Appendix "C" to Report BOH19039 Page 1 of 40

Hamilton Airshed Modelling System: Sub-Regional Analysis

Anthony Ciccone Ph.D., P. Eng. And Janya Kelly Ph.D. 26 November, 2018

CITY OF HAMILTON

Appendix "C" to Report BOH19039 Page 2 of 40

Acknowledgements

Golder would gratefully like to acknowledge the following contributors to the project:

- Jim Wilkinson, Ph.D.
- Barron Henderson, Ph.D.
- Environment and Climate Change Canada
- Stakeholder Advisory Committee
 - HIEA
 - Public Health
 - Community Stakeholders

Appendix "C" to Report BOH19039 Page 3 of 40

Project Objectives

Challenges: The Hamilton Airshed Puzzle

- Who? What? Where? and How much contributes to air quality?
- Are levels different in different parts of the City?
- How much is local?
- What is the influence of the USA or outside geographies on Hamilton?

Solution: Hamilton Airshed Modelling System (HAMS)

- Built on understanding of the current state of the science
- Relies on local data as well as transboundary (e.g. land use, roadways, trains, industry, agriculture)
- Handles complex meteorology (e.g. lake effects and escarpment)
- Considers atmospheric chemistry important part of the puzzle
- Needs a Big computer

Hamilton Airshed Modelling System

Page 4 of 40

Compounds of Interest

Appendix "C" to Report BOH19039 Page 5 of 40

Studied Compounds*		Presented Compounds*	
Acrolein	Ozone	PM _{2.5}	
Ammonia	Volatile Organic Carbons	PM ₁₀	
Benzene	Benzo(a)pyrene	Nitrogen Oxides	
Butadiene 1,3	Cadmium	Sulphur Dioxide	
Carbon Monoxide	Chromium (III)	Ozone	
Formaldehyde	Chromium (VI)	Benzene	
Nitrogen Oxides (NO ₂ and NO)	Lead	Benzo(a)pyrene	
Sulphur Dioxide	Manganese	* Selected by the Stakeholder Advisory Committee	
PM ₁₀	Mercury		
PM _{2.5}	Nickel		

*Please note additional species, including precursors, are available but were not studied

Grid Density: All Tiers

Selected Urban Regions

Appendix "C" to Report BOH19039 Page 7 of 40

Regions	Influence
IC = industrial core	Industry, port, rail, roads
WL = west lower	Road, non-road
EL = east lower	Industry, road, non-road
WU = west upper	Road
EU = east upper	Road

Figure 1 in Radisic,S., Newbold, K. B., Eyles, J. and Williams, A. (2016). Factors influencing health behaviours in response to the air quality health index: a cross-sectional study in Hamilton, Canada. *Environmental Health Review, Volume 59(1), 17-29.* DOI: 10.5864/d2016-002

Appendix "C" to Report BOH19039 Page 8 of 40

Model Verification

Source: https://en.wikipedia.org/wiki/File:HamiltonOntarioSkylineC.JPG, licensed under https://creativecommons.org/licenses/by-sa/3.0/

Model Verification

MODEL PERFORMANCE EVALUATION SUMMARY

- The results meet published benchmarks which provides confidence in the results of the modelling simulations.
 - Meteorology benchmarks met for temperature, mixing ratio, wind speed and wind direction
 - Particulate matter met performance criteria
 - PM₁₀ is under-predicted likely due to unaccounted for fugitive dust source
 - All compounds are predicted within a factor of 2
 - Performing within expectations of the modelling community
 - Transboundary NO₂ emissions are overstated leading to model over-prediction
 - Metrics for benzene and B(a)P could be impacted by lack of observations (compared to other species)
- Hamilton Airshed Modelling System provides conservative and reliable results with a strong degree of confidence

Appendix "C" to Report BOH19039 Page 10 of 40

Emissions Inventory Results

Source: https://en.wikipedia.org/wiki/File:HamiltonOntarioSkylineC.JPG, licensed under https://creativecommons.org/licenses/by-sa/3.0/

Appendix "C" to Report BOH19039 Page 11 of 40

Emissions Inventory Sources

GRIDDED, HOURLY EMISSION ESTIMATES BY TIER

Emission		Definition	Source		
Classification	туре	Dennition	Tier I	Tiers II – IV	
Industrial	Point (all tiers)	Elevated stacks from industrial activities	-	2012 NPRI, 2011 US NEI	
	Area	Industrial activities		2012 NPRI, 2011 US NEI	
Commercial Po	Point (Tier I, US Only)	Natural gas usage, auto-body shops, dry		2012, ChemTRAC (scaled by population), 2012 Stats	
	Area	cleaners, commercial solvents	2006 Canadian National Emissions Inventory (NEI) 2011 US NEI	Can population data, 2011 US NEI	
Residential	Area	Natural gas usage, other residential heating sources		2012 natural gas consumption, 2012 Stats Canada energy use, 2011 US NEI	
On-Road	Area	On-road vehicles (trucks, cars, motorcycles)		2012 MOVES, 2012 MTO traffic data, 2011 US NEI	
Non-Road	Point (Tier I, US Only)	Airport maring, rail and lowe mowers		2006 Canadian NEI, 2012	
	Area	Airport, manne, rair and iawit mowers,		NRCAN data, 2011 US NEI	
Biogenic / Agricultural	Area	E.g., natural, farmland	2012 MEGAN, 2006 Canadian NEI, 2011 US NEI	2012 MEGAN, 2012 NONROAD	

Total Hamilton Emissions Profile – All Tiers

Appendix "C" to Report BOH19039 Page 12 of 40

Total Hamilton Emissions Profile – Tier IV

Appendix "C" to Report BOH19039 Page 13 of 40

Appendix "C" to Report BOH19039 Page 14 of 40

HAMILTON EMISSIONS (%)

TRANSBOUNDARY EMISSIONS (%)

Tier IV: NO_x Emissions

All Emissions: NOx

Appendix "C" to Report BOH19039 Page 16 of 40

Air Quality Modelling Results: Aerial and Source Apportionment Update

Source: https://en.wikipedia.org/wiki/File:HamiltonOntarioSkylineC.JPG, licensed under https://creativecommons.org/licenses/by-sa/3.0/

Air Quality Modelling Results: PM_{2.5}

Appendix "C" to Report BOH19039

WL

Page 17 of 40

EL

Air Quality Modelling Results: PM₁₀

Appendix "C" to Report BOH19039 Page 18 of 40

Air Quality Modelling Results: O₃

Appendix "C" to Report BOH19039 Page 19 of 40

ら GOLDER

Air Quality Modelling Results: NO₂

Appendix "C" to Report BOH19039 Page 20 of 40

İC

17 -16 -15 -14 -13 -12 -11 -10 -9 8 б

Air Quality Modelling Results: SO₂

Appendix "C" to Report BOH19039 Page 21 of 40

Air Quality Modelling Results: Benzene

Appendix "C" to Report BOH19039 Page 22 of 40

'IC WL EL Annual Average Concentration: Benzene WU 4.0 EU 3.5 Annually Averaged Source Contribution: Benzene 3.0 □ Industrial □ On-Road □ Non-Road □ Transboundary □ Other 2.50 2.5 2.00 сш/бл 2.0 г Source Contribution (ppbV) 1.50 1.5 -1.00 1.0 0.5 -0.50 0.0 0.00 21 13 17 25 29 33 37 41 45 9 IC WL EL WU EU Domain

38

37

36

34

33

33

33

33

33

30

20

24

25

26

27

28

20

21

22

21

22

21

22

21

22

21

22

21

18

18

18

18

114

114

101

9

8

7
<td

6

Air Quality Modelling Results: B(a)P

Appendix "C" to Report BOH19039 Page 23 of 40

Appendix "C" to Report BOH19039 Page 24 of 40

Conclusions

WHAT HAVE WE LEARNED FROM THE HAMILTON AIRSHED MODELLING SYSTEM?

- Source contribution varies according to geographic location (i.e. domain average different from industrial core)
- The industrial core (IC) and western lower (WL) regions consistently experience the highest concentration of pollutants, much higher than the domain average
- Compared to the domain average, transportation related activities are more significant
- Strong transboundary contribution to $PM_{2.5}$ and PM_{10} remains
- On-road NO₂ sources have a higher contribution than other sources but controlling NO₂ locally will impact the ozone concentrations
- Rail emissions dominant contributor to SO₂ levels in WL region
- Outside of IC, industrial contribution to air quality shows a significant drop for benzene and B(a)P

Appendix "C" to Report BOH19039 Page 25 of 40

Thank you. Anthony_Ciccone@Golder.com Janya_Kelly@Golder.com

Appendix "C" to Report BOH19039 Page 26 of 40

Additional Information:

Source: https://en.wikipedia.org/wiki/File:HamiltonOntarioSkylineC.JPG, licensed under https://creativecommons.org/licenses/by-sa/3.0/

Air Quality Modelling Results: PM_{2.5}

Appendix "C" to Report BOH19039 Page 27 of 40

Air Quality Modelling Results: PM₁₀

Appendix "C" to Report BOH19039 Page 28 of 40

Domain

GOLDER

Air Quality Modelling Results: NO₂

Appendix "C" to Report BOH19039 Page 29 of 40

Air Quality Modelling Results: SO₂

Appendix "C" to Report BOH19039 Page 30 of 40

Air Quality Modelling Results: Benzene

Appendix "C" to Report BOH19039 Page 31 of 40

EU

Domain

GOLDER

Air Quality Modelling Results: B(a)P

Appendix "C" to Report BOH19039 Page 32 of 40

Air Quality Modelling Results: PM_{2.5}

Appendix "C" to Report BOH19039 Page 33 of 40

Maximum Daily Average: PM2.5 Annual Average Concentration: PM2.5 24.0] 60.0 34 32 31 30 29 28 27 26 25 33 32 55.0 -21.5 30 50.0 19.0 28 27 26 25 24 23 22 21 45.0 -16.5 23 22 21 20 ©ู่w/bri 40.0 -©ม/ มี่14.0 18 17 18 17 16 -15 -14 -13 -12 -11 15 14 13 12 11 35.0 -11.5 30.0 9.0 б 6.5 25.0 20.0 4.0

Air Quality Modelling Results: PM₁₀

Appendix "C" to Report BOH19039 Page 34 of 40

8 б 5

GOLDER

Air Quality Modelling Results: O₃

Appendix "C" to Report BOH19039 Page 35 of 40

Air Quality Modelling Results: NO₂

Appendix "C" to Report BOH19039 Page 36 of 40

ら GOLDER

Air Quality Modelling Results: SO₂

Appendix "C" to Report BOH19039 Page 37 of 40

Air Quality Modelling Results: Benzene

Appendix "C" to Report BOH19039 Page 38 of 40

GOLDER

Air Quality Modelling Results: B(a)P

Appendix "C" to Report BOH19039 Page 39 of 40

ら GOLDER

Results Across Domain: Tier IV

Appendix "C" to Report BOH19039

Page	40	of	40
------	----	----	----

Compounds	Symbol	Units	Annual Average	Maximum Daily
Acrolein	C ₃ H ₄ O	ppb	0.0069	0.64
Ammonia	NH ₃	ppb	0.12	2.60
Benzene	C_6H_6	µg/m³	1.00	18.00
1,3 Butadiene	C_4H_6	ppb	0.0088	0.57
Carbon Monoxide	CO	ppb	220	1100
Formaldehyde	CH ₂ O	ppb	1.40	16
Nitrogen Dioxide	NO ₂	ppb	12	110
Particulate Matter less than 10 µm in diameter	PM ₁₀	µg/m³	10	100
Particulate Matter less than 2.5 µm in diameter	PM _{2.5}	µg/m³	8.80	91
Sulphur Dioxide	SO ₂	ppb	2.40	200
Volatile Organic Carbons (Anthropogenic/Biogenic)	VOCs	ppbC	130	1500
Ozone	O ₃	ppb	27	100
Benzo (a) pyrene	B(a)P	ng/m3	0.27	17
Lead	Pb	µg/m³	0.0024	0.10
Cadmium	Cd	µg/m³	0.0031	0.10
Chromium (III)	Cr(III)	µg/m³	0.00015	0.016
Chromium (VI)	Cr(VI)	µg/m³	0.000039	0.0082
Nickel	Ni	µg/m³	0.00028	0.012
Mercury	Hg	ppb	0.00026	0.0063
Manganese	Mn	µg/m³	0.00093	0.080

