771.6.24.13manganese589NC, deep not sampledmolybdenum1.4071.3290.078nickel22.47202.47seleniumN/ANCNC, deep not sampledsilver1.1267.471-6.345sodium3607NC, deep not sampledtinin4.822NC, deep not sampleduranium0.5770.140.037tinin4.822NC, deep not sampleduranium0.6870.5910.096vanadium21.0517.23.85zinc35.12.85666.5acenaphthylene0.0423NCNC, deep not sampleduranium0.6870.5910.048anthracene0.8410.3890.429benz(a)inthracene1.360.514benz(b)fluoranthene2.1771.880.637benz(b)fluoranthene1.267NC, deep not sampledbenz(b)fluoranthene0.4210.6020.086benz(b)fluoranthene0.3520.6440.078fluorene0.3630.6430.429benz(b)fluoranthene0.4240.6640.078fluorene0.3520.6440.078fluorene0.3630.4330.432horacle1.2650.5590.428horacle1.3650.5590.428horacle<	chromium (III+VI)	27.52	46.36	-18.84	
iron 23967 NC, deep not sampled manganese 8589 NC, deep not sampled mercury 0.187 NC, deep not sampled molybdenum 1.407 1.329 O.078 nickel 22.47 20 2.47 selenium N/A NC NC 95% UCL Nn or calculated silver 1.126 7.471 -6.345 sodium 360.7 NC, deep not sampled thallum 0.177 0.14 0.037 thin 4.822 NC, deep not sampled titanium 137.3 NC, deep not sampled titanium 2.105 7.7 0.14 0.037 tin 4.822 NC, deep not sampled titanium 35.1 NC, deep not sampled titanium 35.2 NC, deep not sampled titanium 35.2 NC, deep not sampled titanium 35.2 NC, deep not sampled titanium 0.687 0.591 0.096 vanadium 2.105 7.7 3.88 zinc 352.1 2.85.6 G.6.5 acenaphthylene 0.0423 NC NC 95% UCL Nn or calculated anthracene 0.867 0.438 0.429 benz(b/ij)roranthenes 1.83 1.316 0.514 benzo(b/ij)roranthenes 1.267 NC, deep not sampled benz(b/ij)roranthenes 1.267 NC, deep not sampled benz(b/ij)roranthene 0.341 0.389 -0.048 anthracene 0.867 0.438 0.429 benz(b/ij)roranthene 0.351 1.316 0.514 benzo(b/ij)roranthene 0.71 0.602 0.108 benzo(b/ij)roranthene 0.72 1.2 3.65 benzo(b/ij)roranthene 0.741 0.602 0.108 benzo(b/ij)roranthene 0.742 1.2 0.512 chrysene 1.712 1.2 0.512 chrysene 1.72 1.2 0.512 thrysene 0.325 0.459 0.0644 fluoranthene 0.381 0.459 0.0644 fluoranthene 0.383 0.459 0.0644 fluoranthene 0.384 0.459 penz(b/ij)ruoranthene 0.474 0.48 fluoranthene 0.474 0.47 fluoranthene 0.475 0.607 fluoranthene 0.474 0.47 fluoranthene 0.474 0.47 fluoranthene 0.475 0.6087 pryrene 0.438 0.459 phenathrene 0.474 0.47 NC 95% UCLM not calculated methylnaphthalene, 1- N/A 0.4 NC 9	copper	90.45	63.8	26.65	
lead47.4771.6	iron	23967		NC, deep not sampled	
manganese589NC, deep not sampledmercury0.137NC, deep not sampledmolybdenum1.4071.3290.078nickel22.47202.47seleniumN/ANCNC 95% UCLM not calculatedsilver1.1267.471-6.345sodium0.607NC, deep not sampledthallium0.1770.140.037tin4.822NC, deep not sampledtinan137.3NC, deep not sampleduranium0.6870.5910.096vanadium21.0517.23.85zinc352.128.6666.5acenaphtylene0.4340.389-0.048anthracene0.8670.4380.429benz(b/luoranthene2.5171.880.637benzo(b/luoranthene2.5170.6440.592benzo(b/luoranthene2.5170.6440.078benzo(b/luoranthene0.710.6620.108benzo(b/lyrene1.251.5110.644dibenz(a,h)anthracene0.4390.6490.078fluoranthene0.4390.04280.042indeno(1,2,3-cd)pyrene0.4390.6440.078indeno(1,2,3-cd)pyrene0.4390.4280.429indeno(1,2,3-cd)pyrene0.4390.4280.429indeno(1,2,3-cd)pyrene0.4390.4280.429indeno(1,2,3-cd)pyrene0.4390.4280.429phonathrene0.4390.4390.443 <td>lead</td> <td>47.47</td> <td>71.6</td> <td>-24.13</td> <td></td>	lead	47.47	71.6	-24.13	
mercury0.187NC, deep not sampledmolybdenum1.3490.078nickel22.47200.47seleniumN/ANCNC 95% UCLM not calculatedsilver1.1267.4716.345sodium360.7NC, deep not sampledthallium0.1770.140.037tin4.822NC, deep not sampleduranium0.6870.5910.096vanadium21.0528.666.5acenaphthylene0.423NCNC 95% UCLM not calculatedacenaphthylene0.423NCNC 95% UCLM not calculatedacenaphthene0.3410.3890.429benz(a)nthracene1.881.3160.514benz(b)fluoranthene2.5171.880.429benz(b)fluoranthene2.5171.880.429benz(b)fluoranthene2.5171.810.644benz(b)fluoranthene2.5171.5110.644benz(b)fluoranthene0.5120.512chrysene1.720.5120.512chrysene0.3930.4590.428mothylaphthalene, 1-N/A0.4NC 95% UCLM not calculatedinden(1,2,3-ci)pyrene0.3970.5690.054indenstrene0.4310.5540.551fluoranthene0.4330.139phonathrene0.4350.428methylnaphthalene, 1-N/A0.4NC deep not sampled0.413phonathrene0.4370.43 <td>manganese</td> <td>589</td> <td></td> <td>NC, deep not sampled</td> <td></td>	manganese	589		NC, deep not sampled	
molybdenum1.4071.3290.078nickel22.47202.47nickel22.47202.47silver1.1267.471-6.345sodium3607NC, deep not sampledthallium0.1770.140.037tin4.822NC, deep not sampleduranium0.6870.5910.096vanadium21.0517.23.85zinc35.21285.666.5zinc35.21285.666.5zinc35.21285.60.048acenaphthylene0.0421NC, deep not sampledbenz(g)hlprevinen0.5140.389-0.048benz(g)hlprevinen0.5140.5540.554benz(g)hlprevinen1.2360.6440.552benz(g)hlprevinen1.2351.5110.664benz(g)hlprevinen0.4280.0780.078fluoranthene0.4350.4590.004inden(1,2,3-cd)pyrene1.7121.20.612inden(1,2,3-cd)pyrene0.9770.8360.07463inden(1,2,3-cd)pyrene0.9970.5690.064inden(1,2,3-cd)pyrene0.9970.5690.0428inden(1,2,3-cd)pyrene0.9970.5690.0428inden(1,2,3-cd)pyrene0.9970.5690.0428inden(1,2,3-cd)pyrene0.9970.5690.0428inden(1,2,3-cd)pyrene0.9970.5690.0428inden(1,2,3-cd)pyrene0.97430.7443<	mercury	0.187		NC, deep not sampled	
nickel 22.47 20 0.2.47 selenium N/A NC NC 95% UCLM not calculated NC, deep not sampled NC, de	molybdenum	1.407	1.329	0.078	
selenium     N/A     NC     SVS VLCLM not calculated       silver     1.126     7.471     -6.345       sodium     360.7     NC, deep not sampled       thallium     0.177     0.14     0.037       tin     4.822     NC, deep not sampled       uranium     0.687     0.096       vanadium     21.05     17.2     3.85       zeneaphthylene     0.423     NC     NC 95% UCLM not calculated       acenaphthylene     0.423     NC     NC 95% UCLM not calculated       acenaphthene     0.414     0.389     -0.048       anthracene     0.867     0.438     0.429       benz(b/luroranthene     2.517     1.88     0.637       benzo(b/luroranthene     1.267     NC, deep not sampled       benzo(b/luroranthene     0.514     0.592       benzo(b/luroranthene     0.514     0.637       benzo(b/luroranthene     0.717     0.602     0.0108       benzo(b/luroranthene     0.712     0.512     0.514       benzo(b/luroranthene     0.716	nickel	22.47	20	2.47	
silver   1.126   7.471   -6.345     sodium   360.7   NC, deep not sampled     thallium   0.177   0.14   0.037     tin   4.822   NC, deep not sampled     uranium   0.687   0.591   0.096     vanadium   21.05   17.2   3.85     zinc   352.1   285.6   66.5     acenaphthylene   0.0423   NC   NC 95% UCLM not calculated     acenaphthylene   0.341   0.389   0.0429     benz(a)phroranthene   0.867   0.438   0.429     benz(b/litoranthene   1.83   1.316   0.514     benz(b/litoranthene   1.81   0.644   0.592     benz(b/litoranthene   0.71   0.602   0.108     benz(b/litoranthene   0.71   0.602   0.104     fluoranthene<	selenium	N/A	NC	NC 95% UCLM not calculated	
sodium     360.7     NC, deep not sampled       thallium     0.177     0.14     0.037       tin     4.822     NC, deep not sampled       uranium     137.3     NC, deep not sampled       uranium     0.687     0.591     0.096       vanadium     21.05     17.2     3.85       scenaphthylene     0.0423     NC     NC 95% UCLM not calculated       acenaphthylene     0.341     0.389     0.048       anthracene     0.867     0.438     0.429       benz(a)anthracene     1.83     1.316     0.514       benz(b)fluoranthene     2.517     1.88     0.637       benz(b,fluoranthene     2.517     1.88     0.637       benz(b,fluoranthene     0.71     0.602     0.108       benz(b,fluoranthene     0.71     0.602     0.108       benz(b,fluoranthene     0.71     0.644     0.078       fluorene     0.395     0.459     0.454       fluoranthene     6.834     3.594     3.24       fluorene     0	silver	1.126	7.471	-6.345	
thallium0.1770.140.037tin4.822NC, deep not sampledutianium137.3NC, deep not sampleduranium0.6870.5910.096vanadium21.0517.23.85zinc352.1285.666.5acenaphthylene0.0423NCNC 95% UCLM not calculatedacenaphthene0.3410.3890.048anthracene0.8670.4380.429benz(b]/luoranthene2.5171.880.637benzo(b_j)fluoranthene2.5171.840.592benzo(b_j)fluoranthene0.710.6020.108benzo(b_j,h)perylene1.2360.6440.592benzo(b,fluoranthene0.710.6020.108benzo(b,fluoranthene0.710.6020.108benzo(b,fluoranthene0.721.5110.644dibenz(a,h)anthracene0.2420.1640.078fluorene0.3950.4590.064ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.9970.5690.428ifluoranthene0.913	sodium	360.7		NC, deep not sampled	
tin 4.822 NC, deep not sampled titanium 137.3 NC, deep not sampled uranium 0.687 0.591 0.096 vanadium 2.105 17.2 3.85 zinc 352.1 285.6 6.6.5 acenaphthylene 0.0423 NC NC 95% UCLM not calculated acenaphthene 0.341 0.389 -0.048 anthracene 0.867 0.438 0.429 ben2(a)anthracene 1.83 1.316 0.514 ben20(a)fluoranthene 2.517 NC, deep not sampled ben20(b)fluoranthene 2.517 0.002 0.018 ben20(b)fluoranthene 1.236 0.644 0.592 ben20(b)fluoranthene 0.71 0.602 0.018 ben20(b)fluoranthene 0.71 0.602 0.0	thallium	0.177	0.14	0.037	
titanium137.3NC, deep not sampleduranium0.6870.5910.096vanadium21.0517.23.85zinc352.1285.666.5acenaphthylene0.0423NCNC 95% UCLM not calculatedacenaphthene0.3410.389-0.048anthracene0.8670.4380.637ben2(a)nthracene1.831.3160.514ben2(b)fluoranthene2.5171.880.637ben2(b)fluoranthenes1.267NC, deep not sampledben2(b)fluoranthene0.7110.6020.108ben2(b)fluoranthene0.7121.20.512ben2(b)fluoranthene0.3150.6440.078ben2(b)fluoranthene0.3950.4590.064ben2(b)fluoranthene0.3950.4590.064ben2(b)fluoranthene0.3950.4590.018ben2(b)fluoranthene0.3950.4590.064ben2(b)fluoranthene0.3950.4590.064ben2(b)fluoranthene0.3950.4590.064ben2(b)fluoranthene0.3950.4590.064ben2(b)fluoranthene0.3950.4590.064ben2(b)fluoranthene0.3950.4590.064benz(b)fluoranthene0.3950.4590.064benz(b)fluoranthene0.3950.4590.064benz(b)fluoranthene0.3950.4590.064benz(b)fluoranthene0.3950.4590.064benz(b)ruphaphthalene, 1- <td< td=""><td>tin</td><td>4.822</td><td></td><td>NC, deep not sampled</td><td></td></td<>	tin	4.822		NC, deep not sampled	
uranium   0.687   0.591   0.096     vanadium   21.05   17.2   3.85     zinc   352.1   285.6   66.5     acenaphthylene   0.0423   NC   NC 95% UCLM not calculated     acenaphthene   0.341   0.389   -0.048     anthracene   0.867   0.438   0.429     benz(a)anthracene   1.83   1.316   0.514     benz(b)fluoranthene   2.517   1.88   0.637     benz(b)fluoranthenes   1.267   NC, deep not sampled     benz(b)fluoranthene   0.71   0.602   0.108     benz(b)fluoranthene   0.71   0.602   0.108     benzo(k)fluoranthene   0.71   0.602   0.108     benzo(k)fluoranthene   0.71   0.602   0.108     benzo(k)fluoranthene   0.71   0.602   0.108     fluorene   0.395   0.459   0.428     fluorene   0.395   0.459   0.428     indeno(1,2,3-cd)pyrene   0.997   0.834   -0.7463     naphthalene, 1-   N/A   0.4   NC 95% UCLM not calculated<	titanium	137.3		NC, deep not sampled	
vanadium   21.05   17.2   3.85     zinc   352.1   285.6   66.5     acenaphthylene   0.0423   NC   NC 95% UCLM not calculated     acenaphthene   0.341   0.389   -0.048     anthracene   0.867   0.438   0.429     benz(a)anthracene   1.83   1.316   0.514     benz(a),i)perylene   1.267   NC, deep not sampled     benz(b)fluoranthene   0.71   0.602   0.108     benzo(a,h)aperylene   1.712   1.2   0.512     benzo(a,h)aperylene   1.712   1.2   0.512     benzo(a,h)aptracene   0.71   0.602   0.108     benzo(a,h)aptracene   0.71   0.602   0.108     benzo(a,h)aptracene   0.71   0.602   0.108     fluoranthene   6.834   3.594   0.242     fluoranthene   0.395   0.459   0.428     methylnaphthalene, 1-   N/A   0.44   0.07463     naphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139 <td>uranium</td> <td>0.687</td> <td>0.591</td> <td>0.096</td> <td></td>	uranium	0.687	0.591	0.096	
zinc   352.1   285.6   66.5     acenaphthylene   0.0423   NC   NC 95% UCLM not calculated     acenaphthene   0.341   0.389   -0.048     anthracene   0.861   0.438   0.429     benz(a)anthracene   1.83   1.316   0.514     benz(b)fluoranthene   2.517   1.88   0.637     benz(b)fluoranthenes   1.267   NC, deep not sampled     benzo(b)f)fluoranthene   0.711   0.602   0.108     benzo(a)pyrene   1.712   1.22   0.512     chrysene   2.155   1.511   0.644     dibenz(a,h)anthracene   0.242   0.164   0.078     fluoranthene   6.834   3.594   3.24     fluoranthene   6.834   3.594   3.24     fluoranthene   0.817   0.642   0.064     indeno(1,2,3-cd)pyrene   0.997   0.569   0.428     methylnaphthalene, 1-   N/A   NC 95% UCLM not calculated     methylnaphthalene, 1-   N/A   0.43   -0.7463     pyrene   4.336   3.394   -0.43 <td>vanadium</td> <td>21.05</td> <td>17.2</td> <td>3.85</td> <td></td>	vanadium	21.05	17.2	3.85	
acenaphthylene     0.0423     NC     NC 95% UCLM not calculated       acenaphthene     0.341     0.389     -0.048       anthracene     0.867     0.438     0.429       benz(a)anthracene     1.83     1.316     0.514       benz(b)fluoranthene     2.517     1.88     0.637       benzo(b/fluoranthenes     1.267     NC, deep not sampled       benzo(g,h,i)perylene     1.236     0.644     0.592       benzo(a)pyrene     0.712     1.2     0.512       chrysene     2.155     1.511     0.644       dibenz(a,h)anthracene     0.242     0.164     0.078       fluoranthene     6.834     3.594     3.24       fluoranthene     6.834     3.594     0.428       methylnaphthalene, 1-     N/A     0.44     0.7463       methylnaphthalene, 1-     N/A     0.834     -0.7463       naphthalene     0.191     0.33     -0.139       phenanthrene     4.376     2.878     2.095       PAHS (sum of total)     26.41     19.31	zinc	352.1	285.6	66.5	
acenaphthene     0.341     0.389     -0.048       anthracene     0.867     0.438     0.429       benz(a)anthracene     1.83     1.316     0.514       benz(b)fluoranthene     2.517     1.88     0.637       benz(b,j)gerylene     1.267     NC, deep not sampled       benz(b,j)gerylene     1.212     0.644     0.592       benz(a)pyrene     1.712     1.2     0.512       chrysene     0.515     1.511     0.644       dibenz(a,h)anthracene     0.422     0.164     0.078       fluoranthene     6.834     3.594     3.24       fluoranthene     6.834     3.594     3.24       fluoranthene     0.429     0.669     0.428       indeno(1,2,3-cd)pyrene     0.997     0.569     0.428       methylnaphthalene, 1-     N/A     0.4     NC 95% UCLM not calculated       methylnaphthalene, 2-     0.087     0.834     -0.7463       phenanthrene     4.336     3.394     0.942       pyrene     4.973     2.878     2.095	acenaphthylene	0.0423	NC	NC 95% UCLM not calculated	
anthracene   0.867   0.438   0.429     benz(a)anthracene   1.83   1.316   0.514     benzo(b)fluoranthene   2.517   1.88   0.637     benzo(b)fluoranthenes   1.267   NC, deep not sampled     benzo(b)fluoranthenes   0.614   0.592     benzo(k)fluoranthene   0.71   0.602   0.108     benzo(a)pyrene   1.712   1.20   0.512     chrysene   2.155   1.511   0.644     dibenz(a,h)anthracene   0.242   0.164   0.078     fluoranthene   6.834   3.594   3.24     fluoranthene   0.397   0.569   0.428     methylnaphthalene, 1-   N/A   0.4   NC 95% UCLM not calculated     methylnaphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     pyrene   4.973   2.878   2.095     PAHs (sum of total)   2.641   19.31   7.1     ammonia and ammonium (as N)   N/A   NC 95% UCLM not calculated     nitrogen total   841.8   895.2   -53.4	acenaphthene	0.341	0.389	-0.048	
benz(a)anthracene     1.83     1.316     0.514       benzo(b)fluoranthene     2.517     1.88     0.637       benzo(b+j)fluoranthenes     1.267     NC, deep not sampled       benzo(g,h,i)perylene     1.236     0.644     0.592       benzo(k)fluoranthene     0.71     0.602     0.108       benzo(a)pyrene     1.712     1.2     0.512       chrysene     2.155     1.511     0.644       dibenz(a,h)anthracene     0.242     0.164     0.078       fluoranthene     6.834     3.594     3.24       fluoranthene     6.834     3.594     0.428       methylnaphthalene, 1-     N/A     0.4     NC 95% UCLM not calculated       methylnaphthalene, 2-     0.0877     0.834     -0.7463       naphthalene     0.191     0.33     -0.139       phenanthrene     4.336     3.394     0.942       pyrene     4.973     2.878     2.095       PAHs (sum of total)     26.41     19.31     -7.1       ammonia as N     122.7     NC, deep not	anthracene	0.867	0.438	0.429	
benzo(b)fluoranthene   2.517   1.88   0.637     benzo(b+j)fluoranthenes   1.267   NC, deep not sampled     benzo(g,h,i)perylene   1.236   0.644   0.592     benzo(k)fluoranthene   0.71   0.602   0.108     benzo(a)pyrene   1.712   1.2   0.512     chrysene   2.155   1.511   0.644     dibenz(a,h)anthracene   0.242   0.164   0.078     fluoranthene   6.834   3.594   3.24     fluoranthene   0.835   0.459   -0.064     indeno(1,2,3-cd)pyrene   0.997   0.569   0.428     methylnaphthalene, 1-   N/A   0.4   NC 95% UCLM not calculated     methylnaphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     phenanthrene   4.336   3.394   0.942     pyrene   4.973   2.878   2.095     PAHS (sum of total)   2.641   19.31   7.1     ammonia and ammonium (as N)   N/A   NC 95% UCLM not calculated     ammonia as N   1227   S3.4 </td <td>benz(a)anthracene</td> <td>1.83</td> <td>1.316</td> <td>0.514</td> <td></td>	benz(a)anthracene	1.83	1.316	0.514	
benzo(b+;)fluoranthenes     1.267     NC, deep not sampled       benzo(g,h,i)perylene     1.236     0.644     0.592       benzo(k)fluoranthene     0.71     0.602     0.108       benzo(a)pyrene     1.712     1.2     0.512       chrysene     2.155     1.511     0.644       dibenz(a,h)anthracene     0.242     0.164     0.078       fluoranthene     6.834     3.594     3.24       fluorene     0.395     0.459     -0.064       indeno(1,2,3-cd)pyrene     0.997     0.569     0.428       methylnaphthalene, 1-     N/A     0.4     NC 95% UCLM not calculated       methylnaphthalene, 2-     0.0877     0.834     -0.7463       naphthalene     0.191     0.33     -0.139       phenanthrene     4.336     3.394     0.942       pyrene     4.973     2.878     2.095       PAHS (sum of total)     26.41     19.31     7.1       ammonia and ammonium (as N)     N/A     NC 95% UCLM not calculated       ammonia as N     122.7     NC, de	benzo(b)fluoranthene	2.517	1.88	0.637	
benzo(g,h,i)perylene     1.236     0.644     0.592       benzo(k)fluoranthene     0.71     0.602     0.108       benzo(a)pyrene     1.712     1.2     0.512       chrysene     2.155     1.511     0.644       dibenz(a,h)anthracene     0.242     0.164     0.078       fluoranthene     6.834     3.594     3.24       fluorene     0.395     0.459     0.064       indeno(1,2,3-cd)pyrene     0.997     0.569     0.428       methylnaphthalene, 1-     N/A     0.4     NC 95% UCLM not calculated       methylnaphthalene, 2-     0.0877     0.834     -0.7463       naphthalene     0.191     0.33     -0.139       phenanthrene     4.336     3.394     0.942       pyrene     4.973     2.878     2.095       PAHs (sum of total)     26.41     19.31     7.1       ammonia and ammonium (as N)     N/A     NC 95% UCLM not calculated       ammonia as N     122.7     NC, deep not sampled       kjeldahl nitrogen total     841.8     895.2 </td <td>benzo(b+j)fluoranthenes</td> <td>1.267</td> <td></td> <td>NC, deep not sampled</td> <td></td>	benzo(b+j)fluoranthenes	1.267		NC, deep not sampled	
benzo(k)fluoranthene     0.71     0.602     0.108       benzo(a)pyrene     1.712     1.2     0.512       chrysene     2.155     1.511     0.644       dibenz(a,h)anthracene     0.242     0.164     0.078       fluoranthene     6.834     3.594     3.24       fluorene     0.395     0.459     -0.064       indeno(1,2,3-cd)pyrene     0.997     0.569     0.428       methylnaphthalene, 1-     N/A     0.4     NC 95% UCLM not calculated       methylnaphthalene, 2-     0.0877     0.834     -0.7463       naphthalene     0.191     0.33     -0.139       phenanthrene     4.336     3.394     0.942       pyrene     4.973     2.878     2.095       PAHs (sum of total)     26.41     19.31     7.1       ammonia and ammonium (as N)     N/A     NC 95% UCLM not calculated       ammonia as N     122.7     NC, deep not sampled       kjeldah nitrogen total     841.8     895.2     -53.4       nitrogen (total)     N/A     N/A	benzo(g,h,i)perylene	1.236	0.644	0.592	
benzo(a)pyrene     1.712     1.2     0.512       chrysene     2.155     1.511     0.644       dibenz(a,h)anthracene     0.242     0.164     0.078       fluoranthene     6.834     3.594     3.24       fluorene     0.395     0.459     -0.064       indeno(1,2,3-cd)pyrene     0.997     0.569     0.428       methylnaphthalene, 1-     N/A     0.4     NC 95% UCLM not calculated       methylnaphthalene, 2-     0.0877     0.834     -0.7463       naphthalene     0.191     0.33     -0.139       phenanthrene     4.336     3.394     0.942       pyrene     4.973     2.878     2.095       PAHS (sum of total)     26.41     19.31     7.1       ammonia and ammonium (as N)     N/A     NC 95% UCLM not calculated       ammonia as N     122.7     NC, deep not sampled       kjeldahl nitrogen total     841.8     895.2     -53.4       nitrogen (total)     N/A     N/A     NC 95% UCLM not calculated       organic phosphorus     3.25	benzo(k)fluoranthene	0.71	0.602	0.108	
chrysene   2.155   1.511   0.644     dibenz(a,h)anthracene   0.242   0.164   0.078     fluoranthene   6.834   3.594   3.24     fluorene   0.395   0.459   -0.064     indeno(1,2,3-cd)pyrene   0.997   0.569   0.428     methylnaphthalene, 1-   N/A   0.4   NC 95% UCLM not calculated     methylnaphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     phenanthrene   4.336   3.394   0.942     pyrene   4.336   3.643   -0.7463     naphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     phenanthrene   4.336   3.394   0.942     pyrene   4.973   2.878   2.095     PAHS (sum of total)   26.41   19.31   7.1     ammonia and ammonium (as N)   N/A   NC 95% UCLM not calculated     ammonia as N   122.7   NC, deep not sampled     kjeldahl nitrogen total   841.8   895.2   -53.4 <td>benzo(a)pyrene</td> <td>1.712</td> <td>1.2</td> <td>0.512</td> <td></td>	benzo(a)pyrene	1.712	1.2	0.512	
dibenz(a,h)anthracene   0.242   0.164   0.078     fluoranthene   6.834   3.594   3.24     fluorene   0.395   0.459   -0.064     indeno(1,2,3-cd)pyrene   0.997   0.569   0.428     methylnaphthalene, 1-   N/A   0.4   NC 95% UCLM not calculated     methylnaphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     phenanthrene   4.336   3.394   0.942     pyrene   4.336   3.394   0.942     pyrene   4.973   2.878   2.095     PAHS (sum of total)   26.41   19.31   7.1     ammonia and ammonium (as N)   N/A   NC 95% UCLM not calculated     ammonia as N   122.7   NC, deep not sampled     kjeldahl nitrogen total   841.8   895.2   -53.4     nitrogen (total)   N/A   N/A   NC 95% UCLM not calculated     organic phosphorus   3.25   NC, deep not sampled     phosphorus   1020   1163   -143	chrysene	2.155	1.511	0.644	
fluoranthene   6.834   3.594   3.24     fluorene   0.395   0.459   -0.064     indeno(1,2,3-cd)pyrene   0.997   0.569   0.428     methylnaphthalene, 1-   N/A   0.4   NC 95% UCLM not calculated     methylnaphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     phenanthrene   4.336   3.394   0.942     pyrene   4.973   2.878   2.095     PAHs (sum of total)   26.41   19.31   7.1     ammonia and ammonium (as N)   N/A   NC   NC 95% UCLM not calculated     ammonia as N   122.7   NC, deep not sampled   NC     kjeldahl nitrogen total   841.8   895.2   -53.4     nitrogen (total)   N/A   N/A   NC, deep not sampled     organic phosphorus   3.25   NC, deep not sampled     phosphorus   1020   1163   -143	dibenz(a,h)anthracene	0.242	0.164	0.078	
fluorene   0.395   0.459   -0.064     indeno(1,2,3-cd)pyrene   0.997   0.569   0.428     methylnaphthalene, 1-   N/A   0.4   NC 95% UCLM not calculated     methylnaphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     phenanthrene   4.336   3.394   0.942     pyrene   4.973   2.878   2.095     PAHs (sum of total)   26.41   19.31   7.1     ammonia and ammonium (as N)   N/A   NC   NC 95% UCLM not calculated     ammonia as N   122.7   NC, deep not sampled     kjeldahl nitrogen total   841.8   895.2   -53.4     nitrogen (total)   N/A   N/A   NC, deep not sampled     organic phosphorus   3.25   NC, deep not sampled     phosphorus   1020   1163   -143	fluoranthene	6.834	3.594	3.24	
indeno(1,2,3-cd)pyrene0.9970.5690.428methylnaphthalene, 1-N/A0.4NC 95% UCLM not calculatedmethylnaphthalene, 2-0.08770.834-0.7463naphthalene0.1910.33-0.139phenanthrene4.3363.3940.942pyrene4.9732.8782.095PAHs (sum of total)26.4119.317.1ammonia and ammonium (as N)N/ANCNC 95% UCLM not calculatedammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	fluorene	0.395	0.459	-0.064	
methylnaphthalene, 1-N/A0.4NC 95% UCLM not calculatedmethylnaphthalene, 2-0.08770.834-0.7463naphthalene0.1910.33-0.139phenanthrene4.3363.3940.942pyrene4.9732.8782.095PAHs (sum of total)26.4119.317.1ammonia and ammonium (as N)N/ANCNC 95% UCLM not calculatedammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	indeno(1,2,3-cd)pyrene	0.997	0.569	0.428	
methylnaphthalene, 2-   0.0877   0.834   -0.7463     naphthalene   0.191   0.33   -0.139     phenanthrene   4.336   3.394   0.942     pyrene   4.973   2.878   2.095     PAHs (sum of total)   26.41   19.31   7.1     ammonia and ammonium (as N)   N/A   NC   NC 95% UCLM not calculated     ammonia as N   122.7   NC, deep not sampled     kjeldahl nitrogen total   841.8   895.2   -53.4     nitrogen (total)   N/A   N/A   NC 95% UCLM not calculated     organic phosphorus   3.25   NC, deep not sampled     phosphorus   1020   1163   -143	methylnaphthalene, 1-	N/A	0.4	NC 95% UCLM not calculated	
naphthalene0.1910.33-0.139phenanthrene4.3363.3940.942pyrene4.9732.8782.095PAHs (sum of total)26.4119.317.1ammonia and ammonium (as N)N/ANCNC 95% UCLM not calculatedammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	methylnaphthalene, 2-	0.0877	0.834	-0.7463	
phenanthrene4.3363.3940.942pyrene4.9732.8782.095PAHs (sum of total)26.4119.317.1ammonia and ammonium (as N)N/ANCNC 95% UCLM not calculatedammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	naphthalene	0.191	0.33	-0.139	
pyrene4.9732.8782.095PAHs (sum of total)26.4119.317.1ammonia and ammonium (as N)N/ANCNC 95% UCLM not calculatedammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	phenanthrene	4.336	3.394	0.942	
PAHs (sum of total)26.4119.317.1ammonia and ammonium (as N)N/ANCNC 95% UCLM not calculatedammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	pyrene	4.973	2.878	2.095	
ammonia and ammonium (as N)N/ANCNC 95% UCLM not calculated NC, deep not sampledammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	PAHs (sum of total)	26.41	19.31	7.1	
ammonia as N122.7NC, deep not sampledkjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	ammonia and ammonium (as N)	N/A	NC	NC 95% UCLM not calculated	
kjeldahl nitrogen total841.8895.2-53.4nitrogen (total)N/AN/ANC 95% UCLM not calculatedorganic phosphorus3.25NC, deep not sampledphosphorus10201163-143	ammonia as N	122.7		NC, deep not sampled	
N/A N/A N/A NC 95% UCLM not calculated   organic phosphorus 3.25 NC, deep not sampled   phosphorus 1020 1163 -143	kjeldahl nitrogen total	841.8	895.2	-53.4	
organic phosphorus 3.25 NC, deep not sampled   phosphorus 1020 1163 -143	nitrogen (total)	N/A	N/A	NC 95% UCLM not calculated	
phosphorus 1020 1163 -143	organic phosphorus	3.25	,,,	NC, deep not sampled	
	phosphorus	1020	1163	-143	
Fecal Coliforms 25529 NC, deep not sampled	Fecal Coliforms	25529		NC, deep not sampled	

Appendix "A" to Report PW19008(g)/LS19004(f) Page 396 of 409 of 486

#### APPENDIX G TRVs

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

#### APPENDIX G SURFACE WATER TOXICITY REFERENCE VALUES

This appendix presents the surface water toxicity reference values (TRVs) used as part of the effects assessment section for aquatic life.

The selection of TRVs for aquatic life included a review of direct contact ecotoxicity values from the following sources:

- Technical supporting documents published by BC MOE as part of the BC AWQG, and WWQG;
- Technical supporting documents published by CCME as part of the Canadian Environmental Quality Guidelines for the protection of aquatic life;
- Technical supporting documents published by the USEPA to support the Ambient Water Quality Guidelines;
- Technical supporting document published by the Ontario Ministry of Energy and Environment as part of the provincial sediment quality standards; and
- Publications of peer reviewed toxicology literature, accessed from Web of Science citation indexing service.

Preferences were given to chronic sublethal toxicity data for reproduction and growth for species representative of a warm water system, if available, when selecting TRVs. For non-listed species, preferences were given to the lowest observed effect level (LOEL) or EC20, where available. In the ERA the goal was not to protect each individual from any toxic effect, but rather to protect enough individuals so that a viable population and community of organisms can be maintained. Therefore, EC20s were considered appropriate TRVs where available for non-listed species. To account for the potential presence of SAR (i.e. the Lilliput mussel) in the study area, a no observed adverse effect level (NOAEL) was also selected for invertebrates following MECP guidance (MECP 2019).

The proposed TRVs are outlined in Table A and discussed below the table.

COPC	Invertebrates	Aquatic Plants	Fish	Amphibians
Aluminum	320 (community) 100 (individual)⁰	460	200	320
Iron (total)	1740 (community) 300 (individual)∘	1740	300ª	1740
nitrite (as N)		60 ^b	5,000	60ª
phosphorus		30 µg/L (benchmar	k to prevent algal growt	h)

#### Table A: Surface Toxicological Reference Values for the Protection of Aquatic Life (µg/L)

a- PWQO guideline retained as TRV due to limited toxicity information for amphibians

b- PWQO guideline retained as TRV due to limited ROC-specific toxicity information available.

c- A NOAEL was selected, where available, to account for the potential presence of SAR (i.e. the Lilliput mussel) in the study area.

#### Aluminum

The toxicity of aluminum in surface water varies with pH. The PWQO for aluminum (total) is based on two laboratory studies and one field study for both cold water and warm water fish. The studies used for the PWQO indicated toxicity at 0.150 (LC50 in a 7 day study for goldfish, pH of 7.4) to 0.170 mg/L (LC50 in a 8 day study for large mouth bass, pH of 7.2-7.8) of aluminum. No effect concentrations on fish were reported using 0.045-0.06 mg/L aluminum. Only one study by Freeman and Everhart (1971) was reviewed with a non-lethal endpoint.

One toxicity study for Daphnia Magna was reviewed in the development of the PWQO guideline. The study showed a 16 percent reduction in reproduction for Daphnia Magna following a 21-day exposure to 0.32 mg/L of aluminum (pH of 7.7). Two toxicity studies for algae were reviewed in the development of the PWQO guideline. The results of the studies are summarized below:

- Call et Al. 1984: A 4-day study with aluminum concentrations of 0.46 to< 0.2 mg/L (pH of 7.6 to 7.5) and 0.57 to <0.2 mg/L (pH of 8.2 to 7.5) resulted in EC50 in biomass for *Selenastrum carpicornutum*.
- Rao and Subramaniam, 1982: A 8-day study with an aluminum concentration of 0.81 mg/L (pH of 7.9) resulted in growth inhibition in diatom *Cyclotella Meneghiana*.

The BC Environment and Climate Change (BC ENV) completed a review of toxicological studies for aluminum in has selected a maximum concentration of 100  $\mu$ g/L for dissolved aluminum as a concentration considered safe for sensitive aquatic life (at pH > 6.5) (Butcher, 1988). The BC ENV guideline is based on the same studies as the PWQO and CCME guideline for waters with pH greater than 6.5 but is expressed in terms of dissolved aluminum. Dissolved aluminum was selected since most of the bio-reactive aluminum is likely to be in the dissolved fraction (BC ENV 2001).

Chronic toxicity data for aluminum reviewed by BC ENV ranged from 10 µg/L (95% survival of brook trout after 14 days exposure at pH 4.4 to 6,700 µg/L for chronic effects to midge larvae at pH 6.6 (endpoint not described). The lowest chronic toxicity value reviewed by BC MOE for pH  $\geq$  6.5 was 320 µg/L for Daphnia Magna (16% reproductive impairment at pH 7.7). The lowest chronic value for pH  $\ge$  6.5 for fish was a LC50 of 500 µg/L for rainbow trout obtained after 44 days exposure at pH ranging from 6.5 to 7.4 (Butcher, 1988). A LC20 of 1000 µg/L was reported for brook trout for eyed eggs mortality after 8 days of exposure at pH 6.5 (Butcher, 1988). CCME (1997) indicates that aquatic plants appear to be less sensitive than some invertebrates and reported a 50% reduction in root growth observed at 2500 µg/L at circumneutral pH for the eurasian milfoil (Myriophyllum spicatum L). BC ENV reported a 96-hour EC50 of 570 µg/L for biomass reduction (growth endpoint) for Selenastrum carpicornutum at pH 7.6 and of 460 µg/L at pH 8.2. Chronic toxicity values for aquatic plants obtained at pH higher than 6.5 were higher than the reported acute values. BC ENV also reported that aquatic macrophytes may be relatively tolerant to aluminum and reported that frond production in Lemna minor was not significantly affected after 96-hour exposure in water with aluminum ranging from 300 to 46,000 µg/L aluminum. BC ENV reported non-effect level for embryos of wood frog at total aluminum concentration of 200 µg/L and pH 5.57.

Species-specific TRVs were selected for aluminum. Based on the pH of the receiving environment, the lowest chronic value of 500  $\mu$ g/L (LC50) obtained at pH > 6.5 (Butcher, 1988). This value was converted to an LC20 of **200**  $\mu$ g/L and selected as the fish TRV. Based on the pH of the study area (7.87 – 8.42), the lowest chronic value of **460**  $\mu$ g/L obtained at pH 8.2

(Butcher, 1988) and 7.6 to 7.5 (Call et Al. 1984, as reviewed in MOEE 1988) was selected as the TRV for aquatic plants. The lowest chronic toxicity value of **320 \mug/L** for Daphnia Magna obtained at pH 7.7 was selected as the TRV for invertebrates and amphibians. The BC WQG for dissolved aluminum of **100 \mug/L** was retained as the TRV to benthic invertebrate SAR.

#### Iron

The PWQQO for iron is based on the prevention of the creation of iron "floc" in surface water and subsequent physical effects on aquatic life. No observations of iron precipitate were documented at the site, therefore species-specific TRVs were selected. Uncertainty related to the precipitation of iron is discussed in Section 8.0.

The MECP completed a review of toxicological data for iron during the development of the PWQO in 1979, however, additional studies have been completed since this work was completed. The BC ENV updated their water quality guideline for Iron in 2008. The BC new water quality guideline for the protection of aquatic life is 1000  $\mu$ g/L for total iron and 350  $\mu$ g/L for dissolved iron (Phibben et al., 2008).

The guideline for total iron is based on recent field-based research of Linton *et al.* (2007). Linton *et al.* (2007) derived two benchmarks on change in community structure to establish the guideline. The first benchmark of 210  $\mu$ g/L corresponds to no or minimal changes in aquatic community structure and function. The second benchmark of 1740  $\mu$ g/L allows for a slight to moderate changes in community population (i.e., loss of some rare species and/or replacement of sensitive ubiquitous taxa with more tolerant taxa). Phibben et al (2008) selected 1000  $\mu$ g/L as the value for the BC guideline based on the precautionary principle and noted that this value may be overprotective in some instances. They indicated that other recent research has recommended 1700  $\mu$ g/L as a guideline for total iron.

The BCWQ guideline for dissolved iron is based toxicity tests conducted by the Pacific Environmental Science Center (PESC) for the BC MOE. The test species included rainbow trout, the amphipod *Hyalella azteca*, the chironomid *Chironomus tentans*, *Daphnia magna*, and *Selanastrum capricornutum*. The lowest toxicity value obtained with the above species was the acute  $LC_{50}$  of 3500 µg/L reported for *Hyalella* in soft water. The EC₅₀ for *Hyalella* was divided by a safety factor of 10 and rounded down to 350 µg/L to derive the BC dissolved iron guideline (Phibben *et al.*, 2008). The LC50 for rainbow trout in soft water was >6400 µg/L and the LC50 for *selenastrum capricornatum* was 3600 µg/L.

Based on the above information the benchmark of **1740 \mug/L** for total iron proposed by Linton et al (2007) was adopted as the TRV for protection of the benthic community. Linton et al (2007) set a benchmark of 210  $\mu$ g/L for no or minimal changes to aquatic community structure and function, however this value is below the PWQO for iron of 300  $\mu$ g/L. Therefore the PWQO of **300 \mug/L** was adopted as the TRV for protection of benthic invertebrates on an individual level (i.e. SAR).

#### Phosphorus

Phosphorus compounds are not toxic to aquatic life and thus does not need to be controlled to protect aquatic life from any direct negative effects (MOE 1979).

Although phosphorus is not toxic to aquatic life, concentrations must be controlled to prevent increased algal growth may result in undesirable changes in the aquatic ecosystem. The PWQO

of 10  $\mu$ g/L was set to provide a "*high level of protection against aesthetic deterioration for the ice-free period*" (MOEE 1979). The MECP Rationale for the Establishment of the Provincial Water Quality Objectives (MOE 1979) states that excessive plant growth in rivers and streams should be eliminated at a total phosphorus concentration below 30  $\mu$ g/L.

#### Nitrite

#### Fish

Salmonids are more sensitive to nitrite than are other fish species and show very little difference among the species. There is considerably more variation among warm-water fish species (Lewis and Morris 1986). A study by Palachek and Tomasso (1984) reviewed as part of CCREM 1987 indicated that 96-h LC50 values of nitrite-nitrogen for channel catfish (*Ictalurus punctatus*), tilapia (*Tilapia aurea*) and largemouth bass (*Micropterus salmoides*) were 7, 16 and 140 mg/L, respectively.

Small fish (including the larval stage) are unlikely to be more sensitive to nitrite than larger fish of the same species (CCREM 1987). A concentration of 0.06 mg/L was noted to be protective of salmonid species in two studies review in CCREM 1987:

- Russo et al. 1974 indicated no rainbow trout died over 10 d at a nitrite concentration of 0.06 mg/L; and
- Wedemeyer and Yasutake 1978 indicated steelhead juveniles exposed for 6 months first showed tissue damage in the gills at a concentration of 0.06 mg/L. No reduction in growth was noted over the 6 months' exposure period to 0.06 mg/L at a chloride concentrations of 2.3 mg/L.

Based on CCREM 1987, concentrations of nitrite (as N) of 5,000  $\mu$ g/L, would be protective of most warm-water fish and concentrations at or below 60  $\mu$ g/L should protect salmonid fish. Since Chedoke creek is a warm water system, **5,000 \mug/L** was selected as the TRV for fish. It's noted that Wedemeyer and Yasutake 1978 (as reviewed in CCREM 1987) indicated that addition of chloride ions increases the tolerance of salmonid fish to nitrite. Although chloride concentrations were not measured within Chedoke Creek, based on the urban nature of the creek and location between two roadways (Macklan Street North and Highway 403) chloride levels are likely to be elevated.

Limited information on nitrite-toxicity to aquatic plants and invertebrates was available for review. The CCME WQG of **60 \mug/L** was selected for the protection of aquatic plants and invertebrates.

#### REFERENCES

- BC Approved WQG for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV, 2019).
- BC Working WQGs for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV 2018).
- BC Approved WQG for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV, 2019).
- Butcher. G.A. 1988. Water Quality Criteria for Aluminum. Technical Appendix. BC Ministry of Environment and Parks. Water Quality Unit. Resource Quality Section. Water Management Branch.
- Canadian Council of Ministers of the Environment (CCME) 1997. Canadian Council of Ministers of Environment. A Framework for Ecological Risk Assessment: Technical Appendices. March, 1997.
- CCME 2008. Canadian Water Quality Guidelines, Canadian Council of Ministers of the Environment. November 2008.
- CCREM. 1987. Canadian Council of Resource and Environment Ministers. Canadian water quality guidelines. Environment Canada (1987).
- Linton, T.K., M.A.W. Pacheco D.O. McIntyre W.H. Clement and J. Goodrich-Mahoney. 2007. Development of bioassessment-based benchmarks for iron. *Environ. Toxicol. Chem.* 26(6): 1291-1298. In: Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron. Overview Report.
- MOE 1979. Rationale for the Establishment of the Provincial Water Quality Objectives. September 1979. Ministry of the Environment.
- MOE 1988. Scientific Criteria Document for Development of Provincial Water Quality Objectives and Guidelines. Aluminum. September 1988. Ministry of the Environment.
- MOE 1992. Ontario's Water Quality Objective Development Process. March 1992. Ministry of the Environment.

Palachek and Tomasso (1984).

Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron.

Russo et al. 1974.

Wedemeyer, G.A. and W.T. Yasatake. 1978. Prevention and treatment of nitrite toxicity in juvenile steelhead trout (*Salmo gairdneri*). J. Fish. Res. Board Can. 35: 822-827. (Cited in MOE 1979).

Appendix "A" to Report PW19008(g)/LS19004(f) Page 402 of 419 of 486

#### APPENDIX H Uncertainty Assessment

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

# SLR Project No.: 209.40666 January 2020

TABLE H-1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING - DEEPER SEDIMENT (>0.15 mbss) (mg/kg)

				IS	EDIMENT CHAI	RACTERIZATIC	N						Ε	COLOGICAL HEALTH SCREE	NING
				Maximum Co	oncentration			Second Highest C	oncentration		Backç	ground	Screening E	Senchmarks	
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	Table 1 Background Standards for Soil	MOE 2008, 2011 ^a	ON PSQ6 LEL	CCME SedQG Freshwater (ISQG)	COPC?
Aetals								Deep Se	diment ( >0.1	5 mbss)					
Antimony	21 (+0)	11 (+0)	1.9	C-5 West	0.15-0.3	9/19/2018	1.7	C-5 West	0.3	9/19/2018	1.0				Uncertain
Arsenic	21 (+0)	21 (+0)	16	C-5 East	0.15-0.3	9/19/2018	9.1	C-5 West	0.3	9/19/2018		4.0	9	5.9	Yes; maximum > LEL
3arium	21 (+0)	21 (+0)	398	C-5 West	0.15-0.3	9/19/2018	397	C-5 West	0.3	9/19/2018	210.0	,			Uncertain
3eryllium	21 (+0)	21 (+0)	0.85	C-5 East	0.15-0.3	9/19/2018	0.52	C-4 Centre	0.15-0.3	9/19/2018	2.5	,			
Soron	5 (+0)	5 (+0)	16	C-1 West	0.15-0.3	9/18/2018	13	C-2 West	0.15-0.3	9/18/2018	36.0	,			
Cadmium	21 (+0)	21 (+0)	68	C-5 West	0.3	9/19/2018	49	C-5 West	0.15-0.3	9/19/2018	,	1.0	0.6	0.6	Yes; maximum > LEL
Chromium (III+VI)	21 (+0)	21 (+0)	26	C-5 West	0.3	9/19/2018	87	C-5 West	0.15-0.3	9/19/2018	,	31.0	26	£'.2£	Yes; maximum > LEL
Copper	5 (+0)	5 (+0)	73	C-2 West	0.15-0.3	9/18/2018	11	C-1 West	0.15-0.3	9/18/2018	,	25.0	16	2'98	Yes; maximum > LEL
.ead	2 (+0)	5 (+0)	100	C-3 West	0.15-0.3	9/18/2018	59	C-2 West	0.15-0.3	9/18/2018		23.0	31	35	Yes; maximum > LEL
Aolybdenum	21 (+0)	21 (+0)	3.3	C-5 East	0.15-0.3	9/19/2018	2.4	C-2 West	0.15-0.3	9/18/2018	2.0				Uncertain
vickel	5 (+0)	5 (+0)	23	C-1 West	0.15-0.3	9/18/2018	21	C-2 West	0.15-0.3	9/18/2018		31.0	16		No; maximum < background
Selenium	21 (+0)	3 (+0)	1.5	C-5 East	0.15-0.3	9/19/2018	0.7	C-5 West	0.15-0.3	9/19/2018	1.2		-		Uncertain
Silver	21 (+0)	20 (+0)	27	C-5 West	0.3	9/19/2018	17	C-5 West	0.15-0.3	9/19/2018	,	0.5			Uncertain, maximum < background
hallum	21 (+0)	21 (+0)	0.25	C-5 East	0.15-0.3	9/19/2018	0.18	C-5 West	0.3	9/19/2018	1.0		-		
Jranium	21 (+0)	21 (+0)	0.81	C-5 East	0.15-0.3	9/19/2018	0.78	C-5 West	0.3	9/19/2018	1.9				No; maximum < Table 1 background
anadium	5 (+0)	5 (+0)	19	C-1 West	0.15-0.3	9/18/2018	18	C-2 West	0.15-0.3	9/18/2018	86.0				
zinc	5 (+0)	5 (+0)	339	C-2 West	0.15-0.3	9/18/2018	305	C-3 West	0.15-0.3	9/18/2018		65.0	120	123	Yes; maximum > LEL

#### Appendix "A" to Report PW19008(g)/LS19004(f) Page 403 of 416 of 486

# SLR Project No.: 209.40666 January 2020

TABLE H-1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING - DEEPER SEDIMENT (>0.15 mbss) (mg/kg)

				S	EDIMENT CHAI	RACTERIZATIO	z						ш	COLOGICAL HEALTH SCREE	ling
				Maximum Ci	oncentration			Second Highest Cc	ncentration		Backç	Jro und	Screening B	lenchmarks	
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	Table 1 Background Standards for Soil	MOE 2008, 2011 [°]	ON PSQ6 LEL	CCME SedOG Freshwater (ISQG)	COP C 7
AHs															
cenaphthylene	21 (+0)	(0+) 0	<0.1	C-1 West	0.15-0.3	9/18/2018	<0.1	C-2 West	0.15-0.3	9/18/2018				0.00587	No; not detected.
cenaphthene	21 (+0)	13 (+0)	0.92	C-4 Centre	0.15-0.3	9/19/2018	0.91	C-3 West	0.225	0.15-0.3				0.00671	Yes; maximum > ISQG
uthracene	21 (+0)	17 (+0)	1.08	C-3 West	0.15-0.3	9/18/2018	0.56	C-5 West	0.3	9/19/2018		-	0.22	0.0469	Yes; maximum > LEL
ienz(a)anthracene	21 (+0)	19 (+0)	3.54	C-3 West	0.15-0.3	9/18/2018	1.51	C-5 West	0.3	9/19/2018	,		0.32	0.0317	Yes; maximum > LEL
ienzo[b]fluoranthene	21 (+0)	19 (+0)	4.96	C-3 West	0.15-0.3	9/18/2018	2.37	C-5 West	0.3	9/19/2018	0.3	-			No; assessed as total PAHs ^b
enzo(g,h,i)perylene	21 (+0)	18 (+0)	1.23	C-3 West	0.15-0.3	9/18/2018	0.89	C-5 West	0.3	9/19/2018			0.17		Yes; maximum > LEL
enzo(k)fluoranthene	21 (+0)	18 (+0)	1.48	C-3 West	0.15-0.3	9/18/2018	0.77	C-2 West	0.15-0.3	9/18/2018		-	0.24		Yes; maximum > LEL
ienzo(a)pyrene	21 (+0)	19 (+0)	3.11	C-3 West	0.15-0.3	9/18/2018	1.38	C-5 West	0.3	9/19/2018			0.37	0.0319	Yes; maximum > LEL
hrysene	21 (+0)	19 (+0)	4.04	C-3 West	0.15-0.3	9/18/2018	1.87	C-2 West	0.15-0.3	9/18/2018			0.34	0.0571	Yes; maximum > LEL
vibenz(a,h)anthracene	21 (+0)	13 (+0)	0.35	C-3 West	0.15-0.3	9/18/2018	0.21	C-5 West	0.3	9/19/2018			0.06	0.00622	Yes; maximum > LEL
luoranthene	21 (+0)	19 (+0)	10.3	C-3 West	0.15-0.3	9/18/2018	4.85	C-2 West	0.15-0.3	9/18/2018			0.75	0.111	Yes; maximum > LEL
luorene	21 (+0)	16 (+0)	1.04	C-3 West	0.15-0.3	9/18/2018	0.67	C-5 West	0.3	9/19/2018			0.19	0.0212	Yes; maximum > LEL
ndeno(1,2,3-cd)pyrene	21 (+0)	18 (+0)	1.25	C-3 West	0.15-0.3	9/18/2018	0.71	C-5 West	0.3	9/19/2018			0.2		Yes; maximum > LEL
lethylnaphthalene, 1-	21 (+0)	18 (+0)	0.89	C-5 West	0.3	9/19/2018	0.85	C-4 Centre	0.15-0.3	9/19/2018	0.05				Uncertain
lethylnaphthalene, 2-	21 (+0)	13 (+0)	1.94	C-5 West	0.3	9/19/2018	1.92	C-4 Centre	0.15-0.3	9/19/2018				0.0202	Yes; maximum > ISQG
laphthalene	21 (+0)	10 (+0)	1.2	C-3 West	0.15-0.3	9/19/2018	0.45	C-2 West	0.15-0.3	9/18/2018				0.0346	Yes; maximum > ISQG
henanthrene	21 (+0)	19 (+0)	10	C-3 West	0.15-0.3	9/18/2018	4.39	C-2 West	0.15-0.3	9/18/2018			0.56	0.0419	Yes; maximum > LEL
yrene	21 (+0)	19 (+0)	7.83	C-3 West	0.15-0.3	9/18/2018	3.69	C-2 West	0.15-0.3	9/18/2018			0.49	0.053	Yes; maximum > LEL
AHs (sum of total)	WN	WN	47.46	C-3 West	0.15-0.3	9/18/2018	32.77	C-6 Centre	0.3	9/19/2018			4		Yes; maximum > LEL

Appendix "A" to Report PW19008(g)/LS19004(f) Page 404 of 416 of 486

Page 2 of 3

SLR

# City of Hamilton Ecological Risk Assessment – Chedoke Creek

TABLE H-1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING - DEEPER SEDIMENT (>0.15 mbss) (mg/kg)

SLR Project No.: 209.40666 January 2020

				SI	EDIMENT CHAF	RACTERIZATIO	z						ш	COLOGICAL HEALTH SCREEN	IING
				Maximum Co	ncentration			Second Highest Co	oncentration		Backgr	puno	Screening E	enchmarks	
Contaminant	No. of Samples Analyzed (+Dup)	No. of Detectable Conc. (+Dup)	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	mg/kg	Sample ID	Sample Depth (mbss)	Sample Date	Table 1 Background Standards for Soil	MOE 2008, 2011 ^a	ON PSOG LEL	CCME SedOG Freshwater (ISQG)	COPC?
utrients															
mmonia and ammonium (as N)	21 (+0)	16 (+0)	200	C-1 West	0.15-0.3	9/18/2018	200	C-2 West	0.15-0.3	9/18/2018					Uncertain
jeldahl nitrogen total	21 (+0)	20 (+0)	1500	C-5 West	0.3	9/19/2018	1400	C-5 East	0.15-0.3	9/19/2018	-		550		Yes; maximum > LEL
hosphorus	21 (+0)	21 (+0)	1820	C-5 West	0.3	9/19/2018	1760	C-5 West	0.15-0.3	9/19/2018	-		600		Yes; maximum > LEL
ecal Coliforms	21 (+0)	3 (+0)	0006	C-3 West	0.15-0.3	9/18/2018	1000	C-5 East	0.15-0.3	9/19/2018					Uncertain

Notes more - miligram per kalogram more - metres below sedment sufface PIVOS - Pervicial Volant Coultry Ophenive BC CSR - British Columnia Contaminated Ste Regulation COPC - Contamination Contemination

cono - concentration provide the provided parameter. max - maximum M. - nontrensured - catabulated parameter. "- No guideline analeki, or not selected, as provincial guideline is available. "- Value selected for screening.

BOL formating indicates selected screening benchmark. a - Bacycound sections must from MOE 2000 (the grant lakes hansels) were prelevable where available. to take PAHs incude Avampthema, Avampthema, Avampthema, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzolghundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Fluxene, Fluxene, Indenol 1,2,3-clipyrane, Naphthatene, Phenenthrene, Fluxene, Indenol 1,2,3-clipyrane, Naphthatene, Phenenthrene, Fluxene, Tabe 1,3 and Tabe 1,4 Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Benzoldhundmanene, Fluxene, Fluxene, Indenol 1,2,3-clipyrane, Naphthatene, Pheneneer, Indenol 1,0,3-clipyrane, Naphthatene, Pheneneer, Fluxene, Fluxene, Indenol 1,0,3-clipyrane, Naphthatene, Pheneneer, Indenol 1,0,3-clipyrane, Naphthatene, Pheneneer, Indenol 1,0,3-clipyrane, Naphthatene, Pheneneer, Indenol 1,0,3-clipyrane, Naphthatene, Pheneneer, Benzoldene

SLR

Appendix "A" to Report PW19008(g)/LS19004(f) Page 406 of 419 of 486



#### global environmental solutions

**Calgary, AB** 1185-10201 Southport Rd SW Calgary, AB T2W 4X9 Canada Tel: (403) 266-2030 Fax: (403) 263-7906

Kamloops, BC 8 West St. Paul Street Kamloops, BC V2C 1G1 Canada Tel: (250) 374-8749 Fax: (250) 374-8656

Ottawa, ON 400 – 2301 St. Laurent Blvd. Ottawa, ON K1G 4J7 Canada Tel: (613) 725-1777 Fax: (905) 415-1019

Toronto, ON 36 King Street East, 4th Floor Toronto, ON M5C 3B2 Canada Tel: (905) 415-7248 Fax: (905) 415-1019

Winnipeg, MB 1353 Kenaston Boulevard Winnipeg, MB R3P 2P2 Canada Tel: (204) 477-1848 Fax: (204) 475-1649 Edmonton, AB 6940 Roper Road Edmonton, AB T6B 3H9 Canada Tel: (780) 490-7893 Fax: (780) 490-7819

**Kelowna, BC** 107 - 1726 Dolphin Avenue Kelowna, BC V1Y 9R9 Canada Tel: (250) 762-7202 Fax: (250) 763-7303

Prince George, BC 1586 Ogilvie Street Prince George, BC V2N 1W9 Canada Tel: (250) 562-4452 Fax: (250) 562-4458

Vancouver, BC (Head Office) 200-1620 West 8th Avenue Vancouver, BC V6J 1V4 Canada Tel: (604) 738-2500 Fax: (604) 738-2508

Yellowknife, NT 1B Coronation Drive Yellowknife, NT X1A 0G5 Canada Tel: (867) 688-2847 Guelph, ON 105 – 150 Research Lane Guelph, ON N1G 4T2 Canada Tel: (226) 706-8080 Fax: (226) 706-8081

Markham, ON 200 - 300 Town Centre Blvd Markham, ON L3R 5Z6 Canada Tel: (905) 415-7248 Fax: (905) 415-1019

Regina, SK 1048 Winnipeg Street Regina, SK S4R 8P8 Canada Tel: (306) 525-4690 Fax (306) 525-4691

Victoria, BC 303 – 3960 Quadra Street Victoria, BC V8X 4A3 Canada Tel: (250) 475-9595 Fax: (250) 475-9596 **Grande Prairie, AB** 9905 97 Avenue Grande Prairie, AB T8V 0N2 Canada Tel: (780) 513-6819 Fax: (780) 513-6821

Nanaimo, BC 9 - 6421 Applecross Road Nanaimo, BC V9V 1N1 Canada Tel: (250) 390-5050 Fax: (250) 390-5042

Saskatoon, SK 620-3530 Millar Avenue Saskatoon, SK S7P 0B6 Canada Tel: (306) 374-6800 Fax: (306) 374-6077

Whitehorse, YT 6131 6th Avenue Whitehorse, YT Y1A 1N2 Canada Tel: (867) 688-2847



Page 418 of 486



# CHEDOKE CREEK UPDATE

Dan McKinnon, General Manager, Public Works Gord Wichert, SLR Consulting (Canada)





Page 420 of 486

# Video: Combined Sewer System, CSO Tanks & Spill into Chedoke Creek

3







### Page 422 of 486 Ministry Orders

# **Provincial Officer Order (August 2018)**

 Required the City to retain an expert to evaluate the impacts to Chedoke Creek

# Second Provincial Officer Order (November 2019)

- Required a more comprehensive Environmental Risk Assessment and expanded the scope to include Cootes Paradise
- The City formally requested a review of the order

# **Director's Order (November 2019)**

• Required an Ecological Risk Assessment of Chedoke Creek to be completed by **February 14**, **2020** and Cootes Paradise by **May 1**, **2020** 



### Page 423 of 486 Director's Order

- By February 14, 2020 the City shall submit to the Director a written report setting out the results of an ecological risk assessment in regard to Chedoke Creek (creek). This report shall include but not necessarily be limited to: an evaluation of the environmental impact to the creek from the sewage discharged by the City between January 28, 2014 and July 18, 2018, an identification and evaluation of sewage remaining in the creek, identification of any anticipated on-going environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek.
- 2. By February 14, 2020 the City shall submit to the Director written proposed actions with justification in respect to the remediation and the monitoring of the creek including but not necessarily limited to: selected option(s) for environmental remediation and monitoring, including all supporting documentation for the selected option(s), justification for the selected option(s), and an implementation timeline for all work designed to remediate the creek including significant milestones and any approvals required.



6

Page 424 of 486



# ECOLOGICAL RISK ASSESSMENT SUMMARY

Gord Wichert, SLR Consulting (Canada)

Page 425 of 486

# CHEDOKE CREEK ECOLOGICAL RISK ASSESSMENT

Presentation to Hamilton City Council

February 13, 2020

global environmental and advisory solutions



# Background

- MECP Director's Order
- SLR Team
  - Celine Totman, Senior Risk Assessor
  - Kathryn Matheson, Risk Assessor
  - Sam Reimer, Technical Director Risk Assessment
  - Kim Laframboise, Terrestrial Ecologist
  - Kimberley Tasker, Senior Ecologist
  - Gordon Wichert, Technical Director Ecology





# Why Ecological Risk Assessment

- Accepted standardized tool to support evaluation and management of contaminated sediments.
- Provincial Sediment Quality Guidelines (PSGQ) are not clean-up numbers by themselves, and need to be used in a risk assessment framework (MECP, 2008).
  - Exceedances of environmental guidelines do not mean that adverse effects are occuring.
- To translate scientific data into information about the potential risks and enable informed environmental decisions.



global environmental and advisory solutions





# What is Ecological Risk Assessment?

An evaluation of the **potential for adverse effects** to ecological **receptors** resulting from **exposure** to chemical contamination or physical stressors.

#### A Standardized Tool with 4 Main Steps:



#### <u>Risk Paradigm</u>



EACH ELEMENT MUST BE PRESENT FOR RISK TO EXIST!

# **Study Area**



global environmental and advisory solutions

**SLR** 

# **ERA Approach**

- Methods based on risk assessment procedures recommended by
  - Ministry of Environment, Conservation and Parks (MECP) and
  - Environment and Climate Chance Canada (ECC)
- Background Information prior to discharge
  - Royal Botanical Gardens
    - water quality monitoring, nutrients and bacteria, 1994 2014
    - Sediment in the mouth of Chedoke Creek (upstream from Cootes), nutrients and metals, 2006 and 2013
  - Hamilton Conservation Authority water quality monitoring of nutrients, bacteria, 2014 to present
  - Environment Canada, 2002: sediment quality in Lake Ontario tributaries, metals and PAHs
- Post Discharge Datasets
  - Sediment and water quality chemistry, sediment toxicity and benthic invertebrate samples collected in 2018 and/or 2019
    - Wood in 2018
    - SLR in 2019



# **Ecological Receptors Selected for the ERA**

- Aquatic plants:
  - Emergent and submergent
- Aquatic invertebrates
  - Benthic invertebrates: directly exposed to sediment
  - Zooplankton: directly exposed to sediment
  - Food for fish
- Fish
  - White sucker
    - Bottom oriented, feeds on aquatic invertebrates in sediment
  - Northern pike
    - Feeds on fish, recreational fishing, exposed to water and some sediment
- Amphibians
  - Exposed to surface water and sediment, consumes aquatic invertebrates



# **Contaminants of Potential Concern (COPCs)**

**COPCs**: substances are present at elevated concentrations (above guidelines/standards) in environmental media, typically associated with human activities

- Metals
  - Component of stormwater runoff
- Polycyclic aromatic hydrocarbons (PAHs)
  - Component of stormwater runoff
- Nutrients
  - Component of sewage and stormwater runoff
- Bacteria
  - Associated with sewage



Source: https://www.urbanaillinois.us/Stormwater_Pollution


### **ERA Findings**

#### **Risk Associated with Sediment Contact**

		COPCs	
Receptors	PAHs	Metals	Nutrients
Benthic invertebrates	Low, moderate or high depending on location	Negligible to low	Negligible
Amphibians	Moderate	Negligible to low	Negligible
Fish	Moderate	Negligible to low	Negligible

- Toxicity Test: Sediment toxicity results showed effects to sensitive (amphipod) but not to tolerant (midge) species.
- The benthic invertebrate community makeup was limited to stress tolerant organisms because of contaminants in the study area, low oxygen in sediment and high degree of urbanization and disconnected habitat in the Chedoke Creek subwatershed.



### **Director's Order**

#### • Director's Order

 an evaluation of the environmental impact to the creek from sewage discharged by the City between January 28, 2014 and July 18, 2018, an identification and evaluation of sewage remaining in the creek, identification of any anticipated on-going environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek.



### **Findings Relevant to Director's Order**

- The findings of this ERA and Wood (2019) indicated that some of the COPCs within the study area sediment are likely associated with the 2014-2018 Main/King CSO discharge; however:
  - COPCs, as well as sediment deposition within the study area, have many different point and nonpoint sources.
  - various CSO and stormwater outfalls in the Chedoke Creek subwatershed have discharged sewage and stormwater prior to, during and subsequent to the 2014-2018 Main/King CSO discharge.
  - elevated concentrations of COPCs have been a persistent and ongoing issue in Chedoke
     Creek sediment and/or surface water prior to and after the 2014-2018 discharge
  - Chedoke Creek is an urban watercourse and observed conditions are consistent with that observed in urbanized watersheds



### Recommendations

- Assessed Alternatives
  - Physical capping
  - Chemical inactivation
  - Direct removal (dredging)
  - No-action
- Recommendations
  - Further remediation unnecessary
    - post-discharge levels of contaminants appear consistent with pre-discharge levels
    - cannot attribute environmental impacts to the sewage spill only as many prior and ongoing sources of COPCs exist
    - direct removal could disturb existing aquatic species and habitat
    - recontamination is likely
- Monitoring
  - environmental condition of the creek as it relates to ongoing operations for the Main/King CSO is occurring



Page 437 of 486



# HISTORICAL REMEDIATION & INVESTMENTS

Dan McKinnon, General Manager, Public Works

# Historical Remediation & Investments

### **Infrastructure Projects**

- CSO tank construction (9 tanks)
- Chemically enhanced primary treatment at Woodward
- Woodward Upgrades project
- Randle Reef sediment remediation
- Real-time control system
- Sewer-lateral cross connections
- Windemere basin project



# \$494 Million in capital investments

21



# Historical Remediation & Investments

### **Ongoing Annual Investments**

- Waterfoul management
- Windemere Basin monitoring
- Red Hill Creek monitoring
- Academic research in harbour
- Hamilton Conversation Authority sampling program and laboratory support services
- HHRAP office
- Royal Botanical Gardens
   laboratory support services

### **Outreach & Research Projects**

- Clean Harbour Program
- Unflushables Program
- Floatables study





# Investment Impacts: Phosphorous Reductions

Estimated reduction over 10 years

### 500 tonnes of phosphorous



23



# Investment Impacts: Ammonia Reductions



### 6,100 tonnes of ammonia



24



## Investment Impacts: Suspended Solid Reductions





Public Works: Chedoke Creek Update February 13, 2020

25

### Hamilton Harbour Remedial Action Plan: Next Steps

- Traditionally focused on Hamilton Harbor, connected shoreline and point source loading
- Watershed nutrient management and sediment management advisory group created to focus on broader watershed management
  - Urban Runoff Task Force 26 recommendations
  - Sediment control on construction sites 31 recommendations
- Initial discussions with external stakeholders around future of RAP
  - Bay Area Restoration Council (BARC)
  - Royal Botanical Gardens (RBG)
  - Hamilton Conservation Authority (HCA)
  - Hamilton Harbour Remedial Action Plan



26



#### Page 444 of 486 Hamilton Harbour Watershed





Page 445 of 486



# THANK YOU



### **INFORMATION REPORT**

TO:	Mayor and Members General Issues Committee
COMMITTEE DATE:	February 13, 2020
SUBJECT/REPORT NO:	Chedoke Creek Spill Update (PW19008(f)) (City Wide)
WARD(S) AFFECTED:	City Wide
PREPARED BY:	Cari Vanderperk (905) 546-2424 Ext. 3250
SUBMITTED BY: SIGNATURE:	Andrew Grice Director, Hamilton Water Public Works Department

#### **COUNCIL DIRECTION**

On November 27, 2019 and December 11, 2019 Council amended Item 8 of the November 20, 2019 General Issues Committee (Report 19-024) which outlined items related to the contamination of Chedoke Creek as a result of the discharge from the Main/King Combined Sewer Overflow tank. The items related to publicly sharing various documents and data, working collaboratively and data sharing with various external parties and creating a program for sampling, monitoring and reporting. A status update on each of the items identified in the Motion is summarized in this report.

#### INFORMATION

This Report PW19008(f) contains information relating to the contamination of Chedoke Creek as a result of the discharge from the Main/King Combined Sewer Overflow (CSO) tank. A status update on the items identified in the Amending Motion to Item 8 of the November 20, 2019 General Issues Committee Report 19-024 is discussed below.

Status of Motion Items:

Motion Item	Status
(a) That the direction provided to staff in Closed Session respecting the Potential Regulatory Litigation Update, be approved as amended to direct staff to take no action with respect to the leak of confidential reports related to Chedoke Creek;	Noted
<ul> <li>(b) That the update and the direction provided in Closed Session, respecting the Potential Regulatory Litigation Update, remain confidential;</li> </ul>	Noted
(c) That the Mayor and members of Council issue a formal apology to the residents of Hamilton for the failure to publicly disclose the volume and duration of the discharge of storm water runoff and sanitary sewage into Chedoke Creek when it first became known to the Council in 2018 and at any subsequent Committee and Council meetings;	Apology issued and published on the City's website at <u>www.hamilton.ca/chedokecreek</u>
<ul> <li>(d) That staff be directed to publicly release all documents which responded to Provincial Orders;</li> </ul>	All documents identified in the motion have been published on the City's website at <u>www.hamilton.ca/chedokecreek</u>
(e) That the above documents be forwarded to the City of Burlington, Halton Region; Royal Botanical Gardens; Bay Area Restoration Council; Halton Conservation Authority; Hamilton Conservation Authority and Environment Hamilton;	All documents identified in the motion have been forwarded to the parties.
(f) That staff be directed to compile and release publicly an inventory and summary of all water samples collected and retained by the City of Hamilton, from January 2014 to present;	Lab data has been compiled and summary tables will be released publicly via the City's website on February 14, 2020 and the summary tables are also attached as Appendix

Motion Item	Status
	"A" and "B" to report PW19008(f). The map identifying sample locations is attached as Appendix "C" to report PW19008(f). Staff are currently building an interactive map layer that will identify sample locations and link users to live lab data and will be posted on the City's website. Targeted completion date for this initiative is Q2 2020.
(g) That the City seek to reconcile with Indigenous Water Walkers to come into right relations on the concerns raised about waste materials in Hamilton Harbour and Cootes Paradise;	City staff have engaged with Indigenous Water Walkers and will continue to as projects move forward. As an example, City staff attended an indigenous town hall meeting and the Water Walkers were invited to a Public Works climate change adaptation workshop.
(h) That Public Health be directed to immediately identify, assess and report back on:	Public Health will report back to the Board of Health in the Summer of 2020.
<ul> <li>(i) any health-related incidents associated with exposure to contaminated waterways in the Chedoke Creek and Cootes Paradise; and,</li> </ul>	
<ul> <li>(ii) hospital and clinic data and public health notifications for any unusual illnesses reported since January 2014 that may be the result of bacterial contamination related to the discharge storm water runoff and sanitary sewage into Chedoke Creek and Cootes Paradise;</li> </ul>	
(i) That staff be directed to report back on the governance, collection and reporting	Staff have reached out to stakeholders such as Hamilton Conservation Authority (HCA), Hamilton Harbour

Motion Item	Status
model regarding water sample collection;	Remedial Action Plan (HHRAP) office, Bay Area Restoration Council (BARC), Environment Hamilton and the Royal Botanical Gardens (RBG), in order to solicit feedback for an internal water quality program, and to ensure communication lines between the City and our community partners remain open. Staff intend to formalize this approach through a memorandum of understanding with applicable stakeholders in Q2 2020. Staff are working on developing and implementing an internal water quality program, that will improve our overall governance of urban watercourses that receive discharges from City infrastructure. Staff will report back to Council with a status update of this program in Q4 2020.
(j) That staff send a copy of this motion to ask the Hamilton Conservation Authority, and the Ministry of Environment, Conservation and Parks, to release an inventory and summary of all water samples collected and retained related to Chedoke Creek and Cootes Paradise from January 2014 to present;	A copy of the motion was sent to both the HCA and the Ministry of the Environment, Conservation and Parks (MECP).
(k) That Public Works and Communications staff prepare a document that detail the chronology of when the Mayor and members of Council were apprised of the situation at Chedoke Creek and Cootes Paradise and the method of reporting (Committee or Council; type of report (written or verbal) and media releases from July 2018 to present;	A chronology was prepared and published on the City's website at <u>www.hamilton.ca/chedokecreek</u>

Motion Item	Status
(I) That staff report back publicly on the environmental impacts of the discharge; and,	The ecological risk assessment, completed by a third-party consultant in response to the MECP Director's Order will be published on the City's website with the meeting materials for the Special General Issues Committee on February 13, 2020 and will be posted on the City's website at www.hamilton.ca/chedokecreek Additional reports will be provided to Council in Q2 2020 to satisfy the MECP's Director's Order.
(m) That the City recommit to the water quality objectives in the Remedial Action Plan process.	Staff have been and continue to be actively involved in the HHRAP process.
	Significant investments have been made in infrastructure to control combined sewage and improve effluent quality at the Woodward Wastewater Treatment Plant. A report highlighting these investments will be presented to the Public Works Committee in Q2 2020.
	Staff have held meetings with external stakeholders such as the HCA, BARC, Environment Hamilton and the RBG to discuss the future of the Remedial Action Plan and the incorporation of broader watershed management. A report outlining a potential governance structure and strategy will be presented to the Public Works Committee in Q4 2020.

#### APPENDICES AND SCHEDULES ATTACHED

Appendix "A" – Chedoke Creek Laboratory Data from RBG, HCA and City of Hamilton

Appendix "B" – City of Hamilton Data

Appendix "C" – Map of Sampling Locations in Chedoke Creek

Appendix "A" to Report PW19008(f) Page 452 of 486 Page 1 of 27

									Phospho				
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
5/06/14	12:50:00	AC-1	459292	20	16.2	1.8	<0.01	0.47	<0.05	<0.2		0.032	
5/06/14	13:51:00	AC-2	459293	<10	18.6	1.7	<0.01	0.31	<0.05	<0.2		0.038	
5/06/14	15:34:00	CP-11	459289	53000	9.2	5.8	2.18	1.97	0.16	<0.2		0.306	
5/06/14	15:00:00	CP-18	459290	<10	1.8	<0.8	0.03	0.28	<0.05	<0.2		0.023	
5/06/14	15:15:00	CP-7	459291	30	6.1	1.5	0.01	0.34	<0.05	<0.2		0.027	
5/20/14	11:35:00	AC-1	460303	210	22.6	2.4	<0.01	0.52	<0.01	<0.05		0.035	
5/20/14	11:00:00	AC-2	460304	50	20.8	2.1	<0.01	0.36	<0.01	<0.05		0.030	
5/20/14	12:55:00	CP-11	460300	2600	9.5	4.3	0.54	1.85	0.07	<0.05		0.156	
5/20/14	12:20:00	CP-18	460301	30	3.4	1.6	<0.01	0.35	<0.01	<0.05		0.024	
5/20/14	12:35:00	CP-7	460302	100	12.3	2.8	0.01	0.42	<0.01	<0.05		0.056	
6/04/14	11:50:00	AC-1	461751	1390	23.8	2.7	0.02	0.56	<0.05	<0.2		0.041	
6/04/14	11:00:00	AC-2	461748	440	17.9	1.9	<0.01	0.32	<0.05	<0.2		0.028	
6/04/14	13:25:00	CP-11	461745	420000	19.0	12.1	2.45	0.08	0.20	<0.2		0.508	
6/04/14	12:40:00	CP-18	461746	390	4.2	2.2	<0.01	0.39	<0.05	<0.2		0.057	
6/04/14	13:05:00	CP-7	461747	900	17.5	2.9	0.03	0.44	<0.05	<0.2		0.038	
6/16/14	11:20:00	AC-1	462388	520	12.5	2.6	0.02	0.71	<0.05	<0.2		0.025	
6/16/14	10:52:00	AC-2	462389	130	12.3	1.9	0.02	0.49	<0.05	<0.2		0.038	
6/16/14	13:03:00	CP-11	462385	120000	21.5	16.5	3.04	0.32	0.16	<0.2		0.660	
6/16/14	11:40:00	CP-18	462386	100	5.4	2.2	0.02	0.80	<0.05	<0.2		0.053	
6/16/14	11:55:00	CP-7	462387	470	12.9	2.8	0.03	0.64	<0.05	<0.2		0.034	
7/02/14	12:12:00	AC-1	464020	570	21.8	3.2	0.02	0.71	<0.05	<0.2		0.045	
7/02/14	11:33:00	AC-2	464021	430	25.9	2.4	0.02	0.52	<0.05	<0.2		0.033	
7/02/14	14:00:00	CP-11	464017	1900	29.0	16.6	0.90	0.82	0.10	<0.2		0.306	
7/02/14	13:20:00	CP-18	464018	280	12.0	2.4	0.01	0.28	<0.05	<0.2		0.076	
7/02/14	13:35:00	CP-7	464019	420	23.1	3.3	0.03	0.56	<0.05	<0.2		0.047	
7/14/14	10:30:00	AC-1	464708	460	19.0	2.1	0.02	0.75	<0.01	<0.05		0.035	
7/14/14	10:00:00	AC-2	464709	440	22.3	2.0	0.01	0.57	<0.01	<0.05		0.031	
7/14/14	12:10:00	CP-11	464705	60000	25.9	15.4	0.19	0.65	0.04	<0.05		0.296	
7/14/14	10:50:00	CP-18	464706	120	8.1	2.0	<0.01	0.32	<0.01	<0.05		0.042	
7/14/14	11:00:00	CP-7	464707	420	22.5	3.7	0.02	0.53	<0.01	<0.05		0.040	
7/28/14	13:06:00	AC-1	466241	9700	335	61.5	0.04	0.47	<0.05	<0.2		0.650	
7/28/14	11:47:00	AC-2	466242	6000	645	39.2	0.03	0.37	<0.05	<0.2		0.689	
7/28/14	14:32:00	CP-11	466238	1120000	89.6	30.1	3.15	1.35	0.09	0.28		0.956	

Appendix "A" to Report PW19008(f) Page 453 of 486 Page 2 of 27

									Phospho				
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
7/28/14	13:24:00	CP-18	466239	8700	109	12.6	0.02	0.35	<0.05	<0.2		0.222	
7/28/14	13:40:00	CP-7	466240	8400	250	6.0	0.03	0.53	<0.05	<0.2		0.321	
8/11/14	11:30:00	AC-1	466936	700	2.5	1.0	0.01	0.57	<0.05	<0.2		0.015	
8/11/14	10:33:00	AC-2	466937	600	7.5	1.5	<0.01	0.49	<0.05	<0.2		0.027	
8/11/14	13:40:00	CP-11	466933	260000	52.4	40.0	0.41	1.06	0.18	<0.2		0.642	
8/11/14	12:55:00	CP-18	466934	500	8.1	2.8	0.01	0.12	<0.05	<0.2		0.045	
8/11/14	13:14:00	CP-7	466935	300	13.4	3.5	0.02	0.20	<0.05	<0.2		0.045	
8/25/14	12:10:00	AC-1	467984	360	1.6	<0.8	0.01	0.61	0.09	<0.2		0.017	
8/25/14	10:50:00	AC-2	467985	240	5.4	0.8	<0.01	0.52	<0.05	<0.2		0.015	
8/25/14	13:40:00	CP-11	467981	2900	55.5	34.8	0.23	1.25	0.10	<0.2		0.502	
8/25/14	12:45:00	CP-18	467982	190	3.8	1.0	0.01	0.27	<0.05	<0.2		0.038	
8/25/14	13:15:00	CP-7	467983	270	9.6	1.8	0.02	0.35	<0.05	<0.2		0.041	
9/08/14	12:40:00	AC-1	469097	490	4.4	1.2	0.01	0.64	<0.05	<0.2		0.027	
9/08/14	11:50:00	AC-2	469098	300	7.8	1.4	<0.01	0.45	<0.05	<0.2		0.074	
9/08/14	14:00:00	CP-11	469094	120000	7.0	4.0	2.54	1.00	0.07	<0.2		0.397	
9/08/14	13:20:00	CP-18	469095	210	4.2	1.2	<0.01	0.30	<0.05	<0.2		0.036	
9/08/14	13:40:00	CP-7	469096	270	20.4	3.8	0.02	0.32	<0.05	<0.2		0.066	
9/23/14	12:30:00	AC-1	470285	980	2.7	1.1	<0.01	0.61	<0.05	<0.2		0.017	
9/23/14	11:45:00	AC-2	470286	150	3.6	<0.8	<0.01	0.50	<0.05	<0.2		0.014	
9/23/14	14:20:00	CP-11	470282	550000	12.4	6.4	2.53	0.89	<0.05	<0.2		0.496	
9/23/14	13:00:00	CP-18	470283	120	4.0	1.3	<0.01	0.18	<0.05	<0.2		0.044	
9/23/14	13:30:00	CP-7	470284	250	9.0	2.0	0.01	0.30	<0.05	<0.2		0.034	
4/09/15	11:40:00	AC-1	484690	240	207	12.1	0.04	0.83	<0.01	<0.05		0.226	
4/09/15	10:50:00	AC-2	484691	80	315	17.7	0.04	0.78	<0.01	<0.05		0.325	
4/09/15	13:15:00	CP-11	484687	900000	48.5	25.3	6.11	2.93	0.11	0.92		1.25	
4/09/15	12:30:00	CP-18	484688	150	28.1	3.9	0.03	1.75	<0.01	<0.05		0.108	
4/09/15	12:50:00	CP-7	484689	210	55.2	6.2	0.03	0.97	<0.01	<0.05		0.114	
4/20/15	11:15:00	AC-1	485398	1000	1050	61.2	0.06	0.61	<0.05	<0.2		1.10	
4/20/15	10:30:00	AC-2	485399	410	927	52.3	0.04	0.40	<0.05	<0.2		0.950	
4/20/15	13:00:00	CP-11	485395	900000	58.0	34.4	4.53	1.35	0.07	0.46		1.06	
4/20/15	12:05:00	CP-18	485396	1800	132	18.0	0.04	0.78	<0.05	<0.2		0.287	
4/20/15	12:25:00	CP-7	485397	970	296	22.2	0.04	0.50	<0.05	<0.2		0.410	
5/04/15	12:15:00	AC-1	486588	20	<3	<3	<0.01	0.32	<0.05	<0.2		0.015	

Appendix "A" to Report PW19008(f) Page 454 of 486 Page 3 of 27

									Phospho				
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	О-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
5/04/15	11:15:00	AC-2	486589	90	<3	<3	<0.01	0.20	<0.05	<0.2		0.012	
5/04/15	14:45:00	CP-11	486585	5900	<3	<3	0.55	1.89	0.07	<0.2		0.113	
5/04/15	12:50:00	CP-18	486586	60	<3	<3	<0.01	0.06	<0.05	<0.2		0.014	
5/04/15	14:15:00	CP-7	486587	20	3.6	2.8	0.02	0.36	<0.05	<0.2		0.017	
5/19/15	12:50:00	AC-1	487783	180	3.6	<0.8	0.01	0.34	<0.05	<0.2		0.017	
5/19/15	11:20:00	AC-2	487784	40	4.8	2.2	<0.01	0.23	<0.05	<0.2		<0.010	
5/19/15	14:40:00	CP-11	487780	420	10.4	6.2	0.75	1.43	0.05	<0.2		0.207	
5/19/15	13:15:00	CP-18	487781	<10	5.4	3.0	0.02	0.11	<0.05	<0.2		0.021	
5/19/15	13:30:00	CP-7	487782	210	10.2	2.6	0.03	0.52	<0.05	<0.2		0.024	
6/01/15	11:25:00	AC-1	488885	3700	29.0	3.1	0.04	0.53	<0.05	<0.2		0.053	
6/01/15	10:30:00	AC-2	488886	1380	50.0	4.5	0.03	0.33	<0.05	<0.2		0.059	
6/01/15	13:45:00	CP-11	488882	620000	22.7	17.3	4.10	1.80	0.11	0.3		0.508	
6/01/15	13:00:00	CP-18	488883	1900	11.5	2.5	0.01	0.56	<0.05	<0.2		0.057	
6/01/15	13:25:00	CP-7	488884	10100	6.7	2.0	0.06	0.81	<0.05	<0.2		0.039	
6/15/15	12:00:00	AC-1	489964	1800	57.0	7.3	0.05	0.55	<0.05	<0.2		0.097	
6/15/15	11:05:00	AC-2	489965	680	58.6	6.2	0.04	0.46	<0.05	<0.2		0.076	
6/15/15	13:45:00	CP-11	489961	650000	28.7	10.6	2.86	0.11	0.19	<0.2		0.501	
6/15/15	13:00:00	CP-18	489962	400	24.2	5.0	0.02	2.03	<0.05	<0.2		0.080	
6/15/15	13:10:00	CP-7	489963	710	43.7	8.2	0.05	0.99	<0.05	<0.2		0.088	
6/22/15	19:00:00	AC-1	490508	810	31.3	4.2	0.03	0.62	<0.05	<0.2		0.060	
6/30/15	12:30:00	AC-1	491482	760	31.7	3.4	0.03	0.64	<0.05	<0.2		0.061	
6/30/15	11:15:00	AC-2	491483	460	55.3	4.3	0.02	0.52	<0.05	<0.2		0.066	
6/30/15	14:45:00	CP-11	491479	490000	5.0	5.0	2.87	1.54	0.43	<0.2		0.465	
6/30/15	14:05:00	CP-18	491480	430	7.9	1.7	0.01	2.71	<0.05	<0.2		0.070	
6/30/15	14:25:00	CP-7	491481	450	29.8	5.1	0.04	1.60	<0.05	<0.2		0.094	
7/13/15	12:10:00	AC-1	492118	520	4.4	1.2	0.02	0.48	0.07	<0.2		0.015	
7/13/15	11:00:00	AC-2	492119	490	13.6	2.8	0.01	0.39	0.07	<0.2		0.018	
7/13/15	13:45:00	CP-11	492115	220	34.0	21.2	0.02	0.28	0.11	<0.2		0.324	
7/13/15	13:05:00	CP-18	492116	130	4.0	1.6	0.01	0.35	0.06	<0.2		0.039	
7/13/15	13:30:00	CP-7	492117	370	6.0	2.4	0.03	0.55	<0.05	<0.2		0.029	
7/27/15	12:30:00	AC-1	493584	360	3.4	1.0	0.02	0.46	<0.05	<0.2		0.019	
7/27/15	10:50:00	AC-2	493585	280	12.4	1.8	0.01	0.40	<0.05	<0.2		0.024	
7/27/15	13:30:00	CP-11	493581	110000	27.6	20.4	1.05	0.17	0.16	<0.2		0.475	

Appendix "A" to Report PW19008(f) Page 455 of 486 Page 4 of 27

									Phospho				
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
7/27/15	12:45:00	CP-18	493582	190	6.4	1.6	0.02	0.16	<0.05	<0.2		0.057	
7/27/15	13:10:00	CP-7	493583	290	6.9	2.0	0.03	0.48	<0.05	<0.2		0.043	
8/10/15	11:15:00	AC-1	494225	450	3.8	1.8	0.01	0.50	<0.05	<0.2		<0.010	
8/10/15	10:30:00	AC-2	494226	230	38.4	4.4	<0.01	0.42	<0.05	<0.2		0.025	
8/10/15	13:00:00	CP-11	494222	280	24.8	20.0	0.27	0.55	0.10	<0.2		0.369	
8/10/15	12:30:00	CP-18	494223	100	2.4	1.6	<0.01	0.14	<0.05	<0.2		0.025	
8/10/15	12:40:00	CP-7	494224	300	8.6	2.8	0.02	0.43	<0.05	<0.2		0.021	
8/21/15	4:00:00	AC-1	495272	11200	176	15.2	0.03	0.54	<0.05	<0.2		0.260	
8/24/15	12:45:00	AC-1	495296	480	3.2	2.4	0.02	0.47	0.07	<0.2		0.027	
8/24/15	11:30:00	AC-2	495297	760	17.2	5.2	<0.01	0.42	0.07	<0.2		0.020	
8/24/15	14:15:00	CP-11	495293	4700	38.8	18.9	0.38	0.97	0.20	<0.2		0.300	
8/24/15	13:10:00	CP-18	495294	80	<3	<3	0.02	0.18	0.07	<0.2		0.033	
8/24/15	13:20:00	CP-7	495295	9500	22.4	4.8	0.04	0.43	0.08	<0.2		0.056	
9/03/15		AC-1	496302	31000	903	84.1	0.16	0.73	<0.05	<0.2		1.05	
9/08/15	14:00:00	AC-1	496361	2400	25.0	2.8	0.02	0.53	<0.05	<0.2		0.068	
9/08/15	12:00:00	AC-2	496362	710	6.2	1.2	<0.01	0.36	<0.05	<0.2		0.024	
9/08/15	15:20:00	CP-11	496358	889000	28.8	14.4	4.72	0.87	0.12	<0.2		0.826	
9/08/15	14:30:00	CP-18	496359	170	4.8	1.2	0.01	0.07	<0.05	<0.2		0.054	
9/08/15	14:50:00	CP-7	496360	8700	18.4	3.2	0.04	0.49	<0.05	<0.2		0.064	
9/22/15	13:20:00	AC-1	497540	230	<2	<2	<0.01	0.46	<0.05	<0.2		0.011	
9/22/15	12:00:00	AC-2	497541	210	1.6	1.2	<0.01	0.34	<0.05	<0.2		0.010	
9/22/15	15:00:00	CP-11	497537	1790	14.4	10.4	1.56	0.84	0.16	<0.2		0.306	
9/22/15	13:45:00	CP-18	497538	100	2.2	1.0	<0.01	0.06	<0.05	<0.2		0.031	
9/22/15	14:20:00	CP-7	497539	440	1.8	<0.8	0.03	0.42	<0.05	<0.2		0.023	
10/15/15	11:25:00	AC-1	499444	570	<2	<2	<0.01	0.22	<0.05	<0.2		0.012	
10/15/15	10:25:00	AC-2	499445	40	<2	<2	<0.01	0.14	<0.05	<0.2		0.010	
10/15/15	13:20:00	CP-11	499441	640	5.8	3.8	0.84	1.83	0.06	<0.2		0.340	
10/15/15	11:50:00	CP-18	499442	10	2.4	1.6	<0.01	<0.05	<0.05	<0.2		0.029	
10/15/15	12:30:00	CP-7	499443	240	5.4	2.2	0.03	0.22	<0.05	<0.2		0.025	
10/22/15	11:50:00	AC-1	500073	370	1.6	1.4	<0.01	0.15	<0.05	<0.2		0.020	
10/22/15	10:55:00	AC-2	500074	70	<2	<2	<0.01	0.06	<0.05	<0.2		<0.010	
10/22/15	13:00:00	CP-11	500070	4800	10.9	7.0	0.92	1.90	0.06	<0.2		0.379	
10/22/15	12:10:00	CP-18	500071	20	1.8	1.4	<0.01	<0.05	<0.05	<0.2		0.040	

Appendix "A" to Report PW19008(f) Page 456 of 486 Page 5 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
10/22/15	12:15:00	CP-7	500072	210	9.4	2.0	0.02	0.33	<0.05	<0.2		0.036	
11/03/15	14:15:00	AC-1	501169	110	<2	<2	<0.01	0.32	<0.05	<0.2		0.031	
11/03/15	10:40:00	AC-2	501170	40	3.4	0.8	0.01	0.22	<0.05	<0.2		0.029	<0.5
11/03/15	15:00:00	CP-11	501166	4800	15.2	2.6	0.51	2.12	<0.05	<0.2		0.299	
11/03/15	13:40:00	CP-18	501167	40	<2	<2	<0.01	0.22	<0.05	<0.2		0.029	
11/03/15	13:25:00	CP-7	501168	40	5.0	1.0	0.01	0.36	<0.05	<0.2		0.029	
11/18/15	13:15:00	AC-1	502178	180	<2	<2	<0.01	0.28	<0.05	<0.2		0.012	<0.5
11/18/15	11:45:00	AC-2	502179	50	<2	<2	<0.01	0.23	<0.05	<0.2		0.031	<0.5
11/18/15	15:15:00	CP-11	502175	750	2.2	1.6	0.61	2.59	<0.05	<0.2		0.229	
11/18/15	14:00:00	CP-18	502176	10	<2	<2	<0.01	<0.05	<0.05	<0.2		0.027	
11/18/15	14:30:00	CP-7	502177	20	4.4	1.0	<0.01	0.35	<0.05	<0.2		0.020	
4/12/16	12:30:00	AC-1	513437	100	40.2	3.2	<0.01	0.58	<0.05	<0.2		0.063	
4/12/16	11:25:00	AC-2	513438	40	59.8	4.2	<0.01	0.57	<0.05	<0.2		0.059	
4/12/16	14:00:00	CP-11	513434	80000	10.4	6.2	2.33	2.68	<0.05	<0.2		0.386	
4/12/16	13:15:00	CP-18	513435	70	7.0	1.6	0.03	0.82	<0.05	<0.2		0.047	
4/12/16	13:40:00	CP-7	513436	10	10.6	1.8	0.02	0.91	<0.05	<0.2		0.024	
4/20/16	11:30:00	CP-7	513715	70	<3	<3	0.01	0.59	<0.05	<0.2	<0.010	0.022	
4/27/16	11:35:00	CP-7	513943	890	3.6	2.8	0.02	0.56	<0.05	<0.2	<0.010	0.020	
4/28/16	12:55:00	AC-1	514020	60	<2	<2	0.01	0.41	<0.05	<0.2		0.015	
4/28/16	11:20:00	AC-2	514021	80	2.8	0.8	0.01	0.31	<0.05	<0.2		0.014	
4/28/16	14:00:00	CP-11	514017	162000	9.4	6.6	4.45	1.37	<0.05	0.2		0.518	
4/28/16	13:20:00	CP-18	514018	40	<2	<2	0.02	0.25	<0.05	<0.2		0.016	
4/28/16	13:40:00	CP-7	514019	20	2.8	1.6	0.02	0.50	<0.05	<0.2		0.023	
5/04/16	9:50:00	CP-11.2	514128	200	31.2	9.8	0.23	0.39	<0.05	<0.2	0.020	0.176	
5/11/16	11:00:00	AC-1	514361	110	2.8	1.8	0.01	0.36	<0.05	<0.2		0.012	
5/11/16	10:15:00	AC-2	514362	20	4.6	1.6	<0.01	0.25	<0.05	<0.2		0.014	
5/11/16	13:00:00	CP-11	514358	150	47.2	35.2	0.02	1.46	0.05	<0.2		0.620	
5/11/16	12:20:00	CP-18	514359	20	<2	<2	<0.01	<0.05	<0.05	<0.2		0.012	
5/11/16	12:40:00	CP-7	514360	390	2.2	1.6	0.02	0.51	<0.05	<0.2		0.012	
5/18/16	7:52:00	CP-11.2	514610	120	37.0	10.2	0.35	0.50	<0.05	<0.2	0.021	0.140	
5/25/16	11:10:00	AC-1	515096	110	4.4	1.1	0.02	0.41	<0.05	<0.2		0.018	
5/25/16	9:45:00	AC-2	515097	60	5.2	1.4	0.01	0.28	<0.05	<0.2		0.015	
5/25/16	13:55:00	CP-11	515093	10	70.0	45.0	0.02	0.59	<0.05	<0.2		0.762	

Appendix "A" to Report PW19008(f) Page 457 of 486 Page 6 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
6/16/16	11:00:00	AC-2	517037	3300	48.0	5.7	0.05	0.49	<0.05	<0.2		0.076	
6/16/16	12:45:00	CP-11	517033	1350000	29.8	22.2	4.06	0.80	0.28	<0.2		0.716	
6/16/16	13:30:00	CP-18	517034	170	11.8	3.2	0.02	0.14	<0.05	<0.2		0.057	
6/16/16	13:45:00	CP-7	517035	1800	8.9	2.2	0.07	0.57	<0.05	<0.2		0.039	
6/22/16	12:30:00	AC-1	517183	600	10.8	2.0	0.07	0.56	<0.05	<0.2		0.034	
6/22/16	11:20:00	AC-2	517184	370	14.2	2.0	0.04	0.51	<0.05	<0.2		0.029	
6/22/16	15:15:00	CP-11	517180	12300	18.8	12.0	1.98	0.28	0.08	<0.2		0.521	
6/22/16	14:30:00	CP-18	517181	320	6.2	1.6	0.01	0.08	<0.05	<0.2		0.078	
6/22/16	14:50:00	CP-7	517182	280	9.0	1.8	0.05	0.53	<0.05	<0.2		0.030	
6/29/16	8:18:00	CP-11.2	518133	190	51.7	18.0	0.43	0.10	<0.05	<0.2	0.079	0.492	
7/06/16	11:30:00	AC-1	518269	560	11.8	2.4	0.04	0.42	<0.05	<0.2		0.039	
7/06/16	10:30:00	AC-2	518270	220	8.8	2.0	0.02	0.42	<0.05	<0.2		0.023	
7/06/16	13:05:00	CP-11	518266	150	57.5	45.5	0.16	0.59	<0.05	<0.2		0.632	
7/06/16	13:30:00	CP-18	518267	480	16.8	4.6	0.01	<0.05	<0.05	<0.2		0.050	
7/06/16	13:45:00	CP-7	518268	440	10.0	2.8	0.06	0.48	<0.05	<0.2		0.037	
7/13/16	8:27:00	CP-11.2	518804	30	44.0	17.4	0.06	0.05	<0.05	<0.2	0.101	0.442	
7/19/16	11:00:00	AC-1	519275	820	8.4	1.2	0.03	0.40	<0.05	<0.2		0.038	
7/19/16	10:10:00	AC-2	519276	210	5.6	1.6	0.02	0.44	<0.05	<0.2		0.012	
7/19/16	12:00:00	CP-11	519272	510	33.2	25.6	0.43	0.79	0.17	<0.2		0.421	
7/19/16	12:30:00	CP-18	519273	170	7.2	1.6	0.01	0.10	<0.05	<0.2		0.045	
7/19/16	12:45:00	CP-7	519274	430	11.4	1.4	0.04	0.45	0.10	<0.2		0.044	
7/27/16	9:10:00	CP-11.2	520236	2500	55.8	17.8	0.49	0.10	0.05	<0.2	0.073	0.428	
8/04/16	11:05:00	AC-1	520774	1300	4.0	1.2	0.03	0.40	<0.05	<0.2		0.037	
8/04/16	10:10:00	AC-2	520775	790	4.2	1.2	0.01	0.40	<0.05	<0.2		0.016	
8/04/16	12:50:00	CP-11	520771	130	104	89.6	0.04	0.67	<0.05	<0.2		1.04	
8/04/16	12:10:00	CP-18	520772	550	59.8	28.4	<0.01	<0.05	<0.05	<0.2		0.258	
8/04/16	12:30:00	CP-7	520773	740	11.3	2.6	0.06	0.46	<0.05	<0.2		0.044	
8/10/16	8:40:00	CP-11.2	521012	100	63.3	24.4	0.01	<0.05	<0.05	<0.2	0.028	0.472	
8/17/16	12:45:00	AC-1	521603	790	9.6	1.6	0.02	0.44	<0.05	<0.2		0.024	
8/17/16	11:35:00	AC-2	521604	710	9.8	1.6	0.02	0.36	<0.05	<0.2		0.010	
8/17/16	14:45:00	CP-11	521600	34000	3.8	2.6	3.20	0.90	<0.05	<0.2		0.433	
8/17/16	14:15:00	CP-18	521601	110	3.6	1.2	0.02	0.22	<0.05	<0.2		0.031	
8/17/16	14:25:00	CP-7	521602	1200	20.0	2.8	0.04	0.50	<0.05	<0.2		0.042	

Appendix "A" to Report PW19008(f) Page 458 of 486 Page 7 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
8/24/16	9:43:00	CP-11.2	522604	120	51.1	27.8	0.02	0.14	<0.05	<0.2	<0.010	0.404	
8/25/16	16:00:00	AC-1	522654	12900	506	51.3	0.06	0.53	<0.05	<0.2		0.573	
8/31/16	10:55:00	AC-1	523137	420	3.0	0.8	0.02	0.48	<0.05	<0.2		0.049	
8/31/16	10:05:00	AC-2	523138	440	7.0	1.2	0.01	0.43	<0.05	<0.2		0.033	
8/31/16	12:15:00	CP-11	523134	2200	19.6	10.6	0.75	1.67	<0.05	<0.2		0.360	
8/31/16	11:15:00	CP-18	523135	120	<2	<2	<0.01	0.10	<0.05	<0.2		0.030	
8/31/16	11:30:00	CP-7	523136	260	12.4	2.2	0.04	0.72	<0.05	<0.2		0.044	
9/07/16	8:27:00	CP-11.2	523344	100	44.2	19.3	0.08	0.08	<0.05	<0.2	<0.010	0.324	
9/14/16	12:35:00	AC-1	523981	390	<2	<2	0.02	0.41	0.07	<0.2		0.025	
9/14/16	11:45:00	AC-2	523985	190	2.2	1.0	<0.01	0.38	<0.05	<0.2		0.029	
9/14/16	15:20:00	CP-11	523982	3400	38.0	38.0	0.83	1.41	0.20	<0.2		0.828	
9/14/16	14:10:00	CP-18	523983	30	<2	<2	0.01	<0.05	<0.05	<0.2		0.027	
9/14/16	14:35:00	CP-7	523984	500	15.2	2.8	0.04	0.67	<0.05	<0.2		0.046	
9/21/16	9:10:00	CP-11.2	524777	3800	23.1	9.2	1.97	0.57	0.10	<0.2	0.071	0.336	
9/28/16	12:15:00	AC-1	525593	890	<2	<2	0.02	0.52	0.10	<0.2		0.018	
9/28/16	11:05:00	AC-2	525594	680	4.6	1.0	<0.01	0.44	0.09	<0.2		<0.010	
9/28/16	14:00:00	CP-11	525590	39000	3.4	2.8	2.14	1.66	0.06	<0.2		0.375	
9/28/16	12:40:00	CP-18	525591	210	<2	<2	<0.01	0.16	<0.05	<0.2		0.030	
9/28/16	13:00:00	CP-7	525592	1270	4.2	1.0	0.04	0.63	<0.05	<0.2		0.024	
10/12/16	11:35:00	AC-1	526261	230	<2	<2	0.01	0.45	<0.05	<0.2		0.014	
10/12/16	10:50:00	AC-2	526262	60	<2	<2	<0.01	0.36	<0.05	<0.2		<0.010	
10/12/16	13:25:00	CP-11	526258	600	4.4	1.6	0.81	2.49	0.19	<0.2		0.232	
10/12/16	12:40:00	CP-18	526259	<10	14.0	3.4	0.01	<0.05	<0.05	<0.2		0.043	
10/12/16	13:05:00	CP-7	526260	210	16.0	2.8	0.03	0.71	<0.05	<0.2		0.038	
10/26/16	10:55:00	AC-1	527784	140	<2	<2	<0.01	0.27	<0.05	<0.2		<0.010	
10/26/16	10:15:00	AC-2	527785	240	<2	<2	<0.01	0.18	<0.05	<0.2		<0.010	
10/26/16	13:20:00	CP-11	527781	3500	3.8	1.8	0.50	2.37	<0.05	<0.2		0.232	
10/26/16	12:45:00	CP-18	527782	70	1.8	1.0	<0.01	<0.05	<0.05	<0.2		0.017	
10/26/16	13:00:00	CP-7	527783	580	1.8	1.4	0.02	0.50	<0.05	<0.2		0.012	
11/09/16	12:15:00	AC-1	529542	140	<2	<2	<0.01	0.26	<0.05	<0.2		0.017	
11/09/16	11:30:00	AC-2	529543	70	<2	<2	<0.01	0.18	<0.05	<0.2		0.012	
11/09/16	13:15:00	CP-11	529539	640000	11.1	4.7	2.48	2.01	0.10	<0.2		0.506	
11/09/16	12:40:00	CP-18	529540	10	<2	<2	<0.01	<0.05	<0.05	<0.2		0.020	

Appendix "A" to Report PW19008(f) Page 459 of 486 Page 8 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
11/09/16	12:50:00	CP-7	529541	380	2.0	0.9	0.02	0.39	<0.05	<0.2		0.025	
11/24/16	13:40:00	AC-1	530315	240	<2	<2	0.01	0.46	<0.05	<0.2		0.016	
11/24/16	12:20:00	AC-2	530316	390	<2	<2	<0.01	0.42	<0.05	<0.2		0.011	
11/24/16	14:40:00	CP-11	530312	132000	17.8	4.8	1.21	1.61	<0.05	<0.2		0.393	
11/24/16	14:20:00	CP-18	530313	20	<2	<2	<0.01	<0.05	<0.05	<0.2		0.012	
11/24/16	14:00:00	CP-7	530314	330	3.5	2.5	0.02	0.40	<0.05	<0.2		0.025	
12/07/16	11:30:00	AC-1	531321	90	<2	<2	<0.01	0.43	<0.05	<0.2		0.011	
12/07/16	10:10:00	AC-2	531322	30	3.0	1.4	<0.01	0.44	<0.05	<0.2		<0.010	
12/07/16	13:20:00	CP-11	531318	21600	8.9	3.3	0.23	1.82	<0.05	<0.2		0.226	
12/07/16	12:40:00	CP-18	531319	60	2.2	1.6	<0.01	0.25	<0.05	<0.2		0.017	
12/07/16	11:50:00	CP-7	531320	50	2.8	1.1	0.02	0.45	<0.05	<0.2		0.019	
12/21/16	12:00:00	AC-1	532295	170	<2	<2	0.02	0.69	<0.05	<0.2		<0.010	
12/21/16	10:50:00	AC-2	532296	10	<2	<2	0.01	0.63	<0.05	<0.2		0.011	
12/21/16	13:55:00	CP-11	532292	1100	4.8	0.8	0.15	2.83	<0.05	<0.2		0.237	
12/21/16	12:52:00	CP-18	532293	<10	<2	<2	<0.01	0.31	<0.05	<0.2		<0.010	
12/21/16	13:20:00	CP-7	532294	1100	<2	<2	0.05	0.89	<0.05	<0.2		0.013	
1/04/17	12:30:00	AC-1	532441	220	19.3	2.3	0.03	0.99	<0.05	<0.2		0.051	
1/04/17	12:55:00	AC-2	532442	120	35.7	3.4	0.02	0.87	<0.05	<0.2		0.058	
1/04/17	13:45:00	CP-11	532438	5100	15.5	5.9	0.17	3.36	<0.05	<0.2		0.189	
1/04/17	11:00:00	CP-18	532439	1900	9.5	2.5	0.02	3.67	<0.05	<0.2		0.120	
1/04/17	11:15:00	CP-7	532440	510	13.8	4.2	0.03	1.88	<0.05	<0.2		0.066	
1/18/17	12:00:00	AC-1	533772	260	34.5	5.0	0.04	0.75	<0.05	<0.2		0.078	
1/18/17	11:15:00	AC-2	533773	170	76.4	6.4	0.04	0.76	<0.05	<0.2		0.099	
1/18/17	14:10:00	CP-11	533769	13000	11.6	3.6	0.47	2.84	<0.05	<0.2		0.171	
1/18/17	13:00:00	CP-18	533770	770	20.0	3.6	0.03	1.30	<0.05	<0.2		0.183	
1/18/17	13:15:00	CP-7	533771	230	35.6	7.2	0.06	1.12	<0.05	<0.2		0.241	
2/01/17	11:15:00	AC-1	535029	60	5.5	2.5	0.02	0.78	<0.05	<0.2		0.018	
2/01/17	10:30:00	AC-2	535030	<10	21.5	3.5	0.02	0.71	<0.05	<0.2		0.027	
2/01/17	13:10:00	CP-11	535026	600	<4	<4	0.12	2.22	<0.05	<0.2		0.158	
2/01/17	11:45:00	CP-18	535027	<10	<4	<4	<0.01	1.77	<0.05	<0.2		0.023	
2/01/17	11:30:00	CP-7	535028	40	<4	<4	0.02	1.26	<0.05	<0.2		0.025	
2/15/17	11:20:00	AC-1	535601	90	8.1	2.4	0.02	0.75	<0.05	<0.2		0.021	
2/15/17	10:35:00	AC-2	535602	40	19.0	3.4	0.01	0.67	<0.05	<0.2		0.027	

Appendix "A" to Report PW19008(f) Page 460 of 486 Page 9 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	O-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
3/01/17	13:40:00	CP-11	536555	480000	52.0	19.0	2.82	3.28	<0.05	<0.2		0.713	
3/01/17	12:50:00	CP-18	536556	410	359	37.0	0.04	1.45	<0.05	<0.2		0.755	
3/01/17	13:10:00	CP-7	536557	510	214	21.0	0.03	1.27	<0.05	<0.2		0.303	
3/15/17	12:10:00	AC-1	538918	20	7.4	1.3	0.02	0.79	<0.05	< 0.05		0.017	
3/15/17	11:20:00	AC-2	538919	<10	35.6	2.5	0.01	0.65	<0.05	< 0.05		0.048	
3/15/17	13:30:00	CP-11	538915	80	<3	<3	0.07	2.47	<0.05	0.10		0.109	
3/15/17	12:30:00	CP-18	538916	<10	<3	<3	<0.01	1.16	<0.05	<0.05		0.017	
3/15/17	12:45:00	CP-7	538917	40	3.6	1.3	0.02	1.15	<0.05	<0.05		0.022	
3/29/17	11:40:00	AC-1	541137	10	10.7	2.0	0.02	0.58	<0.05	<0.05		0.021	
3/29/17	10:35:00	AC-2	541138	10	14.5	1.9	<0.01	0.41	<0.05	<0.05		0.024	
3/29/17	13:00:00	CP-11	541134	1500	4.2	2.7	0.37	3.06	<0.05	0.12		0.162	
3/29/17	12:05:00	CP-18	541135	<10	3.3	1.6	<0.01	0.80	<0.05	<0.05		0.025	
3/29/17	11:55:00	CP-7	541136	20	5.3	2.3	0.02	1.13	<0.05	<0.05		0.028	
4/12/17	12:40:00	AC-1	542244	40	8.2	1.4	<0.01	0.52	<0.05			0.023	
4/12/17	11:30:00	AC-2	542245	10	14.9	2.3	0.01	0.37	<0.05			0.026	
4/12/17	14:10:00	CP-11	542241	660000	13.5	10.7	8.02	<0.05	0.90			1.05	
4/12/17	13:30:00	CP-18	542242	10	<4	<4	0.16	0.79	<0.05			0.035	
4/12/17	13:00:00	CP-7	542243	50	11.2	2.8	<0.01	0.57	<0.05			0.042	
4/27/17	12:25:00	AC-1	542663	20	5.7	1.3	<0.01	0.44	<0.05			0.015	
4/27/17	11:15:00	AC-2	542664	20	14.7	1.6	<0.01	0.30	<0.05			0.021	
4/27/17	13:25:00	CP-11	542660	420	9.1	4.1	0.52	1.48	<0.05			0.130	
4/27/17	13:00:00	CP-18	542661	40	<4	<4	0.01	0.38	<0.05			0.023	
4/27/17	12:45:00	CP-7	542662	70	5.0	2.3	0.02	0.58	<0.05			0.029	
5/05/17	15:50:00	AC-1	542913	1080	2510	118	0.04	0.50	<0.1			2.49	
5/11/17	11:37:00	AC-1	543155	30	7.0	2.3	<0.01	0.50	<0.05			0.018	
5/11/17	11:00:00	AC-2	543156	50	19.3	2.0	<0.01	0.29	<0.05			0.029	
5/11/17	13:00:00	CP-11	543152	5000	5.0	4.5	2.10	1.27	0.11			0.294	
5/11/17	12:40:00	CP-18	543153	20	<4	<4	<0.01	0.32	<0.05			0.022	
5/11/17	12:30:00	CP-7	543154	40	5.6	2.3	0.02	0.47	<0.05			0.028	
5/24/17	11:10:00	AC-1	543878	90	3	<3	0.02	0.41	<0.05			0.014	
5/24/17	10:35:00	AC-2	543879	20	5.3	1.6	<0.01	0.15	<0.05			0.028	
5/24/17	12:45:00	CP-11	543875	41000	10.2	9.3	0.97	0.76	0.26			0.283	
5/24/17	11:45:00	CP-18	543876	330	<4	<4	0.01	0.28	<0.05			0.028	

Appendix "A" to Report PW19008(f) Page 461 of 486 Page 10 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
5/24/17	11:30:00	CP-7	543877	80	<4	<4	0.02	0.53	<0.05			0.024	
6/07/17	11:45:00	AC-1	544640	760	4.3	1.3	<0.01	0.52	<0.05			0.032	
6/07/17	10:55:00	AC-2	544641	230	7.9	2.0	<0.01	0.26	<0.05			0.025	
6/07/17	13:10:00	CP-11	544637	440000	12.0	11.7	1.84	0.68	0.16			0.454	
6/07/17	12:05:00	CP-18	544638	630	9.6	3.6	<0.01	1.10	<0.05			0.063	
6/07/17	11:55:00	CP-7	544639	630	9.6	3.2	<0.01	0.79	<0.05			0.040	
6/21/17	12:15:00	AC-1	545919	2900	60.0	7.2	0.10	1.81	<0.1			0.121	
6/21/17	11:20:00	AC-2	545920	2180	74.7	7.3	0.09	1.53	0.23			0.130	
6/21/17	13:40:00	CP-11	545916	40000	18.7	9.3	0.83	<0.1	<0.1			0.293	
6/21/17	13:10:00	CP-18	545917	750	12.0	2.9	0.02	0.18	<0.1			0.074	
6/21/17	13:00:00	CP-7	545918	2100	22.5	3.2	0.06	0.76	<0.1			0.069	
7/05/17	11:30:00	AC-1	547438	290	17.1	3.2	0.05	0.63	<0.05			0.040	
7/05/17	10:55:00	AC-2	547439	220	25.8	3.4	0.03	0.41	<0.05			0.048	
7/05/17	12:10:00	CP-11	547435	4000	41.3	27.3	0.46	0.22	0.16			0.466	
7/05/17	11:50:00	CP-18	547436	160	4.4	1.9	0.02	0.46	<0.05			0.042	
7/05/17	11:40:00	CP-7	547437	300	10.4	2.9	0.05	0.54	<0.05			0.044	
7/19/17	11:00:00	AC-1	548181	560	27.1	3.5	0.03	0.60	0.05			0.045	
7/19/17	10:25:00	AC-2	548182	250	35.7	4.1	0.02	0.44	<0.05			0.044	
7/19/17	11:40:00	CP-11	548178	800	28.9	21.2	0.10	0.17	0.07			0.359	
7/19/17	11:20:00	CP-18	548179	50	3.2	2.0	0.01	0.18	<0.05			0.037	
7/19/17	11:10:00	CP-7	548180	320	19.2	4.3	0.04	0.51	<0.05			0.057	
7/27/17	12:10:00	AC-1	548803	520	23.0	4.0	0.03	0.62	<0.05			0.047	
7/27/17	11:30:00	AC-2	548804	340	25.7	3.4	0.02	0.45	<0.05			0.040	
7/27/17	12:45:00	CP-11	548800	2680	24.4	18.5	0.75	0.77	0.12			0.484	
7/27/17	12:30:00	CP-18	548801	120	2.6	1.4	0.02	0.22	<0.05			0.040	
7/27/17	12:20:00	CP-7	548802	930	17.8	3.2	0.04	0.56	<0.05			0.054	
8/12/17	10:00:00	AC-1	549935		335	30.0	0.04	0.50	<0.1			0.352	
8/16/17	11:40:00	AC-1	550011	1300	6.2	3.3	0.02	0.56	<0.1			0.025	
8/16/17	12:50:00	AC-2	550012	330	4.2	2.3	0.01	0.42	<0.1			0.015	
8/16/17	13:40:00	CP-11	550008	3400	42.0	34.0	0.28	0.84	<0.1			0.540	
8/16/17	11:15:00	CP-18	550009	110	4.4	2.9	<0.01	0.19	<0.1			0.044	
8/16/17	11:30:00	CP-7	550010	400	13.8	4.8	0.03	0.39	<0.1			0.057	
8/30/17	11:25:00	AC-1	551374	510	3.6	1.2	0.02	0.48	<0.1			0.016	

Appendix "A" to Report PW19008(f) Page 462 of 486 Page 11 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
8/30/17	10:40:00	AC-2	551375	240	8.2	1.4	<0.01	0.35	<0.1			0.022	
8/30/17	12:05:00	CP-11	551371	670	42.8	32.8	0.87	0.99	0.13			0.630	
8/30/17	11:45:00	CP-18	551372	150	5.8	1.8	0.01	<0.1	<0.1			0.046	
8/30/17	11:40:00	CP-7	551373	310	11.6	1.4	0.04	0.41	<0.1			0.036	
9/15/17	12:00:00	AC-1	552557	420	4.9	1.4	0.02	0.51	<0.1			0.024	
9/15/17	11:15:00	AC-2	552558	120	4.6	1.1	<0.01	0.44	<0.1			0.020	
9/15/17	12:30:00	CP-11	552554	1120	29.0	22.0	0.99	1.36	0.11			0.740	
9/15/17	12:15:00	CP-18	552555	40	4.7	1.4	0.02	<0.1	<0.1			0.047	
9/15/17	12:05:00	CP-7	552556	280	16.0	2.3	0.11	0.40	<0.1			0.050	
9/27/17	10:25:00	AC-1	553708	180	5.0	1.5	0.03	0.34	<0.1			0.029	
9/27/17	9:50:00	AC-2	553709	970	3.2	1.8	<0.01	0.26	<0.1			0.016	
9/27/17	11:30:00	CP-11	553705	200	32.3	24.3	1.86	0.99	0.12			0.709	
9/27/17	11:15:00	CP-18	553706	<10	10.2	2.4	0.02	<0.1	<0.1			0.054	
9/27/17	11:00:00	CP-7	553707	850	15.8	3.5	0.07	0.42	<0.1			0.045	
10/11/17	10:00:00	AC-1	554891	740	8.3	1.3	0.03	0.42	<0.1			0.044	
10/11/17	11:10:00	AC-2	554892	260	10.2	2.0	<0.01	0.31	<0.1			0.030	
10/11/17	12:15:00	CP-11	554888	1540000	10.5	7.7	3.02	<0.1	<0.1			0.742	
10/11/17	11:45:00	CP-18	554889	100	3.1	1.5	<0.01	0.13	<0.1			0.052	
10/11/17	12:00:00	CP-7	554890	720	10.9	2.6	0.08	0.50	<0.1			0.054	
10/25/17	12:25:00	AC-1	555753	270	4.4	1.6	0.01	0.32	<0.05			0.033	
10/25/17	11:40:00	AC-2	555754	170	7.9	<0.8	<0.01	0.24	<0.05			0.024	
10/25/17	13:00:00	CP-11	555750	210000	8.8	5.0	1.28	1.56	<0.05			0.485	
10/25/17	12:40:00	CP-18	555751	210	2.4	1.6	<0.01	<0.05	<0.05			0.050	
10/25/17	12:35:00	CP-7	555752	470	10.0	1.6	0.04	0.24	<0.05			0.050	
11/02/17	22:00:00	AC-1	556750	2200	123	14.0	0.02	0.53	<0.05			0.174	
11/08/17	11:10:00	AC-1	557179	2400	<4	<4	0.02	0.38	<0.1			0.025	
11/08/17	10:40:00	AC-2	557180	<100	5.2	1.4	0.01	0.22	<0.1			0.020	
11/08/17	12:00:00	CP-11	557176	6400	5.9	3.9	0.38	2.50	<0.1			0.278	
11/08/17	11:40:00	CP-18	557177	100	<4	<4	<0.01	0.11	<0.1			0.040	
11/08/17	11:30:00	CP-7	557178	100	6.7	4.4	0.02	0.35	<0.1			0.035	
11/20/17	11:00:00	AC-1	557811	300	82.1	9.2	0.01	0.44	<0.05			0.120	
11/20/17	11:05:00	AC-2	557812	700	24.4	8.5	0.02	0.74	<0.05			0.132	
11/22/17	11:30:00	AC-1	557958	460	5.0	2.2	0.02	0.54	<0.05			0.022	

Appendix "A" to Report PW19008(f) Page 463 of 486 Page 12 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
11/22/17	11:05:00	AC-2	557959	30	11.1	2.2	0.01	0.42	<0.05			0.020	
11/22/17	12:20:00	CP-11	557955	181000	11.5	7.0	2.09	2.36	<0.05			0.495	
11/22/17	12:05:00	CP-18	557956	20	2.9	1.7	<0.01	0.57	<0.05			0.041	
11/22/17	11:50:00	CP-7	557957	80	4.6	2.2	0.02	0.72	<0.05			0.041	
12/06/17	11:50:00	AC-1	559282	130	3.6	1.6	0.02	0.48	<0.05			0.018	
12/06/17	11:15:00	AC-2	559283	50	5.2	1.2	0.01	0.37	<0.05			0.013	
12/06/17	12:25:00	CP-11	559279	83000	8.8	5.2	1.36	2.31	<0.05			0.377	
12/06/17	12:00:00	CP-18	559280	20	<3	<3	<0.01	0.49	<0.05			0.026	
12/06/17	11:55:00	CP-7	559281	1070	<4	<4	0.02	0.79	<0.05			0.026	
12/20/17	11:45:00	AC-1	560716	480	6.0	2.6	0.02	0.61	<0.05			0.018	
12/20/17	12:10:00	AC-2	560717	30	9.9	2.9	0.02	0.46	<0.05			0.017	
12/20/17	12:50:00	CP-11	560713	2600	13.2	5.4	0.71	2.58	<0.05			0.276	
12/20/17	11:25:00	CP-18	560714	100	<3	<3	<0.01	0.79	<0.05			0.025	
12/20/17	11:35:00	CP-7	560715	90	3.9	2.2	0.03	0.86	<0.05			0.023	
1/03/18	13:00:00	AC-1	561373	400	<3	<3	0.04	0.74	<0.05	<0.05		0.016	
1/03/18	12:00:00	AC-2	561374	<10	9.6	4.0	0.02	0.65	<0.05	<0.05		0.017	
1/03/18	12:45:00	CP-18	561372	40	<3	<3	<0.01	0.59	<0.05	<0.05		0.023	
1/17/18	11:30:00	AC-1	561832	150	5.9	2.5	0.05	1.04	<0.05	<0.05		0.029	
1/17/18	10:45:00	AC-2	561833	30	11.2	2.4	0.04	0.86	<0.05	<0.05		0.022	
1/17/18	12:15:00	CP-11	561829	12400	6.0	3.0	0.37	2.96	<0.05	0.16		0.202	
1/17/18	11:55:00	CP-18	561830	10	<4	<4	0.10	2.03	<0.05	0.05		0.059	
1/17/18	11:40:00	CP-7	561831	140	8.0	2.5	0.05	2.08	<0.05	<0.05		0.053	
2/13/18	12:40:00	AC-1	563196	160	11.6	2.4	0.07	0.74	<0.01	<0.05		0.025	
2/13/18	12:05:00	AC-2	563197	30	21.6	2.8	0.05	0.68	<0.05	<0.05		0.029	
2/13/18	13:20:00	CP-11	563193	11000	19.2	12.4	3.45	0.86	0.06	0.46		0.708	
2/13/18	13:05:00	CP-18	563194	60	<3	<3	0.14	0.71	<0.05	<0.05		0.032	
2/13/18	12:50:00	CP-7	563195	<10	9.6	2.0	0.05	0.54	<0.05	<0.05		0.028	
2/14/18	10:30:00	AC-1	563507	70	10.0	3.2	0.04	0.80	<0.05	<0.05		0.024	
2/14/18	10:00:00	AC-2	563508	30	12.4	2.8	0.04	0.68	<0.05	<0.05		0.025	
2/14/18	11:05:00	CP-11	563504	109000	13.6	10.8	2.58	2.05	0.07	0.22		0.496	
2/14/18	10:50:00	CP-18	563505	50	<3	<3	0.14	1.47	<0.05	<0.05		0.031	
2/14/18	10:45:00	CP-7	563506	40	4.8	2.0	0.04	1.08	<0.05	<0.05		0.021	
2/28/18	11:35:00	AC-1	564376	30	41.0	4.5	0.02	0.88	<0.05	0.06		0.067	

Appendix "A" to Report PW19008(f) Page 464 of 486 Page 13 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
2/28/18	10:45:00	AC-2	564377	20	69.2	5.6	0.02	0.75	<0.05	0.09		0.089	
2/28/18	11:50:00	CP-11	564373	37000	9.7	5.1	1.23	2.68	0.05	0.22		0.276	
2/28/18	11:20:00	CP-18	564374	10	12.0	3.3	0.19	1.70	0.12	0.06		0.063	
2/28/18	11:15:00	CP-7	564375	20	7.1	<0.8	0.01	1.03	<0.05	<0.05		0.041	
3/14/18	11:50:00	AC-1	564892	120	9.2	3.6	0.02	0.66	<0.05	<0.05		0.026	
3/14/18	11:10:00	AC-2	564893	20	10.7	3.0	0.02	0.58	<0.05	<0.05		0.028	
3/14/18	12:25:00	CP-11	564889	210000	12.7	8.1	3.06	1.69	0.10	0.39		0.696	
3/14/18	12:05:00	CP-18	564890	10	<4	<4	<0.01	0.92	<0.05	<0.05		0.025	
3/14/18	12:00:00	CP-7	564891	10	6.6	3.5	0.01	0.89	<0.05	<0.05		0.029	
3/28/18	11:05:00	AC-1	566696	180	5.6	2.4	<0.01	0.63	0.32	<0.05		0.020	
3/28/18	10:30:00	AC-2	566697	20	12.2	2.3	<0.01	0.51	<0.05	<0.05		0.025	
3/28/18	11:40:00	CP-11	566693	420000	20.6	15.9	6.62	1.48	0.15	0.39		0.951	
3/28/18	11:20:00	CP-18	566694	170	12.6	5.7	0.01	0.37	<0.05	<0.05		0.054	
3/28/18	11:15:00	CP-7	566695	60	3.2	1.4	<0.01	0.80	<0.05	<0.05		0.016	
4/11/18	11:15:00	AC-1	567828	130	6.5	1.5	<0.01	0.60	<0.1			0.016	
4/11/18	10:40:00	AC-2	567829	10	17.9	2.1	<0.01	0.46	<0.1			0.032	
4/11/18	12:40:00	CC-3	567833	21900	4.0	4.0	0.34	2.37	<0.1			0.163	
4/11/18	12:30:00	CC-5	567834	130	<2	<2	<0.01	1.61	<0.1			0.160	
4/11/18	13:40:00	CC-7	567835	650	2.2	1.6	0.02	1.59	<0.1			0.075	
4/11/18	13:15:00	CC-9	567836	8000	25.2	8.0	0.15	2.99	0.23			0.175	
4/11/18	13:00:00	CP-11	567826	290000	13.1	9.5	3.63	2.05	<0.1			0.582	
4/11/18	11:30:00	CP-18	567827	10	2.6	1.9	<0.01	0.80	<0.1			0.019	
4/11/18	11:20:00	CP-7	567825	10	4.8	1.5	<0.01	0.70	<0.1			0.021	
4/25/18	12:00:00	AC-1	568408	370	245	14.0	0.01	0.68	0.24			0.238	
4/25/18	11:15:00	AC-2	568409	160	415	18.5	0.02	0.56	<0.1			0.342	
4/25/18	12:45:00	CC-3	568413	16000	10.6	5.6	0.11	2.44	<0.1			0.123	
4/25/18	12:30:00	CC-5	568414	2800	17.3	4.3	0.03	1.45	<0.1			0.128	
4/25/18	10:20:00	CC-7	568415	6600	27.0	5.0	0.09	0.82	<0.1			0.101	
4/25/18	13:00:00	CC-9	568416	18000	26.0	7.1	0.25	1.59	<0.1			0.162	
4/25/18	13:20:00	CP-11	568406	580000	26.4	14.8	3.36	1.17	<0.1			0.801	
4/25/18	12:15:00	CP-18	568407	130	24.6	3.1	0.01	1.06	<0.1			0.076	
4/25/18	12:10:00	CP-7	568405	140	49.0	3.6	0.02	0.72	<0.1			0.058	
5/02/18	9:01:00	CP-11.2	568546	13000	11.7	8.6	5.06				0.370	0.796	

Appendix "A" to Report PW19008(f) Page 463 of 486 Page 14 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
5/04/18	9:00:00	AC-1	568919	960	112	10.3	0.04	0.42	<0.1			0.164	
5/09/18	12:00:00	AC-1	569304	50	4.2	1.7	0.02	0.41	<0.05			0.012	
5/09/18	11:20:00	AC-2	569305	40	5.0	1.8	<0.01	0.26	<0.05			0.012	
5/09/18	13:00:00	CC-3	569310	4800	4.4	2.9	0.24	2.58	0.06			0.152	
5/09/18	12:45:00	CC-5	569311	440	4.0	1.4	<0.01	1.92	<0.05			0.154	
5/09/18	12:05:00	CC-7	569312	1020	3.0	2.2	0.01	1.79	0.06			0.076	
5/09/18	13:30:00	CC-9	569313	3200	8.5	3.3	0.15	3.07	0.08			0.264	
5/09/18	13:10:00	CP-11	569302	650000	21.0	18.0	8.65	0.48	0.17			1.22	
5/09/18	12:15:00	CP-18	569303	50	<3	<3	0.02	0.15	<0.05			0.012	
5/09/18	12:05:00	CP-7	569301	30	7.6	4.4	0.02	0.27	<0.05			0.033	
5/16/18	8:10:00	CP-11.2	569439	108000	26.8	15.6	2.98				0.242	0.697	
5/23/18	11:05:00	AC-1	569900	270	7.8	1.0	0.01	0.45	<0.1			0.018	
5/23/18	10:30:00	AC-2	569901	100	10.7	<0.8	<0.01	0.26	<0.1			0.020	
5/23/18	12:10:00	CC-3	569904	590	6.7	3.6	0.39	2.39	0.10			0.193	
5/23/18	11:55:00	CC-5	569905	820	10.0	1.7	<0.01	2.33	<0.1			0.202	
5/23/18	9:45:00	CC-7	569906	4200	9.8	1.6	0.09	1.95	<0.1			0.119	
5/23/18	12:30:00	CC-9	569907	3200	4.4	1.3	0.14	3.25	<0.1			0.258	
5/23/18	12:45:00	CP-11	569898	660000	25.8	16.5	5.36	<0.1	<0.1			1.04	
5/23/18	11:30:00	CP-18	569899	220	6.2	2.3	<0.01	0.26	<0.1			0.034	
5/23/18	11:15:00	CP-7	569897	140	11.4	2.4	0.04	0.32	<0.1			0.038	
5/30/18	8:33:00	CP-11.2	570121	50000	29.5	19.5	2.03				0.124	0.687	
6/07/18	11:50:00	AC-1	570589	270	5.5	1.7	0.04	0.69	<0.05			0.029	
6/07/18	11:15:00	AC-2	570590	180	5.0	1.5	0.02	0.49	<0.05			0.021	
6/07/18	13:30:00	CC-3	570593	15800	2.9	2.9	0.52	1.85	0.11			0.267	
6/07/18	12:45:00	CC-5	570594	600	15.7	3.1	0.04	2.59	<0.05			0.341	
6/07/18	10:20:00	CC-7	570595	570	5.9	2.3	0.16	1.91	0.16			0.207	
6/07/18	13:50:00	CC-9	570596	5900	<2	<2	0.16	3.45	0.05			0.327	
6/07/18	13:10:00	CP-11	570587	3600000	23.9	21.3	13.1	<0.05	0.12			2.03	
6/07/18	12:25:00	CP-18	570588	210	5.4	1.7	0.05	0.43	<0.05			0.060	
6/07/18	12:05:00	CP-7	570586	290	9.6	2.6	0.04	0.52	<0.05			0.046	
6/13/18	8:49:00	CP-11.2	570990	11700	125	66.9	1.33				0.053	0.580	
6/19/18	11:00:00	AC-1	571416	7500	214	19.8	0.06	0.70	0.08			0.302	
6/20/18	12:15:00	AC-1	571459	1600	21.3	4.0	0.05	0.58	<0.05			0.055	

Appendix "A" to Report PW19008(f) Page 466 of 486 Page 15 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
6/20/18	11:40:00	AC-2	571460	880	22.6	3.4	0.03	0.47	<0.05			0.049	
6/20/18	13:40:00	CC-3	571466	3000	10.0	3.4	0.02	2.08	<0.05			0.223	
6/20/18	13:25:00	CC-5	571467	3600	12.9	2.3	0.02	2.79	<0.05			0.436	
6/20/18	10:20:00	CC-7	571468	4600	8.0	2.8	0.05	2.07	0.28			0.250	
6/20/18	14:45:00	CC-9	571469	1700	3.1	1.4	<0.01	2.89	0.12			0.253	
6/20/18	13:55:00	CP-11	571457	2500000	36.3	28.4	6.54	<0.05	<0.05			1.39	
6/20/18	14:05:00	P-11 Outle	571463	3400000	46.8	45.6	14.2	0.83	0.19			2.69	
6/20/18	12:55:00	CP-18	571458	450	12.8	3.2	0.02	0.66	<0.05			0.089	
6/20/18	12:40:00	CP-7	571456	890	14.7	4.0	0.06	0.52	<0.05			0.056	
6/27/18	8:03:00	CP-11.2	571894	128000	37.6	20.0	1.74				0.040	0.490	
7/04/18	11:40:00	AC-1	572018	900	13.4	3.2	0.04	0.60	<0.05			0.049	
7/04/18	11:00:00	AC-2	572019	700	13.8	2.7	0.03	0.47	<0.05			0.041	
7/04/18	14:05:00	CC-3	572023	81000	8.5	4.0	0.15	2.32	0.05			0.260	
7/04/18	13:20:00	CC-5	572024	3200	13.7	3.4	0.03	2.65	<0.05			0.398	
7/04/18	10:00:00	CC-7	572025	6100	4.9	3.7	0.02	2.26	<0.05			0.180	
7/04/18	14:20:00	CC-9	572026	1170	7.6	1.8	<0.01	3.20	0.09			0.288	
7/04/18	13:50:00	CP-11	572016	1160000	47.4	42.1	5.88	<0.05	<0.05			1.56	
7/04/18	13:40:00	P-11 Outle	572021	4900000	58.0	51.6	13.8	0.53	0.10			2.78	
7/04/18	12:05:00	CP-18	572017	510	5.4	1.7	0.04	0.58	<0.05			0.068	
7/04/18	11:50:00	CP-7	572015	1200	16.5	16.5	0.04	0.76	<0.05			0.062	
7/11/18	10:21:00	CP-11.2	572775	102000	61.0	36.0	2.70				0.105	0.970	
7/18/18	11:30:00	AC-1	573218	760	6.4	2.1	0.02	0.48	<0.05			0.029	
7/18/18	10:50:00	AC-2	573219	520	6.2	2.1	0.02	0.46	<0.05			0.018	
7/18/18	14:15:00	CC-2	573227	420									
7/18/18	13:05:00	CC-3	573223	104000	14.1	6.1	0.15	2.03	0.07			0.264	
7/18/18	12:55:00	CC-5	573224	580	12.3	1.8	0.09	1.95	<0.05			0.361	
7/18/18	10:05:00	CC-7	573225	1400	11.3	2.5	0.04	0.56	<0.05			0.034	
7/18/18	13:25:00	CC-9	573226	590	3.2	<0.8	<0.01	2.66	<0.05			0.263	
7/18/18	13:50:00	CP-11	573216	1800000	60.8	55.7	5.49	<0.05	<0.05			1.61	
7/18/18	13:40:00	P-11 Outle	573221	3800000	31.6	27.6	6.70	1.17	0.07			1.33	
7/18/18	11:55:00	CP-18	573217	1170	13.0	4.6	0.08	0.59	<0.05			0.074	
7/18/18	11:35:00	CP-7	573215	640	<4	<4	0.02	2.17	<0.05			0.262	
7/25/18	7:49:00	CP-11.2	574356	4200	35.5	19.3	1.28				0.258	0.703	

Appendix "A" to Report PW19008(f) Page 467 of 486 Page 16 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
8/01/18	11:55:00	AC-1	574598	580	7.3	2.0	0.02	0.48	<0.05			0.027	
8/01/18	11:25:00	AC-2	574599	520	4.5	1.3	0.01	0.40	<0.05			0.014	
8/01/18	14:20:00	CC-2	574602	470									
8/01/18	13:25:00	CC-3	574603	610000	9.6	4.7	0.18	2.43	0.26			0.246	
8/01/18	13:10:00	CC-5	574604	330	8.5	1.3	0.10	2.44	<0.05			0.351	
8/01/18	10:20:00	CC-7	574605	950	10.6	1.7	0.02	2.66	0.76			0.172	
8/01/18	13:40:00	CC-9	574606	1630	5.7	2.3	<0.01	3.15	<0.05			0.271	
8/01/18	14:10:00	CP-11	574595	1000	28.9	12.9	1.39	1.48	0.37			0.423	
8/01/18	13:55:00	P-11 Outle	574596	20000	5.7	1.2	0.07	2.32	0.20			0.213	
8/01/18	12:25:00	CP-18	574597	1100	<3	<3	0.02	0.26	<0.05			0.038	
8/01/18	12:10:00	CP-7	574594	630	16.5	3.3	0.06	0.48	<0.05			0.045	
8/08/18	9:40:00	CP-11.2	574980	1670	38.0	9.0	1.90				0.488	0.920	
8/15/18	11:30:00	AC-1	575773	450	5.6	1.6	0.02	0.47	<0.05			0.025	
8/15/18	10:50:00	AC-2	575774	560	4.8	1.0	0.01	0.40	<0.05			0.014	
8/15/18	13:10:00	CC-10	575778	960	10.1	2.4	<0.01	1.89	<0.05			0.19	
8/15/18	14:10:00	CC-2	575779	60									
8/15/18	12:55:00	CC-3	575780	5000	16.0	4.4	0.02	2.24	<0.05			0.217	
8/15/18	12:25:00	CC-5	575781	500	7.0	1.6	0.01	2.53	0.16			0.396	
8/15/18	12:35:00	CC-5A	575777	530									
8/15/18	10:05:00	CC-7	575782	1600	4.2	1.4	0.01	2.29	<0.05			0.191	
8/15/18	13:30:00	CC-9	575783	9000	3.2	2.4	0.01	3.05	<0.05			0.291	
8/15/18	13:55:00	CP-11	575770	7300	47.4	39.2	1.16	1.05	0.11			0.935	
8/15/18	13:45:00	P-11 Outle	575771	1400	10.2	1.6	0.07	2.27	<0.05			0.215	
8/15/18	11:50:00	CP-18	575772	790	3.5	1.2	0.06	0.48	<0.05			0.061	
8/15/18	11:35:00	CP-7	575769	380	19.1	3.9	0.06	0.47	<0.05			0.049	
8/22/18	10:10:00	AC-1	575922	6800	276	32.6	0.01	0.37	<0.05			0.319	
8/22/18	11:33:00	CP-11.2	575917	16000	25.5	7.4	0.20				0.271	0.490	
8/29/18	11:15:00	AC-1	576088	680	7.5	1.4	0.02	0.44	<0.05			0.036	
8/29/18	10:40:00	AC-2	576089	1500	7.2	1.4	<0.01	0.37	<0.05			0.022	
8/29/18	12:45:00	CC-10	576092	590	6.1	1.3	<0.01	1.68	<0.05			0.16	
8/29/18	14:20:00	CC-2	576094	720									
8/29/18	12:30:00	CC-3	576095	110000	10.5	3.3	0.04	1.55	<0.05			0.167	
8/29/18	12:00:00	CC-5	576096	520	6.2	1.8	0.01	2.96	0.11			0.397	

Appendix "A" to Report PW19008(f) Page 468 of 486 Page 17 of 27

											Phospho		
Sample	Sample	Sample		<i>E.coli</i> CFU/100	Total Suspended Solids	Volatile Suspended Solids	Ammonia + Ammonium	Nitrate as N	Nitrite as N	o- Phosphate	rus Dissolve d Total	Phospho rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
8/29/18	12:15:00	CC-5A	576093	730									
8/29/18	9:55:00	CC-7	576097	440	2.5	1.2	0.01	2.43	<0.05			0.195	
8/29/18	13:00:00	CC-9	576098	2200	4.5	1.6	<0.01	2.92	<0.05			0.262	
8/29/18	13:40:00	CP-11	576085	190	8.1	2.3	1.15	1.35	0.10			0.312	
8/29/18	14:10:00	P-11 Outle	576086	460	6.2	1.5	0.03	2.12	<0.05			0.195	
8/29/18	13:40:00	11 Right E	576099	880									
8/29/18	11:40:00	CP-18	576087	160	<3	<3	0.19	0.35	<0.05			0.046	
8/29/18	11:25:00	CP-7	576084	1500	22.4	4.2	0.09	0.31	<0.05			0.067	
9/05/18	9:17:00	CP-11.2	576302	240	37.6	13.2	1.27				0.324	0.641	
9/10/18	12:00:00	AC-1	576571	6700	189	16.6	<0.01	0.40	<0.05			0.216	
9/11/18	11:25:00	AC-1	576610	2800	16.0	2.4	0.02	0.47	0.29			0.050	
9/11/18	10:50:00	AC-2	576611	970	7.6	2.4	<0.01	0.34	<0.05			0.025	
9/11/18	12:55:00	CC-10	576620	3500	6.2	1.7	<0.01	1.89	<0.05			0.142	
9/11/18	13:50:00	CC-2	576614	2800									
9/11/18	12:40:00	CC-3	576615	6400	12.0	3.2	<0.01	2.23	<0.05			0.208	
9/11/18	12:10:00	CC-5	576616	250	8.4	2.8	0.01	1.77	0.72			0.196	
9/11/18	12:20:00	CC-5A	576617	560									
9/11/18	10:05:00	CC-7	576618	6000	<2	<2	0.04	1.68	0.16			0.149	
9/11/18	13:10:00	CC-9	576619	7200	2.7	1.0	0.02	3.23	0.54			0.248	
9/11/18	13:40:00	CP-11	576607	12300	14.4	4.4	0.49	1.83	<0.05			0.240	
9/11/18	13:25:00	P-11 Outle	576608	3300	8.4	2.4	0.02	2.08	<0.05			0.187	
9/11/18	11:50:00	CP-18	576609	2600	7.6	1.2	0.03	0.33	<0.05			0.062	
9/11/18	11:35:00	CP-7	576606	1800	20.8	4.0	0.05	0.53	<0.05			0.054	
9/19/18	10:10:00	CP-11.2	577411	20	16.4	10.0	0.90				0.206	0.451	
9/27/18	12:10:00	AC-1	578021	460	5.2	3.2	0.02	0.37	<0.05			0.040	
9/27/18	11:30:00	AC-2	578022	370	<3	<3	<0.01	0.19	<0.05			0.025	
9/27/18	14:35:00	CC-2	578025	1400									
9/27/18	13:35:00	CC-3	578026	800	8.6	1.8	<0.01	2.44	0.11			0.248	
9/27/18	13:10:00	CC-5	578027	650	5.2	1.0	<0.01	2.22	<0.05			0.357	
9/27/18	10:45:00	CC-7	578028	4700	8.8	2.2	0.07	2.21	0.10			0.243	
9/27/18	13:50:00	CC-9	578029	7100	3.8	1.8	0.02	3.51	0.42			0.326	
9/27/18	14:25:00	CP-11	578018	7200	23.2	6.0	0.69	1.53	0.43			0.262	
9/27/18	14:15:00	P-11 Outle	578019	9100	4.0	3.6	0.02	2.31	0.10			0.226	
Appendix "A" to Report PW19008(f) Page 469 of 486 Page 18 of 27

									Phospho					
					Total	Volatile					rus			
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho		
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein	
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)	
9/27/18	12:30:00	CP-18	578020	340	5.2	3.2	0.06	0.28	0.38			0.082		
9/27/18	12:20:00	CP-7	578017	650	13.2	3.6	0.08	0.50	<0.05			0.061		
10/10/18	13:35:00	AC-1	579171	810	<3	<3	0.01	0.42	0.08			0.032		
10/10/18	10:50:00	AC-2	579172	210	3.2	2.4	<0.01	0.29	<0.05			0.022		
10/10/18	14:05:00	CC-3	579175	810	6.4	3.2	0.01	2.60	0.16			0.230		
10/10/18	13:50:00	CC-5	579176	700	7.2	2.0	<0.01	3.08	<0.05			0.393		
10/10/18	10:00:00	CC-7	579177	3800	1.6	1.6	0.02	2.63	<0.05			0.263		
10/10/18	14:20:00	CC-9	579178	2900	5.6	1.8	0.01	3.61	0.20			0.338		
10/10/18	14:35:00	CP-11	579169	830	7.6	2.0	0.74	2.21	0.08			0.240		
10/10/18	13:00:00	CP-18	579170	40	<3	<3	0.06	0.30	<0.05			0.046		
10/10/18	13:20:00	CP-7	579168	120	9.2	2.8	0.04	0.48	<0.05			0.051		
10/31/18	11:45:00	AC-1	580511	2200	119	13.4	0.03	0.54	<0.05			0.182		
10/31/18	11:05:00	AC-2	580512	1430	22.9	3.4	0.02	0.31	<0.05			0.076		
10/31/18	12:40:00	CC-3	580515	7000	24.2	8.1	0.01	1.32	<0.05			0.291		
10/31/18	12:30:00	CC-5	580516	6200	23.5	4.6	0.02	1.36	<0.05			0.206		
10/31/18	11:55:00	CC-7	580517	11100	42.8	7.2	0.20	0.50	<0.05			0.190		
10/31/18	13:05:00	CC-9	580518	34000	14.6	3.7	0.16	0.96	0.09			0.172		
10/31/18	13:20:00	CP-11	580509	35000	24.6	5.6	0.21	0.77	0.06			0.181		
10/31/18	12:10:00	CP-18	580510	370	12.8	3.3	0.07	0.35	<0.05			0.097		
10/31/18	11:55:00	CP-7	580508	3100	53.5	8.1	0.06	0.48	<0.05			0.112		
11/07/18	11:30:00	AC-1	581009	320	6.4	1.6	0.01	0.51	<0.05			0.032		
11/07/18	11:00:00	AC-2	581010	80	4.8	1.2	0.02	0.40	<0.05			0.023		
11/07/18	12:45:00	CC-3	581013	4100	<3	<3	0.06	2.32	<0.05			0.123		
11/07/18	12:30:00	CC-5	581014	900	4.0	2.0	<0.01	2.26	<0.05			0.180		
11/07/18	10:15:00	CC-7	581015	600	<3	<3	0.14	2.43	0.77			0.177		
11/07/18	13:00:00	CC-9	581016	6300	3.6	2.4	0.10	3.58	0.72			0.251		
11/07/18	13:15:00	CP-11	581007	900	6.4	2.0	0.24	2.38	<0.05			0.186		
11/07/18	11:55:00	CP-18	581008	40	<3	<3	0.04	0.91	<0.05			0.058		
11/07/18	11:45:00	CP-7	581006	70	11.2	1.9	0.03	0.90	<0.05			0.082		
11/20/18	12:05:00	AC-1	581867	460	2.1	<0.8	0.01	0.58	<0.05			0.018		
11/20/18	11:35:00	AC-2	581868	140	2.8	<0.8	<0.01	0.46	<0.05			0.015		
11/20/18	13:05:00	CC-3	581871	11000	<2	<2	0.08	2.03	<0.05			0.152		
11/20/18	12:55:00	CC-5	581872	600	27.1	2.9	<0.01	2.35	<0.05			0.362		

Appendix "A" to Report PW19008(f) Page 470 of 486 Page 19 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
11/20/18	10:55:00	CC-7	581873	30	<2	<2	0.27	2.01	<0.05			0.217	
11/20/18	13:20:00	CC-9	581874	20000	7.8	2.2	0.10	3.14	<0.05			0.446	
11/20/18	14:10:00	CP-11	581865	1500	6.2	1.0	0.32	2.38	<0.05			0.280	
11/20/18	12:40:00	CP-18	581866	300	<2	<2	0.10	1.22	<0.05			0.113	
11/20/18	12:15:00	CP-7	581864	130	2.9	<0.8	0.03	0.70	<0.05			0.036	
12/05/18	12:00:00	AC-1	583446	110	6.9	<0.8	0.02	0.70	<0.05	<0.05		0.029	
12/05/18	11:25:00	AC-2	583447	10	15.0	1.2	0.02	0.55	<0.05	<0.05		0.030	
12/05/18	13:15:00	CC-3	583450	1070	<3	<3	<0.01	3.13	<0.05	0.12		0.126	
12/05/18	13:00:00	CC-5	583451	170	4.8	0.8	<0.01	2.59	<0.05	0.26		0.271	
12/05/18	10:45:00	CC-7	583452	840	<2	<2	0.12	2.34	<0.05	0.12		0.129	
12/05/18	13:25:00	CC-9	583453	17700	3.6	1.6	0.08	3.28	<0.05	0.39		0.416	
12/05/18	13:40:00	CP-11	583444	11400	7.9	<0.8	0.28	2.72	<0.05	0.26		0.282	
12/05/18	12:20:00	CP-18	583445	10	1.6	<0.8	0.05	1.21	<0.05	0.11		0.110	
12/05/18	12:05:00	CP-7	583443	50	4.9	2.0	0.02	1.24	<0.05	<0.05		0.053	
12/19/18	11:55:00	AC-1	583739	230	4.8	1.2	0.02	0.66	<0.05	<0.05		0.017	
12/19/18	11:05:00	AC-2	583740	<10	17.9	2.9	0.02	0.59	<0.05	<0.05		0.026	
12/19/18	12:40:00	CC-3	583743	1790	2.4	1.8	0.02	2.79	<0.05	0.19		0.192	
12/19/18	12:30:00	CC-5	583744	950	8.9	1.4	<0.01	2.60	<0.05	0.46		0.471	
12/19/18	10:25:00	CC-7	583745	2100	<2	<2	0.15	2.18	<0.05	0.15		0.159	
12/19/18	13:00:00	CC-9	583746	2000	12.6	2.6	0.03	2.83	<0.05	0.39		0.410	
12/19/18	13:20:00	CP-11	583737	100	3.6	1.4	0.22	2.44	<0.05	0.30		0.300	
12/19/18	12:10:00	CP-18	583738	<10	2.0	1.0	0.12	0.79	<0.05	0.12		0.114	
12/19/18	12:00:00	CP-7	583736	180	1.9	1.5	0.03	1.10	<0.05	<0.05		0.030	
1/02/19	11:50:00	AC-1	584553	190	10.7	1.7	0.02	0.75	<0.05	<0.05		0.028	
1/02/19	11:15:00	AC-2	584554	50	20.8	3.1	0.01	0.66	<0.05	<0.05		0.033	
1/02/19	12:35:00	CC-3	584557	1300	2.9	1.8	0.01	3.73	<0.05	0.13		0.129	
1/02/19	12:25:00	CC-5	584558	630	8.3	2.2	<0.01	2.37	<0.05	0.16		0.167	
1/02/19	10:40:00	CC-7	584559	9400	1.6	0.8	0.13	2.45	<0.05	0.07		0.090	
1/02/19	12:50:00	CC-9	584560	19900	10.1	2.0	0.11	3.54	0.06	0.32		0.347	
1/02/19	13:00:00	CP-11	584551	1900	3.7	1.7	0.17	3.05	<0.05	0.20		0.217	
1/02/19	12:05:00	CP-18	584552	60	5.6	1.8	0.05	1.27	<0.05	0.08		0.109	
1/02/19	11:55:00	CP-7	584550	140	8.8	2.2	0.03	1.46	<0.05	0.05		0.084	
1/18/19	11:45:00	AC-1	585575	170	2.6	1.8	0.03	0.81	<0.05	<0.05		0.014	

Appendix "A" to Report PW19008(f) Page 471 of 486 Page 20 of 27

									Phospho						
					Total	Volatile					rus				
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	O-	Dissolve Phosph	0			
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total rus Tota	al Caffein			
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L) (mg/L)	e (ug/L)			
1/18/19	11:00:00	AC-2	585576	<10	8.6	1.2	0.01	0.74	<0.05	<0.05	0.013				
1/18/19	12:40:00	CC-3	585579	1890	<2	<2	0.06	2.96	<0.05	0.16	0.177				
1/18/19	12:25:00	CC-5	585580	850	87.2	11.6	0.04	2.51	<0.05	0.67	0.753				
1/18/19	10:10:00	CC-7	585581	11700											
1/18/19	12:50:00	CC-9	585582	1380	8.2	2.0	0.04	2.56	<0.05	0.45	0.500				
1/18/19	12:05:00	CP-18	585574	<10	1.8	1.0	0.18	0.84	<0.05	0.22	0.234				
1/18/19	11:50:00	CP-7	585573	20	3.0	1.0	0.02	1.30	<0.05	<0.05	0.033				
2/19/19	13:05:00	AC-1	587841	330	14.5	2.8	0.04	0.76	<0.1		0.028				
2/19/19	14:25:00	CC-3	587842	4100	3.0	2.1	0.11	3.30	<0.1		0.118				
2/19/19	14:15:00	CC-5	587843	1400	2.6	1.4	0.02	2.09	<0.1		0.302				
2/19/19	12:35:00	CC-7	587844	3500	<2	<2	0.26	1.80	<0.1		0.106				
2/19/19	14:40:00	CC-9	587845	12000	4.1	1.8	0.21	2.36	<0.1		0.398				
2/19/19	15:00:00	CP-11	587840	<10	2.9	1.4	0.14	2.42	<0.1		0.257				
2/19/19	13:20:00	CP-7	587839	2600	6.0	1.6	0.07	1.05	<0.1		0.044				
2/21/19	13:45:00	AC-2	588196	30	24.2	3.5	0.05	0.71	<0.1		0.042				
2/21/19	14:30:00	CP-18	588195	70	3.5	<0.8	0.12	0.94	<0.1		0.117				
3/01/19	11:55:00	AC-1	588360	140	15.8	2.2	0.03	0.79	<0.05		0.023				
3/01/19	11:25:00	AC-2	588361	20	16.2	1.4	0.02	0.71	<0.05		0.022				
3/01/19	14:35:00	CC-3	588364	200	4.2	1.6	0.04	3.19	<0.05		0.117				
3/01/19	14:20:00	CC-5	588365	180	3.6	1.4	0.01	2.21	<0.05		0.306				
3/01/19	12:05:00	CC-7	588366	7000	2.2	0.8	0.17	2.06	<0.05		0.094				
3/01/19	14:45:00	CC-9	588367	3400	7.6	2.8	0.20	2.40	0.09		0.384				
3/01/19	15:00:00	CP-11	588358	<10	6.4	2.4	0.11	2.39	<0.05		0.278				
3/01/19	12:20:00	CP-18	588359	40	<2	<2	0.07	0.81	<0.05		0.111				
3/01/19	12:05:00	CP-7	588357	80	20.8	2.8	0.04	0.98	<0.05		0.048				
3/08/19	11:30:00	AC-1	588462	460	4.8	1.2	0.03	0.80	<0.05		0.015				
3/08/19	11:05:00	AC-2	588463	10	5.2	1.2	0.02	0.74	<0.05		0.014				
3/08/19	12:55:00	CC-3	588466	600	5.6	1.4	0.02	3.02	<0.05		0.159				
3/08/19	12:45:00	CC-5	588467	210	5.8	1.6	0.01	2.10	<0.05		0.436				
3/08/19	10:20:00	CC-7	588468	39000	23.4	4.0	0.71	1.97	0.07		0.215				
3/08/19	13:10:00	CC-9	588469	200	6.8	1.8	0.14	2.25	0.07		0.442				
3/08/19	11:55:00	CP-18	588461	<10	<2	<2	0.14	0.80	<0.05		0.198				
3/08/19	11:40:00	CP-7	588460	380	8.8	2.0	0.05	1.00	<0.05		0.034				

Appendix "A" to Report PW19008(f) Page 472 of 486 Page 21 of 27

									Phospho						
					Total	Volatile					rus				
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho			
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein		
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)		
3/13/19	11:45:00	AC-1	589723	180	25.7	2.8	0.04	0.68	<0.05			0.058			
3/13/19	11:15:00	AC-2	589724	220	26.4	2.2	0.07	0.70	<0.05			0.062			
3/13/19	12:35:00	CC-3	589727	1500	2.7	1.6	0.08	3.36	<0.05			0.099			
3/13/19	12:20:00	CC-5	589728	740	11.8	2.4	<0.01	1.80	<0.05			0.209			
3/13/19	10:35:00	CC-7	589729	190	20.9	2.4	0.18	0.92	<0.05			0.100			
3/13/19	12:50:00	CC-9	589730	7000	5.6	1.6	0.17	2.73	0.05			0.349			
3/13/19	13:05:00	CP-11	589721	3300	11.2	2.2	0.36	1.96	<0.05			0.252			
3/13/19	12:05:00	CP-18	589722	70	11.8	1.8	0.09	0.66	<0.05			0.109			
3/13/19	11:55:00	CP-7	589720	6400	3.2	1.0	0.08	1.81	<0.05			0.074			
3/15/19	14:45:00	AC-1	589878	380	712	44.0	0.12	0.58	<0.05			0.727			
3/27/19	11:55:00	AC-1	591749	60	8.4	1.8	0.01	0.64	<0.05			0.020			
3/27/19	11:15:00	AC-2	591750	<10	10.5	1.5	<0.01	0.59	<0.05			0.020			
3/27/19	13:15:00	CC-3	591753	670	24.7	5.2	0.02	3.29	<0.05	<0.05		0.084			
3/27/19	13:00:00	CC-5	591754	1160	22.2	4.9	0.08	1.59	<0.05	0.40		0.513			
3/27/19	10:30:00	CC-7	591755	930	2.6	2.1	0.02	1.79	<0.05	<0.05		0.062			
3/27/19	13:30:00	CC-9	591756	730	23.8	3.1	0.13	2.51	0.06	0.40		0.450			
3/27/19	13:45:00	CP-11	591747	<10	3.3	2.0	0.28	2.17	<0.05	0.22		0.280			
3/27/19	12:25:00	CP-18	591748	<10	<2	<2	0.06	0.46	<0.05			0.094			
3/27/19	12:15:00	CP-7	591746	20	2.0	1.3	0.02	0.43	<0.05			0.029			
4/15/19	12:45:00	AC-1	592603	310	244	14.0	0.02	0.72	<0.05			0.161			
4/15/19	12:10:00	AC-2	592604	150	320	17.0	0.02	0.62	<0.05			0.213			
4/15/19	14:20:00	CC-3	592607	990	4.6	1.6	0.01	3.35	<0.05	0.07		0.093			
4/15/19	13:55:00	CC-5	592608	1710	21.2	3.6	0.01	1.88	<0.05	0.10		0.153			
4/15/19	11:00:00	CC-7	592609	26100	15.5	2.0	0.06	1.86	<0.05	<0.05		0.083			
4/15/19	14:35:00	CC-9	592610	13500	9.4	2.4	0.16	3.44	0.07	0.20		0.247			
4/15/19	14:55:00	CP-11	592601	3700	18.6	2.6	0.19	2.43	<0.05	0.12		0.196			
4/15/19	13:20:00	CP-18	592602	310	65.7	7.3	0.03	1.03	<0.05			0.216			
4/15/19	13:00:00	CP-7	592600	240	83.4	5.8	0.02	0.81	<0.05			0.128			
4/24/19	11:50:00	AC-1	592784	20	9.4	1.2	0.01	0.61	<0.05			0.023			
4/24/19	11:15:00	AC-2	592785	10	13.2	1.3	<0.01	0.41	<0.05			0.024			
4/24/19	12:45:00	CC-5	592788	170	5.6	1.8	<0.01	2.25	<0.05	0.13		0.160			
4/24/19	10:35:00	CC-7	592789	3200	<2	<2	<0.01	1.82	<0.05	<0.05		0.053			
4/24/19	13:10:00	CC-9	592790	2800	7.0	1.8	0.15	3.22	0.06	0.31		0.370			

Appendix "A" to Report PW19008(f) Page 473 of 486 Page 22 of 27

											Phospho		
				E ooli	l otal	Volatile	Ammonia	Nitroto	Nitrito	0	rus	Dhoonho	
Sampla	Sampla	Sampla			Suspended	Suspended	Ammonia +			0- Dhochbata	d Total	Phospho rue Total	Coffoin
Date	Time		Record #	ml	(ma/L)	(ma/L)	as N (mg/l)	(ma/l)	(ma/l)	as P (mg/l)	(ma/L)	(ma/l)	
4/24/40	12:25:00		F00700	220	10.0	(IIIg/L)	0.46	(IIIG/L)	(mg/L)	0.12	(mg/⊏)	(mg/L)	c (ug/L)
4/24/19	13.25.00		092102 500700	330	19.9	3.4 2	0.40	2.00	0.00	0.13		0.210	
4/24/19	12.25.00		502703	20	<2	< <u>Z</u>	0.09	0.70	< 0.05			0.000	
4/24/19 5/01/10	8.40.00		502022	120	11.0	2.5	0.02	0.02	<0.05		0.012	0.044	
5/01/19	13:45:00		592952	100	20.0	0.2	0.09	0.20	<0.05		0.012	0.112	
5/08/19	13.45.00	AC-1	503258	10	4.7	-0.8	< 0.01	0.30	< 0.05			0.024	
5/08/19	13.30.00	CC-3	503261	120	5.1	<0.0	<0.01	2.32	<0.05	0.06		0.023	
5/08/19	1/1/15:00	CC-5	503267	670	<0 3 0	< <u>5</u>	<0.01	1 7/	<0.05	0.00		0.070	
5/08/19	12.30.00	CC-7	503262	4000	-3	-3	0.02	1.77	<0.00	~0.05		0.155	
5/08/19	13.15.00	CC-9	593264	1000	37	30	0.02	3 15	0.00	0.00		0.007	
5/08/19	15:05:00	CP-11	593255	920	13.3	3.3	0.10	1 49	<0.05	0.08		0.022	
5/08/19	14.20.00	CP-18	593256	80	<3	<3	0.05	0.31	<0.00	0.00		0.083	
5/08/19	14:00:00	CP-7	593254	10	9.0	3.0	0.01	0.61	<0.05			0.044	
5/10/19	12:25:00	AC-1	593547	220	142	10.8	0.01	0.42	<0.05			0.159	
5/15/19	8:32:00	CP-11.2	593680	340	12.0	5.0	< 0.01	0			0.020	0.100	
5/22/19	12:35:00	AC-1	593895	140	2.0	1.1	0.01	0.43	<0.05		0.020	0.014	
5/22/19	11:55:00	AC-2	593896	80	6.1	1.6	0.02	0.29	<0.05			0.018	
5/22/19	13:50:00	CC-3	593899	1700	1.6	1.2	0.01	3.06	<0.05	0.13		0.151	
5/22/19	13:30:00	CC-5	593900	250	1.8	<0.8	<0.01	1.90	<0.05	0.19		0.225	
5/22/19	11:05:00	CC-7	593901	7000	2.6	1.6	<0.01	1.44	0.07	<0.05		0.041	
5/22/19	14:05:00	CC-9	593902	5100	4.8	1.9	0.11	3.03	0.10	0.41		0.474	
5/22/19	14:25:00	CP-11	593893	80	42.2	15.0	0.02	0.78	0.06	<0.05		0.214	
5/22/19	13:10:00	CP-18	593894	10	<2	<2	0.09	0.26	<0.05			0.155	
5/22/19	12:50:00	CP-7	593892	70	4.9	1.6	0.02	0.45	<0.05			0.039	
5/29/19	9:59:00	CP-11.2	594494	20	19.0	5.6	0.09				0.016	0.106	
6/05/19	12:00:00	AC-1	595200	200	4.0	0.8	0.02	0.55	<0.05			0.021	
6/05/19	11:25:00	AC-2	595201	90	<3	<3	<0.01	0.38	<0.05			0.016	
6/05/19	14:15:00	CC-3	595204	19000	136	32.1	0.28	0.66	<0.05	0.09		0.407	
6/05/19	13:55:00	CC-5	595205	78000	3660	337	0.51	1.48	0.05	0.22		3.66	
6/05/19	10:35:00	CC-7	595206	1120	<4	<4	0.05	1.92	0.08	0.06		0.084	
6/05/19	14:25:00	CC-9	595207	37000	231	37.8	0.53	0.44	<0.05	0.08		0.566	
6/05/19	14:45:00	CP-11	595198	13300	143	17.2	0.21	1.16	<0.05	0.12		0.422	
6/05/19	13:30:00	CP-18	595199	1800	47.6	8.1	0.24	0.39	<0.05			0.294	

Appendix "A" to Report PW19008(f) Page 474 of 486 Page 23 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
6/05/19	13:15:00	CP-7	595197	110	10.0	3.3	0.04	0.56	<0.05			0.056	
6/12/19	7:57:00	CP-11.2	595444	390	20.9	5.9	0.15				0.039	0.126	
6/19/19	12:00:00	AC-1	595972	600	7.0	1.5	0.03	0.60	<0.05			0.026	
6/19/19	11:25:00	AC-2	595973	140	2.5	<0.8	0.01	0.42	<0.05			0.014	
6/19/19	15:00:00	CC-3	595976	640	8.0	3.0	0.01	2.15	<0.05	0.16		0.180	
6/19/19	14:40:00	CC-5	595977	1720	13.1	3.3	0.02	2.88	<0.05	0.38		0.447	
6/19/19	10:25:00	CC-7	595978	1260	22.3	3.0	0.10	1.95	0.09	0.10		0.151	
6/19/19	15:15:00	CC-9	595979	1100	4.8	1.8	0.03	2.70	0.07	0.43		0.457	
6/19/19	15:40:00	CP-11	595970	20	16.8	10.8	0.02	0.46	0.07	<0.05		0.216	
6/19/19	12:35:00	CP-18	595971	360	2.2	<0.8	0.15	0.44	<0.05			0.275	
6/19/19	12:15:00	CP-7	595969	180	4.0	1.6	0.04	0.62	<0.05			0.049	
6/26/19	9:02:00	CP-11.2	596487	2400	12.3	6.4	0.07				0.052	0.200	
7/03/19	12:15:00	AC-1	596939	5500	49.2	6.4	0.06	0.55	<0.05			0.095	
7/03/19	11:35:00	AC-2	596940	3500	70.8	8.4	0.05	0.42	<0.05			0.100	
7/03/19	14:20:00	CC-3	596943	60000	15.6	7.6	0.30	1.91	<0.05	0.29		0.370	
7/03/19	14:00:00	CC-5	596944	3700	8.4	2.8	0.03	2.04	<0.05	0.27		0.311	
7/03/19	10:40:00	CC-7	596945	12000	12.0	3.6	0.11	1.46	2.02	0.12		0.176	
7/03/19	15:20:00	CC-9	596946	4000	2.7	2.0	0.11	2.63	0.08	0.44		0.475	
7/03/19	15:00:00	CP-11	596937	1500	12.0	5.6	0.11	0.25	<0.05	<0.05		0.135	
7/03/19	13:35:00	CP-18	596938	50	3.6	2.0	0.20	0.43	<0.05			0.370	
7/03/19	12:30:00	CP-7	596936	1000	14.4	3.6	0.06	0.70	<0.05			0.075	
7/11/19	8:42:00	CP-11.2	597240	10	17.6	8.4	0.01				0.015	0.090	
7/17/19	12:00:00	AC-1	598422	6000	169	20.2	0.05	0.54	<0.05			0.236	
7/17/19	11:30:00	AC-2	598423	5100	156	14.4	0.02	0.45	<0.05			0.191	
7/17/19	13:55:00	CC-3	598426	32000	59.6	15.2	0.05	1.41	<0.05	0.21		0.319	
7/17/19	13:35:00	CC-5	598427	22000	79.6	13.3	0.02	1.45	<0.05	0.17		0.327	
7/17/19	10:20:00	CC-7	598428	90000	625	54.7	0.17	0.38	<0.05	0.11		0.850	
7/17/19	14:10:00	CC-9	598429	29000	8.2	1.8	0.04	1.32	<0.05	0.21		0.263	
7/17/19	14:30:00	CP-11	598420	1600	23.0	11.5	0.08	0.60	<0.05	<0.05		0.264	
7/17/19	12:35:00	CP-18	598421	2200	20.6	4.4	0.08	0.49	<0.05			0.213	
7/17/19	12:20:00	CP-7	598419	15000	41.9	7.1	0.06	0.62	<0.05			0.120	
7/26/19	8:41:00	CP-11.2	599073	100	29.8	11.0	<0.01				<0.010	0.141	
7/31/19	13:50:00	AC-1	599792	970	7.6	1.8	0.02	0.47	<0.05			0.052	

Appendix "A" to Report PW19008(f) Page 473 of 486 Page 24 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
7/31/19	11:50:00	AC-2	599793	500	11.0	2.0	0.01	0.35	<0.05			0.039	
7/31/19	14:50:00	CC-3	599796	36000	8.7	4.2	0.28	2.38	0.27	0.41		0.447	
7/31/19	14:30:00	CC-5	599797	3800	64.2	6.0	0.02	1.76	<0.05	0.19		0.306	
7/31/19	11:00:00	CC-7	599798	3400	5.3	1.6	0.07	2.24	1.67	0.18		0.205	
7/31/19	15:10:00	CC-9	599799	2000	2.4	<0.8	0.02	2.60	<0.05	0.46		0.493	
7/31/19	15:20:00	CP-11	599790	900	23.4	10.6	<0.01	<0.05	<0.05	<0.05		0.137	
7/31/19	13:36:00	CP-18	599791	50	<2	<2	0.12	0.25	<0.05			0.286	
7/31/19	14:05:00	CP-7	599789	580	9.5	1.9	0.03	0.52	<0.05			0.081	
8/07/19	9:38:00	CP-11.2	599994	480	13.2	8.4	0.02				0.013	0.156	
8/15/19	13:40:00	AC-1	600893	820	3.9	1.8	0.02	0.53	<0.05			0.022	
8/15/19	12:10:00	AC-2	600894	340	<2	<2	<0.01	0.41	<0.05			<0.010	
8/15/19	14:55:00	CC-3	600897	8800	14.1	5.1	0.18	2.22	<0.05	0.41		0.439	
8/15/19	14:40:00	CC-5	600898	1390	7.0	2.3	0.02	2.56	<0.05	0.40		0.428	
8/15/19	11:10:00	CC-7	600899	5700	13.3	1.9	0.02	1.78	<0.05	0.13		0.166	
8/15/19	15:15:00	CC-9	600900	2400	4.0	1.5	<0.01	2.69	<0.05	0.50		0.541	
8/15/19	15:30:00	CP-11	600891	200	27.7	17.1	0.01	0.06	<0.05	<0.05		0.210	
8/15/19	14:10:00	CP-18	600892	30	<2	<2	0.20	0.37	<0.05			0.434	
8/15/19	13:50:00	CP-7	600890	600	6.1	2.9	0.03	0.59	<0.05			0.054	
8/22/19	8:44:00	CP-11.2	602276	1000	27.3	10.4	0.18				0.020	0.186	
8/28/19	12:00:00	AC-1	602506	1500	8.1	2.1	0.02	0.52	<0.05			0.040	
8/28/19	11:15:00	AC-2	602507	1700	15.6	3.4	0.01	0.42	<0.05			0.036	
8/28/19	14:35:00	CC-3	602510	42000	6.3	3.5	0.15	2.02	<0.05	0.37		0.417	
8/28/19	14:15:00	CC-5	602511	1000	9.3	2.8	<0.01	1.94	<0.05	0.31		0.347	
8/28/19	10:15:00	CC-7	602512	2100	<3	<3	<0.01	1.06	<0.05	0.12		0.151	
8/28/19	14:55:00	CC-9	602513	1700	<3	<3	<0.01	2.64	<0.05	0.47		0.505	
8/28/19	15:10:00	CP-11	602504	8500	19.0	8.3	0.15	0.97	<0.05	0.14		0.284	
8/28/19	13:30:00	CP-18	602505	90	5.8	2.7	0.07	0.22	<0.05			0.230	
8/28/19	13:50:00	CP-7	602503	1600	9.5	2.4	0.04	0.54	<0.05			0.093	
9/04/19	8:56:00	CP-11.2	602674	20	34.7	11.0	0.08				0.021	0.189	
9/12/19	14:10:00	AC-1	603221	10000	580	58.9	0.06	0.52	<0.05			0.564	
9/13/19	12:00:00	AC-1	603550	1290	11.9	2.5	0.03	0.43	0.09			0.056	
9/13/19	11:30:00	AC-2	603551	1030	11.0	1.9	0.02	0.37	<0.05			0.032	
9/13/19	13:15:00	CC-3	603554	23000	8.2	4.0	0.06	2.24	<0.05	0.36		0.360	

Appendix "A" to Report PW19008(f) Page 476 of 486 Page 25 of 27

											Phospho		
					Total	Volatile					rus		
				E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
9/13/19	12:55:00	CC-5	603555	1800	7.8	2.0	0.01	1.75	<0.05	0.24		0.236	
9/13/19	10:30:00	CC-7	603556	2500	<2	<2	0.03	1.75	<0.05	0.14		0.144	
9/13/19	13:30:00	CC-9	603557	5800	2.2	1.5	0.02	2.90	0.09	0.46		0.464	
9/13/19	13:45:00	CP-11	603548	8000	30.8	6.8	0.44	1.12	<0.05	0.23		0.252	
9/13/19	12:30:00	CP-18	603549	10	<2	<2	0.08	0.27	<0.05			0.237	
9/13/19	12:15:00	CP-7	603547	1600	16.8	2.8	0.03	0.50	<0.05			0.072	
9/18/19	9:01:00	CP-11.2	603668	50	30.2	12.6	0.02				0.016	0.169	
9/26/19	11:55:00	AC-1	603943	730	4.3	2.3	0.02	0.46	<0.05			0.033	
9/26/19	11:15:00	AC-2	603944	400	<3	<3	0.02	0.31	<0.05			0.021	
9/26/19	13:25:00	CC-3	603947	11000	7.3	3.7	0.07	2.78	<0.05	0.42		0.469	
9/26/19	13:00:00	CC-5	603948	2100	16.7	4.8	0.02	3.45	<0.05	0.52		0.606	
9/26/19	10:30:00	CC-7	603949	43000	10.3	3.8	0.60	1.32	0.18	0.29		0.380	
9/26/19	13:40:00	CC-9	603950	10800	5.7	2.7	0.02	3.35	0.16	0.44		0.547	
9/26/19	14:00:00	CP-11	603941	440	20.0	5.4	0.78	1.84	0.06	0.20		0.357	
9/26/19	12:35:00	CP-18	603942	10	<2	<2	0.11	0.42	0.12			0.267	
9/26/19	12:05:00	CP-7	603940	800	13.0	2.6	0.03	0.51	<0.05			0.084	
10/09/19	11:35:00	AC-1	604536	310	3.3	1.2	0.04	0.52	<0.05			0.091	
10/09/19	10:55:00	AC-2	604537	110	<2	<2	0.01	0.41	<0.05			0.018	
10/09/19	12:45:00	CC-3	604540	35000	7.3	3.2	0.15	2.45	<0.05	0.46		0.479	
10/09/19	12:25:00	CC-5	604541	970	14.3	4.0	0.02	2.93	0.29	0.44		0.457	
10/09/19	10:10:00	CC-7	604542	3400	3.0	1.4	0.05	2.07	4.09	0.17		0.186	
10/09/19	13:00:00	CC-9	604543	1600	8.7	2.0	0.09	3.07	0.06	0.61		0.606	
10/09/19	13:15:00	CP-11	604534	780	17.4	3.6	0.59	2.02	0.07	0.21		0.363	
10/09/19	12:00:00	CP-18	604535	10	<2	<2	0.12	0.32	<0.05			0.387	
10/09/19	11:45:00	CP-7	604533	200	9.8	3.2	0.04	0.38	<0.05			0.068	
10/17/19	13:55:00	AC-1	604696	3400	217	20.2	0.01	0.52	0.05			0.264	
10/23/19	11:50:00	AC-1	605271	350	4.0	2.0	<0.01	0.37	<0.05			0.039	
10/23/19	11:15:00	AC-2	605272	320	4.2	2.5	<0.01	0.23	<0.05			0.029	
10/23/19	13:15:00	CC-3	605275	740	5.6	2.8	<0.01	2.07	<0.05	0.39		0.409	
10/23/19	12:40:00	CC-5	605276	930	7.4	1.6	0.02	1.75	<0.05	0.27		0.284	
10/23/19	10:35:00	CC-7	605277	4100	<3	<3	0.04	1.34	0.08	0.19		0.214	
10/23/19	13:35:00	CC-9	605278	3500	4.1	2.4	0.01	2.75	<0.05	0.52		0.523	
10/23/19	14:00:00	CP-11	605269	8200	28.3	5.4	0.39	1.32	<0.05	0.25		0.350	

Appendix "A" to Report PW19008(f) Page 477 of 486 Page 26 of 27

											Phospho		
					Total	Volatile					rus		
0	0	0		E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	o "
Sample	Sample	Sample	Decend #	CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d lotal	rus I otal	
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
10/23/19	12:10:00	CP-18	605270	40	<3	<3	0.06	0.29	<0.05			0.205	
10/23/19	12:00:00	CP-7	605268	370	7.4	3.9	0.07	0.36	<0.05			0.055	
11/01/19	13:05:00	AC-1	605844	870	203	19.5	0.06	0.46	<0.1			0.252	
11/06/19	11:35:00	AC-1	606258	40	3.7	1.6	0.02	0.63	<0.05			0.033	
11/06/19	10:55:00	AC-2	606259	100	4.0	1.4	0.01	0.43	<0.05			0.023	
11/06/19	13:30:00	CC-3	606262	560	3.4	2.1	<0.01	3.12	<0.05	0.38		0.414	
11/06/19	13:15:00	CC-5	606263	1700	3.6	1.9	<0.01	2.35	<0.05	0.24		0.260	
11/06/19	10:00:00	CC-7	606264	3500	<2	<2	0.10	2.00	0.06	0.12		0.154	
11/06/19	13:45:00	CC-9	606265	740	4.0	2.0	0.49	3.42	0.17	0.62		0.665	
11/06/19	14:00:00	CP-11	606256	690	8.5	2.0	0.46	2.73	0.09	0.32		0.389	
11/06/19	12:50:00	CP-18	606257	<10	<2	<2	0.10	0.52	<0.05			0.178	
11/06/19	11:50:00	CP-7	606255	50	5.2	1.2	0.03	0.62	<0.05			0.078	
11/20/19	12:10:00	AC-1	607626	160	5.1	1.3	<0.01	0.62	<0.05			0.024	
11/20/19	11:40:00	AC-2	607627	90	5.1	1.1	<0.01	0.43	<0.05			0.014	
11/20/19	13:25:00	CC-3	607630	4100	3.1	1.3	<0.01	2.88	<0.05	0.27		0.286	
11/20/19	13:05:00	CC-5	607631	920	9.1	1.8	<0.01	2.25	<0.05	0.19		0.220	
11/20/19	10:50:00	CC-7	607632	1700	<2	<2	0.14	1.68	0.05	0.10		0.113	
11/20/19	13:40:00	CC-9	607633	40000	13.1	3.3	0.10	2.71	0.15	0.35		0.387	
11/20/19	14:00:00	CP-11	607624	4700	6.4	2.0	0.16	2.39	0.05	0.25		0.275	
11/20/19	12:40:00	CP-18	607625	20	2.4	1.8	0.04	0.73	<0.05			0.106	
11/20/19	12:20:00	CP-7	607623	70	2.9	1.1	0.02	0.82	<0.05			0.034	
12/04/19	11:40:00	AC-1	608465	150	4.8	2.2	0.03	0.64	<0.05			0.021	
12/04/19	12:40:00	AC-2	608466	190	4.8	1.9	<0.01	0.48	<0.05			0.013	
12/04/19	12:45:00	AC-3	608467	60	5.3	2.3	<0.01	0.77	<0.05			0.028	
12/04/19	13:30:00	CC-3	608469	2600	48.2	7.9	0.01	3.01	<0.05	0.25		0.315	
12/04/19	13:15:00	CC-5	608470	3500	17.1	4.5	<0.01	2.35	<0.05	0.17		0.222	
12/04/19	11:05:00	CC-7	608471	5000	7.3	2.7	0.26	1.74	0.06	0.11		0.135	
12/04/19	13:50:00	CC-9	608472	27000	22.3	5.8	0.23	2.63	0.09	0.34		0.404	
12/04/19	14:05:00	CP-11	608463	4500	13.2	3	0.2	2.55	<0.05	0.2		0.261	
12/04/19	12:00:00	CP-18	608464	10	<3	<3	0.08	0.69	<0.05			0.115	
12/04/19	11:50:00	CP-7	608462	140	5.7	2.7	0.02	1.03	<0.05			0.035	
12/18/19	11:35:00	AC-1	609115	80	3.1	<0.8	0.02	0.72	<0.05			0.024	
12/18/19	11:05:00	AC-2	609116	30	6.8	0.9	0.01	0.56	<0.05			0.023	

Appendix "A" to Report PW19008(f) Page 478 of 486 Page 27 of 27

											Phospho		
					Total	Volatile					rus		
	_			E.coli	Suspended	Suspended	Ammonia +	Nitrate	Nitrite	0-	Dissolve	Phospho	
Sample	Sample	Sample		CFU/100	Solids	Solids	Ammonium	as N	as N	Phosphate	d Total	rus Total	Caffein
Date	Time	Location	Record #	mL	(mg/L)	(mg/L)	as N (mg/L)	(mg/L)	(mg/L)	as P (mg/L)	(mg/L)	(mg/L)	e (ug/L)
12/18/19	11:10:00	AC-3	609117	80	4.4	<0.8	<0.01	0.88	<0.05			0.028	
12/18/19	14:50:00	CC-3	609119	32700	5.1	2.4	0.04	3.26	<0.05	0.27		0.303	
12/18/19	14:35:00	CC-5	609120	620	8.2	1.1	<0.01	2.5	<0.05	0.18		0.205	
12/18/19	10:20:00	CC-7	609121	1040	1.8	0.9	0.18	1.88	<0.05	0.11		0.118	
12/18/19	15:05:00	CC-9	609122	10300	3.5	1.1	0.06	3.12	<0.05	0.38		0.431	
12/18/19	15:25:00	CP-11	609113	370	3.2	<0.8	0.4	2.58	<0.05	0.18		0.249	
12/18/19	14:00:00	CP-18	609114	<10	<2	<2	0.14	0.74	<0.05			0.187	
12/18/19	14:15:00	CP-7	609112	40	3.2	1.2	0.02	1.05	<0.05			0.037	
1/08/20	12:05:00	AC-1	610518	190	5.6	2.8	0.02	0.81	<0.05			0.023	
1/08/20	11:30:00	AC-2	610519	240	8.8	2.8	0.01	0.61	<0.05			0.026	
1/08/20	11:35:00	AC-3	610520	330	<3	<3	0.01	1.02	<0.05			0.025	
1/08/20	13:40:00	CC-3	610522	8800	4.8	2.8	0.05	3.05	<0.05	0.28		0.301	
1/08/20	13:25:00	CC-5	610523	790	24.2	2.8	<0.01	2.47	<0.05	0.2		0.261	
1/08/20	10:40:00	CC-7	610524	1700	3.6	3.2	0.13	1.71	<0.05	0.12		0.132	
1/08/20	13:50:00	CC-9	610525	110000	8.4	5.6	0.12	3.01	0.06	0.4		0.451	
1/08/20	14:05:00	CP-11	610516	730	6.4	3.2	0.3	2.49	<0.05	0.26		0.28	
1/08/20	13:05:00	CP-18	610517	10	<3	<3	0.13	0.84	<0.05			0.184	
1/08/20	12:15:00	CP-7	610515	70	<3	<3	0.01	1.26	<0.05			0.037	
1/22/20	12:20:00	AC-1	611019	200	18	3.2	0.03	0.98	<0.05			0.042	
1/22/20	11:45:00	AC-2	611020	20	29.6	5.6	0.03	0.77	<0.05			0.041	
1/22/20	11:50:00	AC-3	611021	100	13.2	3.6	0.01	1.24	<0.05			0.037	
1/22/20	13:25:00	CC-3	611023	1600	4.8	1.8	0.01	3.12	<0.05	0.29		0.296	
1/22/20	13:10:00	CC-5	611024	100	13.5	2.6	<0.01	2.34	<0.05	0.19		0.228	
1/22/20	11:00:00	CC-7	611025	9100	4.6	2	0.79	2.08	0.07	0.16		0.186	
1/22/20	13:40:00	CC-9	611026	7000	5.6	1.8	0.06	2.96	<0.05	0.42		0.425	
1/22/20	12:45:00	CP-18	611018	100	8	4	0.02	1.35	<0.05			0.044	

## Appendix "B" to Report PW19008(f) Page 479 of 486 Page 1 of 6

City of Ha	milton	Data
------------	--------	------

										Ammonia			
				Escherichi	Dissolved				Total	+			
				a coli	Oxygen-	Temperat	Phosphorus	Phosphor	Suspende	Ammoniu			
Sample	Sample			(CFU/100	Field	ure - Field	Dissolved	us Total	d Solids	m as N	Boron	Fluoride	Caffeine
Date	Time	Sample Location	Record #	mL)	(mg/L)	(C)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)
7/06/18	19:09	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	572398										70
7/06/18	19:15	STORM SEWER MH HE09B118 GLEN RD AT TOPE CRT	572399										<0.5
7/11/18	15:05	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	572786	2120000			1.62	2.82	81.5	15.2	0.144	0.56	190
7/11/18	14:35	S1 MAIN CHANNEL ABERDEEN WESTBOUND RAMP 403W	572784	90			0.249	0.306	15.1	0.02	0.082	0.50	<0.5
7/11/18	14:35	S1 SOUTH CHANNEL ABERDEEN WESTBOUND RAMP 403W	572785	690			0.135	0.163	14.2	0.01	0.066	0.54	<0.5
7/11/18	13:45	S3 EAST CHANNEL LONGWOOD AT FRID EAST SIDE 403	572780	250			0.231	0.244	<8	< 0.01	0.130	0.62	<0.5
7/11/18	13:50	S3 SOUTH CHANNEL LONGWOOD AT FRID EAST SIDE 403	572781	380			0.126	0.144	7.0	< 0.01	0.084	0.54	<0.5
7/11/18	14:20	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	572783	14800			0.237	0.278	10.2	0.13	0.123	0.59	1.2
7/11/18	14:20	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	572782	220			0.130	0.153	7.6	<0.01	0.182	0.59	<0.5
7/12/18	13:00:00	RSC0000 SAN1 CHEDOKE CREEK GLEN RD OUTFALL	572797										
7/12/18	13:00:00	RSC0000 SAN1 CHEDOKE CREEK GLEN RD OUTFALL - FLOATING DEBRIS	572798										
7/12/18	16:45	STORM SEWER MH HE12B031 STUDHOLME RD BEDDOE DR	572807	50			0.031	0.032	8.0	< 0.01	0.095	0.43	<0.5
7/13/18	13:00	STORM SEWER MH HE11B072 ABERDEEN AT STUDHOLME	572813	230000			0.265	0.375	65.1	0.17	0.092	0.56	12
7/13/18	12:40	STORM SEWER MH HE12B027 CHEDOKE GOLF COURSE AT STUDHOLME	572814	510			0.328	0.345	33.7	< 0.01	0.084	0.57	<0.5
7/17/18	14:35	CHEDOKE CREEK EAST BANK OUTFALL	573164	<10			0.014	0.375	49.3	47.4	4.60	0.74	<0.5
7/18/18	11:10	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	573211	74000			0.259	0.683	29.8	0.51	0.158	0.48	0.7
7/18/18	13:00	S1 MAIN CHANNEL ABERDEEN WESTBOUND RAMP 403W	573209	850			0.132	0.165	<8	0.03	0.072	0.47	<0.5
7/18/18	13:05	S1 SOUTH CHANNEL ABERDEEN WESTBOUND RAMP 403W	573210	340			0.229	0.345	82.6	0.02	0.093	0.45	<0.5
7/18/18	12:25	S3 EAST CHANNEL LONGWOOD AT FRID EAST SIDE 403	573205	670			0.209	0.225	5.4	< 0.01	0.140	0.50	<0.5
7/18/18	12:30	S3 SOUTH CHANNEL LONGWOOD AT FRID EAST SIDE 403	573206	870			0.129	0.156	7.5	< 0.01	0.125	0.47	<0.5
7/18/18	13:30	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	573208	8200			0.247	0.261	<8	0.12	0.114	0.49	1.1
7/18/18	13:35	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	573207	560			0.156	0.257	34.0	0.01	0.226	0.52	<0.5
7/18/18	11:00	STORM SEWER MH HE09B118 GLEN RD AT TOPE CR	573214	20			0.045	0.067	8.2	0.19	0.453	0.38	<0.5
7/18/18	12:00	STORM SEWER MH HE12B027 CHEDOKE GOLF COURSE AT STUDHOLME	573213	770			0.243	0.259	<8	< 0.01	0.079	0.51	<0.5
7/18/18	11:40	STORM SEWER MH HE12B031 STUDHOLME RD BEDDOE DR	573212	1080			0.030	0.038	13.4	< 0.01	0.107	0.35	<0.5
7/19/18	11:20	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	573825	13400			0.221	0.259	4.7	0.13	0.155	0.56	1.4
7/20/18	11:10	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574141	5900			0.934	16.1	8800	3.22	0.180	0.56	<0.5
7/21/18	10:10	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574142	4500			0.274	0.446	7.3	0.34	0.172	0.56	<0.5
7/22/18	09:45	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574143	57000			0.118	0.342	115	0.14	0.039	0.10	<0.5
7/23/18	10:45	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574144	6400			0.223	0.311	12.6	0.33	0.187	0.43	0.5
7/24/18	11:00	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574145	8000			0.191	0.207	<4	0.07	0.167	0.53	0.7
7/25/18	11:55	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574146	2900			0.181	0.202	<4	0.06	0.163	0.50	0.6
7/26/18	11:05	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574375	6500									
7/26/18	16:10	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574416	14100									
7/26/18	16:25	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574417	900									
7/26/18	16:35	CHEDOKE CREEK PRINCESS POINT BRIDGE	574418	560									
7/27/18	10:58	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574397	5600									
7/27/18	11:07	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574438	10800									
7/27/18	11:19	CHEDOKE CREEK PRINCESS POINT BRIDGE	574437	25000									
7/28/18	09:44	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574398	900									
7/29/18	08:45	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574399	600									
7/30/18	11:05	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574508	950									
7/30/18	11:15	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574505	360									
7/30/18	11:30	CHEDOKE CREEK PRINCESS POINT BRIDGE	574506	150									

### Appendix "B" to Report PW19008(f) Page 480 of 486 Page 2 of 6

										Ammonia			
				Escherichi	Dissolved				Total	+			
				a coli	Oxygen-	Temperat	Phosphorus	Phosphor	Suspende	Ammoniu			
Sample	Sample			(CFU/100	Field	ure - Field	Dissolved	us Total	d Solids	m as N	Boron	Fluoride	Caffeine
Date	Time	Sample Location	Record #	mL)	(mg/L)	(C)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)
7/31/18	11:10	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574548	930									
7/31/18	11:25	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574550	680									
7/31/18	11:35	CHEDOKE CREEK PRINCESS POINT BRIDGE	574549	160									
8/01/18	11:00	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574569	3100	9.96	19.4							
8/01/18	11:15	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574573	2200	9.51	22.7							
8/01/18	11:15	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574574		9.66	22.6							
8/01/18	11:35	CHEDOKE CREEK PRINCESS POINT BRIDGE	574571	1200	6.61	24.1							
8/01/18	11:35	CHEDOKE CREEK PRINCESS POINT BRIDGE	574572		5.60	24.0							
8/02/18	11:00	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574612	1570	11.03	19.9							
8/02/18	11:30	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574614	850	5.80	22.5							
8/02/18	11:35	CHEDOKE CREEK PRINCESS POINT BRIDGE	574613	13400	6.06	23.8							
8/03/18	11:10	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574652	560	10.9	19.3							
8/03/18	11:25	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574654	280	5.25	21.7							
8/03/18	11:40	CHEDOKE CREEK PRINCESS POINT BRIDGE	574653	80	3.62	23.6							
8/03/18		CHEDOKE CREEK PRINCESS POINT BRIDGE	574659		6.55	24.2							
8/04/18	07:35	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574660	1440	8.37	18.7							
8/04/18	07:50	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574662	400	3.78	22.6							
8/04/18	08:05	CHEDOKE CREEK PRINCESS POINT BRIDGE	574661	340	2.76	23.4							
8/05/18	10:45	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574663	1140	11.4	25.4							
8/05/18	11:00	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574665	150	5.18	23.9							
8/05/18	11:25	CHEDOKE CREEK PRINCESS POINT BRIDGE	574664	110	2.11	25.2							
8/06/18	10:20	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574666	880	10.53	21.4							
8/06/18	10:35	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574668	300	3.63	24.3							
8/06/18	10:50	CHEDOKE CREEK PRINCESS POINT BRIDGE	574667	70	2.58	26.4							
8/07/18	10:55	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574711	20000	9.46	21.7							
8/07/18	11:10	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574713	31000	7.08	21.1							
8/07/18	11:25	CHEDOKE CREEK PRINCESS POINT BRIDGE	574712	12600	7.18	21.3							
8/08/18	11:40	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574936	34000	9.03	21.3							
8/08/18	11:55	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574938	33000	7.82	21.6							
8/08/18	12:02	CHEDOKE CREEK PRINCESS POINT BRIDGE	574937	21600	6.83	21.7							
8/09/18	09:35	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574939	3000	10.51	20							
8/09/18	09:58	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574941	15300	4.85	21.5							
8/09/18	10:15	CHEDOKE CREEK PRINCESS POINT BRIDGE	574940	33000	3.04	23.8							
8/10/18	09:50	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574942	1380	9.39	19.7							
8/10/18	10:20	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574944	1000	2.67	23.6							
8/10/18	10:40	CHEDOKE CREEK PRINCESS POINT BRIDGE	574943	1540	0.82	24.2							
8/10/18	12:50	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575036	1940	8.78	19.1							
8/11/18	10:18	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574945	750	10.63	19.3							
8/11/18	10:40	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574947	290	3.30	21.3							
8/11/18	11:00	CHEDOKE CREEK PRINCESS POINT BRIDGE	574946	180	1.28	23.9							
8/11/18	09:54	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575042	930	9.12	17.6							
8/12/18	09:41	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574948	650	10.28	18.8							
8/12/18	10:00	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574950	160	3.23	23.0							
8/12/18	10:17	CHEDOKE CREEK PRINCESS POINT BRIDGE	574949	20	1.41	24.1							
8/12/18	09:22	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575043	920	9.05	18.2							

### Appendix "B" to Report PW19008(f) Page 491 of 486 Page 3 of 6

										Ammonia			
				Escherichi	Dissolved				Total	+			
				a coli	Oxygen-	Temperat	Phosphorus	Phosphor	Suspende	Ammoniu			
Sample	Sample			(CFU/100	Field	ure - Field	Dissolved	us Total	d Solids	m as N	Boron	Fluoride	Caffeine
Date	Time	Sample Location	Record #	mL)	(mg/L)	(C)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)
8/13/18	10:25	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574951	430	10.64	19.3							
8/13/18	10:45	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574953	120	3.82	24.9							
8/13/18	11:00	CHEDOKE CREEK PRINCESS POINT BRIDGE	574952	80	1.59	25.2							
8/13/18	10:00	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575044	1500	9.09	18.2							
8/14/18	11:25	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	574954	960	10.80	20.6							
8/14/18	11:45	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	574956	60	9.10	22.7							
8/14/18	12:15	CHEDOKE CREEK PRINCESS POINT BRIDGE	574955	400	2.43	24.9							
8/14/18	11:02	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575045	14300	8.87	18.7							
8/15/18	09:50	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575370	920	10.73	20.3							
8/15/18	10:05	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575372	270	6.39	23.0							
8/15/18	10:20	CHEDOKE CREEK PRINCESS POINT BRIDGE	575371	200	1.95	25.4							
8/15/18	09:33	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575373	4800	8.84	18.8							
8/16/18	11:20	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575374	1300	11.12	22.1							
8/16/18	11:37	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575376	100	6.06	25.5							
8/16/18	12:00	CHEDOKE CREEK PRINCESS POINT BRIDGE	575375	3600	3.47	26.3							
8/16/18	10:43	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575377	3500	8.86	19.2							
8/17/18	10:57	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575378	71000	9.91	21.2							
8/17/18	11:10	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575380	20000	3.20	23.0							
8/17/18	11:24	CHEDOKE CREEK PRINCESS POINT BRIDGE	575379	31000	0.43	23.5							
8/17/18	10:40	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575381	3900	8.74	19.6							
8/18/18	09:45	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575382	9000	9.67	20.5							
8/18/18	10:00	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575384	24000	6.27	20.9							
8/18/18	10:20	CHEDOKE CREEK PRINCESS POINT BRIDGE	575383	14000	6.82	21.4							
8/18/18	09:20	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575385	9500	8.79	19.2							
8/19/18	09:40	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575386	1300	10.56	19.3							
8/19/18	09:55	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575388	4000	4.57	20.9							
8/19/18	10:15	CHEDOKE CREEK PRINCESS POINT BRIDGE	575387	5800	2.55	22.3							
8/19/18	09:20	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575389	4800	9.00	18.4							
8/20/18	10:40	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575390	750	10.69	19.8							
8/20/18	11:13	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575392	460	3.31	23.4							
8/20/18	11:28	CHEDOKE CREEK PRINCESS POINT BRIDGE	575391	300	1.87	23.1							
8/20/18	10:22	STORM SEWER OUTFALL HE10OF03 HCA CC-3	575393	1000	9.06	18.6							
8/21/18	12:16	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575394	60000	8.89	20.8							
8/21/18	12:51	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575396	43000	8.28	21.4							
8/21/18	13:06	CHEDOKE CREEK PRINCESS POINT BRIDGE	575395	48000	8.04	21.4							
8/22/18	11:09	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575875	7100	9.81	19.6							
8/22/18	11:31	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575877	29000	7.84	19.9							
8/22/18	11:50	CHEDOKE CREEK PRINCESS POINT BRIDGE	575876	7600	4.84	21.6							
8/23/18	08:16	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575926	1600	9.71	16.8							
8/23/18	08:32	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575928	9700	6.35	17.7							
8/23/18	08:47	CHEDOKE CREEK PRINCESS POINT BRIDGE	575927	6600	4.41	19.8							
8/24/18	11:04	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	575963	860	10.58	20.2							
8/24/18	11:19	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	575965	1050	5.86	20.9							
8/24/18	11:37	CHEDOKE CREEK PRINCESS POINT BRIDGE	575964	970	2.46	22.3							
8/24/18	10:20	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	575967	4000	8.50	18.1							

### Appendix "B" to Report PW19008(f) Page 482 of 486 Page 4 of 6

								Ammonia					
				Escherichi	Dissolved				Total	+			
				a coli	Oxvgen-	Temperat	Phosphorus	Phosphor	Suspende	Ammoniu			
Sample	Sample			(CFU/100	Field	ure - Field	Dissolved	us Total	d Solids	m as N	Boron	Fluoride	Caffeine
Date	Time	Sample Location	Record #	mL)	(mg/L)	(C)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)
8/24/18	10:38	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	575966	490	12.93	20.9		, ,	<u>, , ,</u>	,	,		( 0, 7
8/29/18	14:07	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	576000	720	10.15	23.6							
8/29/18	13:50	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	576002	900	5.20	25.6							
8/29/18	14:26	CHEDOKE CREEK PRINCESS POINT BRIDGE	576001	450	8.87	27.5							
8/29/18	11:50	MCMASTER CSO OUTFALL HB110F01	576056	80									
8/29/18	12:22	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	576005	1800	8.05	21.3							
8/29/18	12:28	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	576004	500	12.31	23.6							
8/29/18	12:53	STORM SEWER OUTFALL HE10OF03 HCA CC-3	576003	101000	8.55	20.0							
9/06/18	12:30	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	576202	1400	10.34	21.1							
9/06/18	12:47	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	576204	1160	4.61	24.4							
9/06/18	13:00	CHEDOKE CREEK PRINCESS POINT BRIDGE	576203	1400	3.16	25.0							
9/06/18	11:30	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	576207	2300	8.02	20.2							
9/06/18	11:40	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	576206	1100	11.19	21.1							
9/06/18	12:10	STORM SEWER OUTFALL HE10OF03 HCA CC-3	576205	2400	8.97	19.6							
9/12/18	11:36	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	576665	3200	11.19	17.3							
9/12/18	12:09	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	576667	2400	6.48	17.4							
9/12/18	12:34	CHEDOKE CREEK PRINCESS POINT BRIDGE	576666	5100	4.2	17.7							
9/12/18	11:15	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	576670	1700	9.6	16.3							
9/12/18	10:41	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	576669	660	9.46	16.0							
9/12/18	10:41	STORM SEWER OUTFALL HE10OF03 HCA CC-3	576668	7400	12.05	16.9							
9/19/18	11:30	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	577325	1900	11.15	19.0							
9/19/18	11:57	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	577327	570	5.91	19.7							
9/19/18	12:28	CHEDOKE CREEK PRINCESS POINT BRIDGE	577326	100	6.97	22.8							
9/19/18	10:37	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	577330	5300	9.09	17.1							
9/19/18	10:37	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	577329	370	13.21	19.1							
9/19/18	11:04	STORM SEWER OUTFALL HE10OF03 HCA CC-3	577328	4700	9.48	17.3							
9/28/18	12:15	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	578034	590	11.12	17.4							
9/28/18	12:30	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	578036	2700	8.86	16.5							
9/28/18	12:50	CHEDOKE CREEK PRINCESS POINT BRIDGE	578035	3600	3.95	16.7							
9/28/18	11:40	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	578039	470	12.85	17.7							
9/28/18	11:25	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	578038	520	9.66	14.9							
9/28/18	11:55	STORM SEWER OUTFALL HE10OF03 HCA CC-3	578037	960	9.81	15.3							
10/03/18	12:25	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	579023	4200	10.70	15.2							
10/03/18	12:50	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	579025	3400	8.08	15.1							
10/03/18	13:09	CHEDOKE CREEK PRINCESS POINT BRIDGE	579024	7400	3.04	15.0							
10/03/18	11:40	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	579028	3900	11.08	15.2							
10/03/18	11:40	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	579027	2100	9.78	14.5							
10/03/18	12:06	STORM SEWER OUTFALL HE10OF03 HCA CC-3	579026	1100	10.02	14.6							
10/11/18	12:42	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	579185	880	11.87	18.7							
10/11/18	12:59	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	579187	810	7.06	19.7							
10/11/18	13:18	CHEDOKE CREEK PRINCESS POINT BRIDGE	579186	570	5.22	20.4							
10/11/18	11:44	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	579190	830	8.88	17.6							
10/11/18	11:44	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	579189	920	14.0	19.4							
10/11/18	11:56	STORM SEWER OUTFALL HE10OF03 HCA CC-3	579188	830	9.33	17.2							
10/17/18	10:55	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	579450	620	12.26	10.9							

### Appendix "B" to Report PW19008(f) Page 483 of 486 Page 5 of 6

										Ammonia			
				Escherichi	Dissolved				Total	+			
				a coli	Oxygen-	Temperat	Phosphorus	Phosphor	Suspende	Ammoniu			
Sample	Sample			(CFU/100	Field	ure - Field	Dissolved	us Total	d Solids	m as N	Boron	Fluoride	Caffeine
Date	Time	Sample Location	Record #	mL)	(mg/L)	(C)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)
10/17/18	11:10	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	579452	940	9.34	9.3							
10/17/18	11:25	CHEDOKE CREEK PRINCESS POINT BRIDGE	579451	1030	7.27	9.4							
10/17/18	10:05	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	579455	610	10.47	10.6							
10/17/18	10:10	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	579454	780	13.5	11.2							
10/17/18	10:30	STORM SEWER OUTFALL HE10OF03 HCA CC-3	579453	550	10.81	10.8							
10/24/18	12:57	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	579965	700	12.85	9.6							
10/24/18	13:20	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	579967	2300	11.52	8.3							
10/24/18	13:40	CHEDOKE CREEK PRINCESS POINT BRIDGE	579966	3600	10.82	8.8							
10/24/18	12:05	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	579970	840	11.25	8.9							
10/24/18	12:05	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	579969	350	14.14	9.5							
10/24/18	12:26	STORM SEWER OUTFALL HE10OF03 HCA CC-3	579968	370	11.41	9.2							
11/02/18	10:57	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	580168	29000	10.97	10.6							
11/02/18	11:19	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	580170	40000	10.4	10.6							1
11/02/18	11:40	CHEDOKE CREEK PRINCESS POINT BRIDGE	580169	75000	9.89	10.6							
11/02/18	10:16	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	580173	4100	10.24	9.9							
11/02/18	10:05	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	580172	41000	1084	11.0							
11/07/18	11:40	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	580693	2000	11.62	10.2							
11/07/18	12:05	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	580695	970	10.37	9.8							
11/07/18	12:25	CHEDOKE CREEK PRINCESS POINT BRIDGE	580694	5400	9.10	9.8							
11/07/18	11:00	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	580697	1400	10.51	9.5							
11/07/18	11:05	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	580696	850	11.86	10.3							
11/14/18	12:05	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	581448	560	13.86	6.6							
11/14/18	12:45	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	581450	810	11.90	5.7							
11/14/18	13:05	CHEDOKE CREEK PRINCESS POINT BRIDGE	581449	770	11.13	5.1							
11/14/18	11:25	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	581452	820	12.29	4.5							
11/14/18	11:35	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	581451	730	13.75	5.9							
11/21/18	12:35	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	581886	1400	13.65	6.2							
11/21/18	12:55	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	581888	810	12.77	5.4							
11/21/18	13:05	CHEDOKE CREEK PRINCESS POINT BRIDGE	581887	2000	11.51	4.1							
11/21/18	11:55	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	581890	5600	12.33	4.3							
11/21/18	12:00	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	581889	2600	13.65	5.7							
11/28/18	11:20	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	582611	8000	12.12	7.1							
11/28/18	11:35	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	582613	5300	11.45	5.9							
11/28/18	11:55	CHEDOKE CREEK PRINCESS POINT BRIDGE	582612	8300	10.93	4.9							
11/28/18	10:55	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	582615	1080	11.72	6.1							
11/28/18	11:05	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	582614	7600	12.42	7.2							
12/05/18	12:45	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	583427	15300	13.13	5.1							
12/05/18	13:10	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	583429	18800	12.3	4.6							
12/05/18	13:20	CHEDOKE CREEK PRINCESS POINT BRIDGE	583428	10500	11.29	4.1							
12/05/18	12:20	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	583431	1260	12.31	5.1							
12/05/18	12:20	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	583430	17700	14.3	5.8							
12/12/18	11:20	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	583586	5000	12.41	4.9							
12/12/18	11:35	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	583588	4600	11.84	3.8							
12/12/18	11:50	CHEDOKE CREEK PRINCESS POINT BRIDGE	583587	3200	10.88	3.7							
12/12/18	10:50	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	583590	720	12.8	4.2							

### Appendix "B" to Report PW19008(f) Page 484 of 486 Page 6 of 6

				Escherichi	Dissolved				Total	Ammonia +			
				a coli	Oxygen-	Temperat	Phosphorus	Phosphor	Suspende	Ammoniu			
Sample	Sample			(CFU/100	Field	ure - Field	Dissolved	us Total	d Solids	m as N	Boron	Fluoride	Caffeine
Date	Time	Sample Location	Record #	mL)	(mg/L)	(C)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)
12/12/18	10:50	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	583589	5500	15.16	5.5							
12/19/18	12:10	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	583731	760	13.15	5.3							
12/19/18	12:40	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	583733	180	12.07	3.9							
12/19/18	13:05	CHEDOKE CREEK PRINCESS POINT BRIDGE	583732	130	12.65	3.9							
12/19/18	11:45	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	583735	730	12.79	4.2							
12/19/18	11:45	S4 SOUTH CHANNEL KING ST ON RAMP 403 BRANT W	583734	620	15.12	5.4							1
8/29/19	11:45	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	602529	1600	10.27	17.1							
8/29/19	12:05	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	602531	1300	6.30	21.0							1
8/29/19	12:20	CHEDOKE CREEK PRINCESS POINT BRIDGE	602530	680	7.98	22.5							1
8/29/19	10:40	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	602533	47000	8.28	16.8							
8/29/19	10:50	STORM SEWER OUTFALL HE10OF03 HCA CC-3	602532	60000	8.56	16.5							1
11/06/19	12:00	CHEDOKE CREEK GLEN RD OUTFALL HE09OF01	606268	1600	11.93	8.6							1
11/06/19	12:30	CHEDOKE CREEK KAY DRAGE PARK BRIDGE	606267	1300	9.69	8.2							
11/06/19	12:45	CHEDOKE CREEK PRINCESS POINT BRIDGE	606266	4200	7.94	9.6							
11/06/19	11:00	S4 EAST CHANNEL KING ST ON RAMP 403 BRANT W	606270	2600	11.30	8.2							1
11/06/19	11:30	STORM SEWER OUTFALL HE10OF03 HCA CC-3	606269	870	11.22	9.1							

Appendix "C" to Report PW19008(f) Page 1 of 2

# **Hamilton Conservation Authority**



Source: Figure provided by the City of Hamilton

Page 486 of 486

Appendix "C" to Report PW19008(f) Page 2 of 2

**Royal Botantical Gardens** 

