

COMMITTEE OF ADJUSTMENT

City Hall, 5th floor, 71 Main Street West, Hamilton, ON L8P 4Y5 Telephone (905) 546-2424, ext. 4221, 3935 Fax (905) 546-4202 E-mail: <u>cofa@hamilton.ca</u>

NOTICE OF PUBLIC HEARING

Application for Consent/Land Severance

APPLICATION NUMBER: HM/B-20:46

SUBJECT PROPERTY: 13 Herbert Pl., Flamborough

You are receiving this notice because you are either:

- Assessed owner of a property located within 60 metres of the subject property
- Applicant/agent on file, or
- Person likely to be interested in this application

APPLICANT(S):

PURPOSE OF APPLICATION:

Agent AJ Lakatos Planning Consultant Owner Dragana A. Suykens & Steve Suykens To sever the existing residential lot into two parcels, the severed lands will be a residential building lot and the retained lands will contain the existing dwelling and accessory structures.

Severed lands: $45.00 \text{m}^{\pm} \text{ x } 92.7 \text{m}^{\pm}$ and an area of $4176.4 \text{m}^{2\pm}$

Retained lands:

 $40.39 m^{\pm}\,x\,92.7 m^{\pm}$ and an area of $4425.4 m^{2\,\pm}$

This application will be heard by the Committee as shown below:

DATE:	Thursday, September October 1 st , 2020
TIME:	1:15 p.m.
PLACE:	Via video link or call in (see attached sheet for
details)	
To be strear	ned at www.hamilton.ca/committeeofadjustment
for viewing	purposes only

PUBLIC INPUT

Written: If you would like to submit written comments to the Committee of Adjustment you may do so via email or hardcopy. Please see attached page for complete instructions, including deadlines for submitting to be seen by the Committee.

Orally: If you would like to speak to this item at the hearing you may do so via video link or by calling in. Please see attached page for complete instructions, including deadlines for registering to participate.

MORE INFORMATION

For more information on this matter, including access to drawings illustrating this request:

FL/B-20:46 Page 2

- Visit <u>www.hamilton.ca/committeeofadjustment</u>
 Call 905-546-CITY (2489) or 905-546-2424 extension 4221, 4130, or 4144
- Email Committee of Adjustment staff at <u>cofa@hamilton.ca</u>

DATED: September 14th, 2020.

Jamila Sheffield, Secretary-Treasurer Committee of Adjustment

Information respecting this application is being collected under the authority of the Planning Act, R.S.O., 1990, c. P. 13. All comments and opinions submitted to the City of Hamilton on this matter, including the name, address, and contact information of persons submitting comments and/or opinions, will become part of the public record and will be made available to the Applicant and the general public.

PLAN LOI PLA IN THE CIII SCALE 0 L.C. W 2017	I OF SURVE I 1 AN 62M TY OF 1:300 6 VOODS SURVE	(** OF (************************************	18 metro P.I.N
HERBERT PLACE	BY PLAN 62M-883 P.I.N. 17489 - 0309 (LT)	N 12° 36' 00" W 88.327 1 (P1,P2 & MEAS)	18.18 15.13 15.56
I CERTIF 1. THIS ACCORD ACT, TH 2. THE DATE	Y THAT: SURVEY AND ANCE WITH TH E LAND TITLE SURVEY WAS	PLAN ARE O HE SURVEYS S ACT AND COMPLETED	PART N 57° 7.071 (I CORRECT AND ACT, THE SU THE REGULATION

2R— ND DEPOSITED)	
••••••	•••	
TIVE FOR TRAR FOR THE	LAND	52)
<u>.</u>		
- P.I.N.	AREA	
ALL OF 7489–0286 (LT)	4426.40 s 1.09 acres 4116.58 s 1.01 acres	sq. m. s q. m.
RIGHT OF WA	Y	
Τ 4		
YING ING	2.	

FILE: 17-1039 REF

PLAN LOI PLA IN THE CIII SCALE 0 L.C. W 2017	I OF SURVE I 1 AN 62M TY OF 1:300 6 VOODS SURVE	(** OF (************************************	18 metro P.I.N
HERBERT PLACE	BY PLAN 62M-883 P.I.N. 17489 - 0309 (LT)	N 12° 36' 00" W 88.327 1 (P1,P2 & MEAS)	18.18 15.13 15.56
I CERTIF 1. THIS ACCORD ACT, TH 2. THE DATE	Y THAT: SURVEY AND ANCE WITH TH E LAND TITLE SURVEY WAS	PLAN ARE O HE SURVEYS S ACT AND COMPLETED	PART N 57° 7.071 (I CORRECT AND ACT, THE SU THE REGULATION

2R— ND DEPOSITED)	
••••••	•••	
TIVE FOR TRAR FOR THE	LAND	52)
<u>.</u>		
- P.I.N.	AREA	
ALL OF 7489–0286 (LT)	4426.40 s 1.09 acres 4116.58 s 1.01 acres	sq. m. s q. m.
RIGHT OF WA	Y	
Τ 4		
YING ING) .	

FILE: 17-1039 REF

Committee of Adjustment City Hall 5th floor, 71 Main Street West Hamilton, Ontario L8P 4Y5

Planning and Economic Development Department Planning Division

Phone (905) 546-2424, ext. 4221 Fax (905) 546-4202

APPLICATION FOR CONSENT TO SEVER LAND UNDER SECTION 53 OF THE PLANNING ACT

Office Use Only

	Date Application Received:	Date Application Deemed Complete:	Submission No.:	File No.:
l				

APPLICANT INFORMATION 1

1.1, 1.2	NAME	ADDRESS	PHONE/FAX	1
Registered Owners(s)	Dragana Anna Jocic Suykens			
Applicant(s)*	Same as above.			
Agent or Solicitor	AJ Lakatos Planning Consultant c/o Joe Lakatos			

* Owner's authorisation required if the applicant is not the owner.

1.3 All correspondence should be sent to

Owner Applicant Agent/Solicitor

2 LOCATION OF SUBJECT LAND Complete the applicable lines

2.1 Area Municipality	Lot	Concession	Former Township
City of Hamilton			Flamborough (Greensville)
Registered Plan N°.	Lot(s)	Reference Plan N°.	Part(s)
62M-883	1		
Municipal Address			Assessment Roll N°.
13 Herbert Place			

2.2 Are there any easements or restrictive covenants affecting the subject land? Yes 🔽 No

If YES, describe the easement or covenant and its effect:

PURPOSE OF THE APPLICATION 3

3.1 Type and purpose of proposed transaction: (check appropriate box)

a) Urban Area Transfer (do not complete Section 10);

creation of a new lot addition to a lot

addition to a lot
an easement

Other: 🗌	a charge
	a lease

a correction of title

1

b) Rural Area / Rural Settlement Area Transfer (Section 10 must be completed):

Creation of a new lot	Other
creation of a new non-farm parcel	
(i.e. a lot containing a surplus farm dwelling	
resulting from a farm consolidation)	
addition to a lot	

a	charge
🗌 a	lease
🗌 a	correction of title
🗌 ai	n easement

3.2 Name of person(s), if known, to whom land or interest in land is to be transferred, leased or charged:

Daryl and Gayle Lewis of 40 Marshboro Ave, City of Hamilton (Dundas)

3.3 If a lot addition, identify the lands to which the parcel will be added:

4 DESCRIPTION OF SUBJECT LAND AND SERVICING INFORMATION 4.1 Description of land intended to be Severed: Frontage (m) Depth (m) Area (m² or ha) 0.85ha (2.1ac) 84.74m 92.7m Existing Use of Property to be severed: Residential Industrial Commercial Agriculture (includes a farm dwelling) Agricultural-Related Vacant Other (specify) Proposed Use of Property to be severed: Residential Industrial Commercial Agriculture (includes a farm dwelling) Agricultural-Related Vacant Other (specify) Building(s) or Structure(s): Existing: Lands to be severed are vacant. Proposed: Single detached dwelling Type of access: (check appropriate box) provincial highway right of way municipal road, seasonally maintained other public road municipal road, maintained all year Type of water supply proposed: (check appropriate box) publicly owned and operated piped water system lake or other water body rivately owned and operated individual well other means (specify) Type of sewage disposal proposed: (check appropriate box) ____,publicly owned and operated sanitary sewage system 1 privately owned and operated individual septic system other means (specify) 4.2 Description of land intended to be Retained: Frontage (m) Depth (m) Area (m² or ha) 92.7m 40.39m 4425.4 sq.m Existing Use of Property to be retained: Residential Industrial Commercial Agriculture (includes a farm dwelling) Agricultural-Related Vacant Other (specify)

Proposed Use of Property to be retained: Residential Agriculture (includes a farm dwelling) Other (specify)	l ral-Related	Commercial	_	
Building(s) or Structure(s): Existing: <u>Refer to Plan of Survey</u> Proposed: No new buildings are proposed or	n retained	l lot.	-	
Type of access: (check appropriate box) ☐ provincial highway ☐ municipal road, seasonally maintained ✔ municipal road, maintained all year	☐ right of w ☐ other pub	ay lic road		
Type of water supply proposed: (check appropriate box) publicly owned and operated piped water system privately owned and operated individual well	lake or ot	her water body ans (specify)		
Type of sewage disposal proposed: (check appropriate box) ☐ publicly owned and operated sanitary sewage system ✔ privately owned and operated individual septic system ☐ other means (specify)				
 4.3 Other Services: (check if the service is available) ✓ electricity ✓ telephone ✓ school bussing 	🖌 gai	bage collection		
 5 CURRENT LAND USE 5.1 What is the existing official plan designation of the subje Rural Hamilton Official Plan designation (if applicable): Urban Hamilton Official Plan designation (if applicable)_ Please provide an explanation of how the application co Official Plan 	Creensvil Settlemen nforms with a	le Rural Sett t Residential City of Hamilton	_ lement Area _	Plan
Refer to Planning Justification Brie	ef			
5.2 What is the existing zoning of the subject land? Sett. If the subject land is covered by a Minister's zoning order Number? <u>Not Applicable</u> .	lement Res r, what is the (idential (S1) Ontario Regulation	Zone	
			-	
5.3 Are any of the following uses or features on the subject I subject land, unless otherwise specified. Please check t apply.	and or within the appropriate	500 metres of the e boxes, if any	-	
 5.3 Are any of the following uses or features on the subject I subject land, unless otherwise specified. Please check t apply. Use or Feature 	and or within the appropriate On the Subject Land	500 metres of the e boxes, if any Vithin 500 Metres of Subject Land, unless otherwise pecified (indicate approximate distance)		

.

A la	nd fill			
Ase	ewage treatment plant or waste stabilization plant			
A pr	ovincially significant wetland			
A pr	ovincially significant wetland within 120 metres			
A flo	ood plain			
An i	ndustrial or commercial use, and specify the use(s)			
An a	active railway line			
Am	unicipal or federal airport			
6	PREVIOUS USE OF PROPERTY ✓ Residential ☐ Industrial ☐ Agriculture ☐ Vacant	nmercial er (specify	<i>y</i>)	
6.1	If Industrial or Commercial, specify use			
6.2	Has the grading of the subject land been changed by a has filling occurred?	idding earl	th or other material, i.	
6.3	Has a gas station been located on the subject land or a	adjacent la	ands at any time?	
6.4	Has there been petroleum or other fuel stored on the s ☐ Yes ✔ No □ Unknown	ubject land	d or adjacent lands?	
6.5	3.5 Are there or have there ever been underground storage tanks or buried waste on the subject land or adjacent lands? ☐ Yes ✓ No ☐ Unknown			
6.6	Have the lands or adjacent lands ever been used as an cyanide products may have been used as pesticides at lands?	n agricultur nd/or bioso	ral operation where olids was applied to th	
6.7	Have the lands or adjacent lands ever been used as a ☐ Yes	weapons f	firing range?	
6.8	Is the nearest boundary line of the application within 50 area of an operational/non-operational landfill or dump ☐ Yes	0 metres ?	(1,640 feet) of the fill	
6.9	If there are existing or previously existing buildings, are remaining on site which are potentially hazardous to pu PCB's)?	there any Iblic health	/ building materials n (e.g., asbestos,	
6.10	Is there reason to believe the subject land may have be on the site or adjacent sites? ☐ Yes ☑ No □ Unknown	en contar	ninated by former use	
6.11	What information did you use to determine the answers Owner's knowledge.	to 6.1 to 0	6.10 above?	
6.12	If previous use of property is industrial or commercial o previous use inventory showing all former uses of the s land adjacent to the subject land, is needed. Is the previous use inventory attached?	r if YES to ubject land	any of 6.2 to 6.10, a d, or if appropriate, th	
7 P 7.1 a)	ROVINCIAL POLICY Is this application consistent with the Policy Stateme of the <i>Planning Act</i> ? (Provide explanation)	nts issued	under subsection	
	Ves 🗌 No			

b)	Is this application consistent with the Provincial Policy Statement (PPS)? ☑ Yes
	Refer to Planning Justification Brief.
c)	Does this application conform to the Growth Plan for the Greater Golden Horseshoe ✓ Yes □ No (Provide explanation)
	Refer to Planning Justification Brief.
1)	Are the subject lands within an area of land designated under any provincial plan or plans? (If YES, provide explanation on whether the application conforms or does no conflict with the provincial plan or plans.)
e)	Are the subject lands subject to the Niagara Escarpment Plan?
	If yes, is the proposal in conformity with the Niagara Escarpment Plan? Yes No (Provide Explanation)
)	Are the subject lands subject to the Parkway Belt West Plan?
	If yes, is the proposal in conformity with the Parkway Belt West Plan?
1)	Are the subject lands subject to the Greenbelt Plan? □ Yes
g)	Are the subject lands subject to the Greenbelt Plan? ☐ Yes ☑ No If yes, does this application conform with the Greenbelt Plan? ☐ Yes ☐ No (Provide Explanation)

8 HISTORY OF THE SUBJECT LAND

8.1	Has the subject land ever been the subject of an application for approval of a plan of
	subdivision or a consent under sections 51 or 53 of the Planning Act?
	Ves 🗌 No 🗌 Unknown

If YES, and known, indicate the appropriate application file number and the decision made on the application.

FL/B - 03:16 - Approved with Conditions. Approval Lapsed.

- 8.2 If this application is a re-submission of a previous consent application, describe how it has been changed from the original application.
- 8.3 Has any land been severed or subdivided from the parcel originally acquired by the owner of the subject land? Yes V No

If YES, and if known, provide for each parcel severed, the date of transfer, the name of the transferee and the land use.

- 8.4 How long has the applicant owned the subject land?
- 8.5 Does the applicant own any other land in the City? ☐ Yes ∑ No If YES, describe the lands in "11 Other Information" or attach a separate page.

9 OTHER APPLICATIONS

9.1 Is the subject land currently the subject of a proposed official plan amendment that has been submitted for approval?

If YES, and if known, specify file number and status of the application.

If YES, and if known, specify file number and status of the application(s).

File number	 Status	

10 RURAL APPLICATIONS

10.1	Rural Hamilton Official Plan Design	ation(s))		
	Agricultural		🗌 Rural		Specialty Crop
	Mineral Aggregate Resource Extra	action	🗌 Open Spa	ce	Utilities
	Rural Settlement Area (specify)	Gree	ensville	Set	ttlement Residential
		Sett	lement Area		Designation

If proposal is for the creation of a non-farm parcel resulting from a farm consolidation, indicate the existing land use designation of the abutting or non-abutting farm operation.

10.2 Type of Application (select type and complete appropriate sections)

Agricultural Severance or Lot Addition	۱	
Agricultural Related Severance or Lot Addition		
Rural Resource-based Commercial Severance	5	((
or Lot Addition		`
Rural Institutional Severance or Lot Addition		

(Complete Section 10.3)

Consent Application Form (January 1, 2020)

- Rural Settlement Area Severance or Lot Addition
- Surplus Farm Dwelling Severance from an (Complete Section 10.4) Abutting Farm Consolidation
- Surplus Farm Dwelling Severance from a (Complete Section 10.5) Non-Abutting Farm Consolidation

10.3 Description of Lands

 a) Lands to be Severed: 	
Frontage (m): (from Section 4.1)	Area (m ² or ha): (from in Section 4.1)
<u>44.35m</u>	4116.58 sq.m.
Existing Land Use: <u>Vacant</u>	Proposed Land Use: <u>Residential</u>
b) Lands to be Retained:	
Frontage (m): (from Section 4.2)	Area (m2 or ha): (from Section 4.2)
40.39m	4426.4 sq.m.
Existing Land Use: <u>Residential</u>	Proposed Land Use: Residential

10.4 Description of Lands (Abutting Farm Consolidation)

a) Location of abutting farm:

(Street)	(Munic	ipality)	(Postal Code		
b) Description abutting farm:					
Frontage (m):	Area	Area (m2 or ha):			
Existing Land Use(s):	Propo	sed Land Use(s):			
 c) Description of consolidated farm (e surplus dwelling): 	excluding	g lands intended to be s	severed for the		
Frontage (m):	Area	a (m2 or ha):			
Existing Land Use:	Propo	sed Land Use:			
d) Description of surplus dwelling land	is propo	osed to be severed:			
Frontage (m): (from Section 4.1)	Area	a (m2 or ha): (from Sec	tion 4.1)		
Front yard set back:					
e) Surplus farm dwelling date of const	ruction:				
Prior to December 16, 2004		After December 16, 2	004		
f) Condition of surplus farm dwelling:					
Habitable		Non-Habitable			
g) Description of farm from which the s (retained parcel):	surplus	dwelling is intended to	be severed		
Frontage (m): (from Section 4.2)	Area	(m2 or ha): (from Sect	ion 4.2)		
Existing Land Use:	Propos	sed Land Use:			
	_				

10.5 Description of Lands (Non-Abutting Farm Consolidation)

a) Location of non-abutting farm

(Street)

(Municipality)

(Postal Code)

b) Description of non-abutting farm	
Frontage (m):	Area (m2 or ha):
Existing Land Use(s):	Proposed Land Use(s):
c) Description of surplus dwelling lands	s intended to be severed:
Frontage (m): (from Section 4.1)	Area (m2 or ha): (from Section 4.1)
Front yard set back:	
d) Surplus farm dwelling date of constr	uction:
Prior to December 16, 2004	After December 16, 2004
e) Condition of surplus farm dwelling:	
Habitable	Non-Habitable
Description of farm from which the s (retained parcel):	urplus dwelling is intended to be severed
Frontage (m): (from Section 4.2)	Area (m2 or ha): (from Section 4.2)
Existing Land Use:	Proposed Land Use:

11 OTHER INFORMATION

Is there any other information that you think may be useful to the Committee of Adjustment or other agencies in reviewing this application? If so, explain below or attach on a separate page.

Refer to Plannin	ng Justifi	cation Bri	ef and	
Hydrogeological	report and	d comment	responses.	
·····				
··· · · · · · · · · · · · · · · · · ·		· · · · ·		

12 SKETCH (Use the attached Sketch Sheet as a guide)

12.1 The application shall be accompanied by a sketch showing the following in metric units:

- (a) the boundaries and dimensions of any land abutting the subject land that is owned by the owner of the subject land;
- (b) the approximate distance between the subject land and the nearest township lot line or landmark such as a bridge or railway crossing;
- (c) the boundaries and dimensions of the subject land, the part that is intended to be severed and the part that is intended to be retained;
- (d) the location of all land previously severed from the parcel originally acquired by the current owner of the subject land;
- (e) the approximate location of all natural and artificial features (for example, buildings, barns, railways, roads, watercourses, drainage ditches, banks of rivers or streams, wetlands, wooded areas, wells and septic tanks) that,
 - i) are located on the subject land an on land that is adjacent to it, and
 - ii) in the applicant's opinion, may affect the application;
- (f) the current uses of land that is adjacent to the subject land (for example, residential, agricultural or commercial);
- (g) the location, width and name of any roads within or abutting the subject land, indicating whether it is an unopened road allowance, a public travelled road, a private

Planning Justification Brief Consent to Sever

13 Herbert Place, City of Hamilton (Greensville)

Prepared by:

AJ Lakatos Planning Consultant

1006-190 Macdonell Street, Guelph, ON, N1H 0A9

July 2020

Planning Justification Brief 13 Herbert Place, City of Hamilton (Greensville)

1. Introduction

A.J. Lakatos Planning Consultant has been retained by the landowner and applicant to prepare a Planning Justification Brief for a Consent to Sever application, for lands referred to as 13 Herbert Place in the Rural Settlement Area of Greensville, in the City of Hamilton. The purpose of the Consent to Sever is to create one (1) new lot that conforms to the regulations of the Settlement Residential (S1) Zone to facilitate a single detached dwelling. Note that the proposed lot creation was approved by Committee of Adjustment with a final and binding decision on April 30th, 2009. However, the applicable Conditions to of Consent were not cleared and as such, the decision has lapsed.

The following Planning Justification Brief provides a general overview of the subject lands, a detailed description of the development proposal, and an overview of the pertinent planning framework applicable to the subject lands.

1.1 Description of Subject Lands

13 Herbert Place is located in the Greensville settlement area within the former municipality of Flamborough, now the City of Hamilton.

13 Herbert Place is a corner lot legally described as Lot 1 of Registered Plan No. 62M-883 in the City of Hamilton ("subject lands"). The subject lands have a total lot area of approximately 0.85 hectares (2.1 acres) with an approximate lot frontage of 88.33 metres on Herbert Place and a depth of 84.74 metres on Hauser Place. The subject lands are occupied by one (1) single detached dwelling, an inground pool and accessory buildings located in the rear yard. The dwelling is accessed by one (1) driveway from Herbert Place.

The subject lands are located within a rural residential subdivision that is made up of large single detached estate lots with lot sizes ranging from approximately 2,800 square metres to 4,500 square metres. The neighbourhood is generally zoned Settlement Residential (S1) Zone (refer to Figure 1 - Location Map).

Figure 1: Location of Subject Lands – 13 Herbert Place, City of Hamilton (Greensville)

2. <u>Proposed Development</u>

The proposed Consent to Sever is to create a new lot that conforms to the regulations of the Settlement Residential (S1) Zone of the City of Hamilton Zoning By-law No. 05-200 to facilitate the construction of a single detached dwelling. The retained lot is intended to maintain the existing lot frontage of 88.327 metres on Herbert Place with a proposed lot depth of 40.39 metres and a total lot area of 1.09 acres. The existing dwelling, driveway and inground pool including landscaping is to be maintained. The severed lot is proposed to have 44.35 metres of frontage onto Hauser Place with a proposed lot depth of 92.71 metres and a total lot area of 1.01 acres (Refer to Appendix A - Consent Sketch). Driveway access is proposed to be from Hauser Place. There is an intent to purchase agreement between the landowner and a potential purchaser. The intended dwelling to be constructed is a one-storey 3-bedroom dwelling (refer to Appendix B - Intent to Purchase with Proposed House Plan).

A subsequent Building Permit application is required to facilitate the construction of a single detached dwelling. The Building Permit application will review the proposed dwelling in conjunction with the Ontario Building Code (OBC).

3. Planning Framework

This section reviews the planning documents applicable to the subject lands, which includes the Planning Act, Provincial Policy Statement, 2020, Places to Grow - Growth Plan for the Greater Golden Horseshoe 2019, the Rural Hamilton Official Plan including the Greensville Rural Settlement Area Plan and the City of Hamilton Zoning By-law No. 05-200.

3.1 Provincial Policy Statement, 2020

The Provincial Policy Statement, 2020 ("PPS") came into effect on May 1, 2020 as a policy-led regulating document that provides direction on provincial interest related to managing land use planning and development. The subject lands are located within an existing "Rural Settlement Area" known as Greensville, within the municipal limits of the City of Hamilton. The proposal has been reviewed with respect to the Provincial Policy Statement (PPS).

Rural settlement areas are to be supported by an appropriate range and mix of housing (1.1.4.1.c). The proposed consent will establish an estate residential lot appropriate for a single detached dwelling that is compatible with the existing lot fabric of the established and planned neighbourhood. The proposed single detached house will be supported by private services, that have capacity to accommodate the proposed functional servicing requirements (1.1.4.1.e). The proposed consent will provide minor growth in the form of a new single detached lot that can accommodate a single detached dwelling with a built form that respects the rural residential lot character in the area with appropriate building height, scale, setbacks and landscaping (1.1.4.2, 1.1.4.3).

The proposed lot will be serviced by private sewage and a private well, which is standard to this neighbourhood. The proposed lot area can accommodate private services and will not impact the environment or human health and safety. Please refer to the submitted Hydrogeological Report for further detail (1.6.6.3, 1.6.6.4).

The subject lands do not have significant natural heritage or cultural heritage resources, as such these important Provincial resources will not be adversely impacted by the proposed lot creation (2.1, 2.6). A Hydrogeological Report has been prepared by a qualified professional to ensure water resources are protected, most notably groundwater, by the construction and installation of private services for the purposes of servicing a single detached dwelling. The report concludes that the lot severance is not likely to have an impact on the ground water resource (2.2). The proposed lot creation is outside of natural or human made hazard lands, therefore public health and safety is not impacted (3.1, 3.2).

The proposed lot creation is consistent with the Provincial Policy Statement, 2020.

3.4 Rural Hamilton Official Plan

The subject lands are within the Rural Hamilton Official Plan (RHOP). The RHOP has been in force and effect as of March 7, 2012. The RHOP, Volume 1 designates the subject lands "Rural Settlement Area". Further, the RHOP, Volume 2, Flamborough Rural Settlement Area Plans designates the subject lands "Settlement Residential" (Volume 2: Map 8a).

Volume 1, Chapter D, Section 5.0 states Rural Settlement Areas are where development has clustered in a small scale with the intent of being residential in nature with service centres that serve the immediate community. Greensville is one of nineteen Rural Settlement Area within the City of Hamilton's rural area.

Volume 2, Chapter A, Section 3.5, Greensville Rural Settlement Area Plan, outlines the general development policies and Settlement Residential policies. The proposed lot creation will establish a lot that is suitable for a single detached dwelling that will be integrated and compatible with the existing community with a similar lotting pattern and size (A.3.5.3.1, A.3.5.3.2). The proposed lot is a minor infill lot that meets required Settlement Area (S1) Zoning facilitated through a Consent to Sever application to sever lands from a lot of record within a registered plan of subdivision (A.3.5.3.3, A.3.5.3.4). The subject lands are not identified as having natural heritage features on-site or within proximity and are designated Settlement Residential. Applicable policies are reviewed below (A.3.5.3.5, A.3.5.3.6).

A Hydrogeology Report has been prepared to review potential impacts to ground water the proposed private sanitary and water services may have. The report considers the surrounding lands and development and concluded that the proposed severance can be supported by private services without adverse impacts to ground water quality or quantity (A.3.5.5.1). The proposed lot severance will facilitate a proposed three-bedroom bungalow single detached dwelling (A.3.5.5.3). The proposed infill lot is proposed to be facilitated through consent and it will not interfere with existing or future development as existing public right-of-ways are established (A.3.5.5.4). The proposed consent is appropriate to establish one (1) lot as it's intent for a single detached dwelling on private services meets the policies of the RHOP (A.3.5.5.6). The proposed lot has a lot width and area that can accommodate setbacks and landscape area to facilitate a single detached house that is consistent with the surrounding lot fabric and built form. The proposed development will have respect to the existing neighbourhood character to be integrated and compatible (A.3.5.5.7).

The proposed single detached dwelling will be serviced by private water supply and private sewage disposal systems (A.3.5.13.2, A.3.5.13.3) supported by a Hydrogeological Report prepared by a qualified professional which concludes the proposed severance, dwelling and private services will not impact the ground water supplies' quantity or quality (A.3.5.13.4).

The proposed consent to create a single detached lot serviced by private services **conforms** to the RHOP.

3.5 The City of Hamilton Zoning By-law No. 05-200

The Comprehensive City of Hamilton Zoning By-law No. 05-200 (ZBL 05-200), as amended, has been in force and effect as of May 25, 2005. The Rural Zones have been in force and effect of as July 10, 2015.

ZBL 05-200 zones the subject lands Settlement Residential (S1) Zone. The S1 Zone permits a single detached dwelling. As such, the proposed intent of the lot creation for a single detached dwelling is permitted.

The following chart outlines the required regulations for a single detached dwelling in the S1 Zone, in comparison to the proposed lot.

Settlement Residential (S1) Zone	Required	Proposed	Conformity Yes/No
Minimum Lot Area	0.4 hectares	0.41 hectares	Yes
Minimum Lot Width	30.0 metres	44.35 metres	Yes
Minimum Rear Yard	7.5 metres	7.5 metres	Yes
Maximum Building Height	10.5 metres	10.5 metres	Yes
Accessory Buildings	Section 4.8 and 4.8.1	Section 4.8 and 4.8.1	Yes
Parking	2 spaces/dwelling	2 spaces/dwelling	Yes

The proposed lot, facilitated through consent, **complies** to the Settlement Residential (S1) Zone of Zoning By-law No. 05-200.

4.0 <u>Planning Rationale</u>

The proposed Zoning By-law Amendment has merit and can be supported for the following reasons:

- 1. The proposal is consistent with the Provincial Policy Statement Rural Settlement Area policies and natural and cultural heritage resources will be protected;
- 2. The proposal conforms to the Rural Hamilton Official Plan which permits infill single detached lots through consent subject to being compatible with the existing character of the area and able to accommodate private services without impacting ground water quality and quantity, proven through a Hydrogeological Report;
- 3. The proposed lot creation will comply to the single detached dwelling regulations of the Settlement Residential (S1) Zone of Zoning By-law No. 05-200.

5.0 <u>Conclusion</u>

In conclusion, the proposed lot creation facilitated through consent is appropriate for the subject lands, desirable and reflects good land use planning for the subject lands.

Respectfully Submitted, A.J. Lakatos Planning Consultant

Joe Jakoto

Mr. Joe Lakatos MCIP, RPP

Appendix "A" Consent Sketch

Appendix "B" Intent to Purchase

Proposed House Plan

A.J. Lakatos Planning Consultant 1006-190 Macdonell Street, Guelph, ON, N1H 0A9

March 13, 2020

PML Ref.: 17HX016

Mr. Luke Hewitt 13 Herbert Place Hamilton (Dundas), Ontario L9H 5E1

Dear Mr. Hewitt

Hydrogeological Investigation 13 Herbert Place Hamilton (Dundas), Ontario

This letter provides our response to the comments from the City of Hamilton (City) on the report titled "Hydrogeological Investigation, 13 Herbert Place, Hamilton (Dundas), Ontario" dated April 30, 2019 completed by Peto MacCallum Ltd. (PML) (PML Ref.: 17HX016, Report 1). The subject property is referred to herein as the 'Site'.

This letter specifically addresses the comments received from the City of Hamilton Water Division -Source Protection Planning as outlined in an email dated October 16, 2019 from Mike Christie, Project Manager, Source Water Protection and as detailed in the peer review report by Cambium Inc. dated October 10, 2019.

The following section provides corresponding response for comments 1 and 3 outlined in the peer review report by Cambium Inc. dated October 10, 2019

Comment 1 – Potable Water Quality

It is understood that sampling of the potable water supply well at the Site is required for approval of the lot severance, which was recommended in our report. As well, Cambium requested the closest overburden well be sampled for septic related parameters (nutrients, bacteria, and DOC) to determine the existing overburden quality.

On December 2, 2019, PML attended the Site and collected a sample of raw water from a tap located in the basement of the residence. The sample was submitted to SGS Laboratories for chemical analysis for the ground water quality parameters listed in Tables 1 through 4 in Appendix A of the City of Hamilton Guidelines for Hydrogeological Studies and Technical Standards for Private Services.

Laboratory Certificates of Analysis compared to the Ontario Drinking Water Quality Standards (ODWQS) are included in Appendix A. The measured values and corresponding ODWQS (labelled as L1 and L2) are shown on the certificates of analysis with the levels exceeding the applicable standards highlighted in orange, if applicable. Analyses for Dioxins and Furans was subcontracted to Wellington Laboratories of Guelph, Ontario.

Based on the results of chemical testing, the measured concentrations of the tested parameters met the ODWQS with the exception of Chloride, Sodium, Hardness, Total Dissolved Solids (TDS), and Turbidity. The results are summarized in the following table.

Parameter	Measured Concentration	ODWQS	Comments	Treatment/ Mitigation
Chloride	390 mg/L	250 mg/L AO	Nontoxic material present in small amounts in drinking water and produces a detectable salty taste at the AO of 250 mg/L. Widely distributed in nature generally as the sodium, potassium and calcium salts.	N/A
Sodium	120 mg/L	200 mg/L AO	A maximum acceptable concentration (MAC) for sodium in drinking water has not been specified. High sodium does not affect the safety of the water supply. Sodium concentrations that exceed 20 mg/L may be important for those with sodium restricted diets.	N/A
Hardness	882 mg/L	80 to 100 mg/L OG	Hardness levels between 80 and 100 mg/L are considered to provide an acceptable balance between corrosion and incrustation.	Water softener
TDS	1,330 mg/L	500 mg/L AO	Refers mainly to the inorganic substances dissolved in water. The principal constituents of TDS are chloride, sulphates, calcium, magnesium and bicarbonates. The effects of TDS on drinking water quality depend on the levels of the individual components.	Sediment and/or carbon filter
Turbidity	1.88 NTU	5 NTU AO	Refers mainly to the clarity of water; turbidity is an important indicator of treatment efficiency and the efficiency of filters in particular.	Sediment and/or carbon filter

AO= Aesthetic Objective; OG = Operational Guideline; MAC – Maximum Acceptable Concentration

Regarding gross alpha/beta concentrations, The Guidelines for Canadian Drinking Water Quality: Guideline Technical Document - Radiological Parameters indicates water samples may be initially screened for radioactivity using techniques for gross alpha and gross beta activity determinations, subject to the limitations of the method. Compliance with the guidelines may be inferred if the measurements are less than 0.5 Bq/L for gross alpha activity and less than 1 Bq/L for gross beta activity. The guideline levels are set to reflect the most restrictive Maximum Acceptable Concentrations for specific radionuclides in drinking water. If these levels are not exceeded, compliance with the guidelines can be inferred. In this regard, the results of <0.2 Bq/L for both gross alpha and beta are acceptable and no further sampling and testing is required.

Based on the above results, the bedrock water quality is acceptable.

On December 9, 2019, PML obtained permission from the owner and attended a neighbouring property (151 Highway 8) in order to sample the closest overburden well. PML collected a sample of raw water directly from the well; the MECP well record indicates the well is screened in the overburden aquifer at depth of 16.7 m below grade. The sample was submitted to SGS Laboratories for chemical testing for Dissolved Organic Carbon (DOC), Heterotrophic Plate Count (HPC), Nitrates, Phosphorus, E. Coli and Total Coliform.

Laboratory Certificates of Analysis compared to the Ontario Drinking Water Quality Standards (ODWQS) are included in Appendix A. The measured values and corresponding ODWQS (labelled as L1 and L2) are shown on the certificates of analysis.

Based on the results of chemical testing, the measured concentrations of the tested parameters met the ODWQS, which indicates the overburden quality is acceptable.

Comment 3 – Predictive Assessment vs. Monitoring Data

PML has been extensively involved in hydrogeological assessment for the properties in the area and has accumulated monitoring data for nitrate concentrations in the ground water spanning 30 years. The monitoring data indicates nitrate concentrations in the range of <0.01 to 7.6 mg/L, thus demonstrating no health risks or off-site impacts. When the nitrate concentration determined using the predictive assessment calculation is compared to site specific measurements of actual nitrate concentrations in wells within the vicinity of the Site, the predictive assessment/theoretical computation is shown to be conservative, as demonstrated in the difference in concentrations. Based on the above rationale, the lot severance is not likely to have an impact on the ground water resource.

The historic sample locations are depicted on the Well Location Plan as Drawing 1. Refer to Table 1, appended for a compilation of the historical data.

We trust this letter adequately addresses the City of Hamilton/peer reviewer comments. Please do not hesitate to contact our office should you have any questions.

Sincerely

Peto MacCallum Ltd.

Melissa King, P.Geo., QP_{ESA} Associate Discipline Head, Geoenvironmental and Hydrogeological Services

PA/MAK:Id

Enclosures: Table 1 - Historic Nitrate Concentrations in Ground Water Drawing 1 – Well Location Plan Appendix A – Laboratory Analytical Data

Distribution: 1 cc: Mr. Luke Hewitt (via email) 1 cc: Mr. Joe Lakatos, BLA, MCIP, RPP (via email)

TABLE 1

Historic Nitrate Concentrations in Ground Water

		Aquife	r		
Municipal Address	Soil Profile (depth in metres) ¹	Туре	Well Depth (m)	Sampling Date	Nitrate (mg/L)
13 Herbert Place (Site)	Brown sandy clay (5.5) Grey sandy clay (14.6) Brown sand and gravel (15.8) Grey limestone (18.3)	Bedrock	16.5	December 2, 2019	0.79
	Brown loam medium sand and gravel (12.8)	Sand and/or		January 31, 2012	2.21
151 Highway 8	Gravel and clay (15.5) Gravel (15.5) Gravel and coarse sand (17.4)	gravel	15.5	December 9, 2019	1.98
8 Kew Court	Sandy Clay (8.2) Clayey Sand (13.1) Black Coarse Sand (21.0) Brown Sand (24.4)	Sand and/or gravel	24.4	August, 1988	4.0
5 Herbert Place	Previously dug (18.9) Brown clay (23.2) Grey gravel (23.8)	Sand and/or gravel	23.2	August, 1988	6.0
145 Highway 8	Clay (30.8) Limestone (42.7)	Bedrock	30.8	August, 1988	4.5
41 Oak Avenue	Brown sandy clay (10.1) Brown limestone (10.7)	Bedrock	10.7	August, 1988	0.71
57 Oak Avenue	Brown clay (3.7) Grey clay (15.8) Grey limestone (17.1)	Bedrock	17.1	August, 1988	0.17
				June 6, 2011	1.1
				January 11, 2006	1.6
				August 24, 2005	1.2
19 Herbert Place	Brown sandy clay (12.8)			October 7, 2004	1.6
(Lot 3)	Brown sand and gravel (13.4)	Bedrock	14.0	April 7, 2004	0.5
	Grey Limestone (15.2)			November 18, 2003	0.8
				May 1, 2002	0.2
				March 5, 2001	0.05
				April 17, 2000	1.72
				June 2, 2011	2.8
				January 11, 2006	2.6
	Brown sandy clay (9.1)			August 24, 2005	1.6
51 Marshboro	Brown sand and gravel (12.2)	Bedrock	14 0	October 7, 2004	1.2
Avenue (Lot 8)	Limestone (15.2)	Dourook	1 1.0	April 7, 2004	0.9
	······			November 18, 2003	0.8
				May 1, 2002	0.9
				March 5, 2001	0.05

		Aquife	r		
Municipal Address	Soil Profile (depth in metres) ¹	Туре	Well Depth (m)	Sampling Date	Nitrate (mg/L)
43 Marshboro Avenue (Lot 12)	Well information not available	N/A	N/A	April 17, 2000	0.07
				January 11, 2006	ND
				August 24, 2005	ND
41 Marchhara				October 7, 2004	ND
	Well information not available	N/A	N/A	April 7, 2004	ND
Avenue (LOU 13)				November 18, 2003	ND
				May 1, 2002	ND
				April 17, 2000	<0.01
44 Marshboro Avenue (Lot 15)	Well information not available	N/A	N/A	January 19, 2000	0.48
				August 20, 2012	2.86
				June 2, 2011	3.0
	Brown Sand (10.7)			January 11, 2006	5
12 Harbort Place	Brown sand and gravel (13.1)			August 24, 2005	3.8
	Brown clayey sand (15.5)	Bedrock	17.1	October 7, 2004	4.7
(LUI 20)	Brown sandy clay (16.8)			April 7, 2004	ND
	Grey limestone (17.1)			November 18, 2003	ND
				May 1, 2002	3.3
				February 1, 2000	1.74
	Brown silt and sand (13)	Monitoring well BH1-1	12.6		4.74
12 Herbert Place (Lot 20)	Brown silt and sand (9.8)	Monitoring well BH1-2	9.8	August 20, 2012	3.86
	Brown silt (11.3)	Monitoring well BH2	9.0		7.62

Note: 1. Subsurface profile based on MECP Water Well Record ND = not detected

APPENDIX A

Laboratory Analytical Data

CA14306-DEC19 R

17HX016, 151 Highway 8, Hamilton

Prepared for

Peto MacCallum Ltd

First Page

CLIENT DETAILS	i	LABORATORY DETAIL	S
Client	Peto MacCallum Ltd	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	45 Burford Road	Address	185 Concession St., Lakefield ON, K0L 2H0
	Hamilton, ON		
	L8E 3C6. Canada		
Contact	Melissa King	Telephone	705-652-2143
Telephone	(905) 561-2231	Facsimile	705-652-6365
Facsimile	(905) 561-6366	Email	brad.moore@sgs.com
Email	mking@petomaccallum.com;parlos@petomaccallum.com	SGS Reference	CA14306-DEC19
Project	17HX016, 151 Highway 8, Hamilton	Received	12/09/2019
Order Number		Approved	12/12/2019
Samples	Water (1)	Report Number	CA14306-DEC19 R
		Date Reported	12/12/2019

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

MDL - SGS Method Detection Limit

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-5
Exceedance Summary	6
QC Summary	7-9
Legend	10
Annexes	11

CA14306-DEC19 R

Client: Peto MacCallum Ltd

Project: 17HX016, 151 Highway 8, Hamilton

Project Manager: Melissa King

Samplers: Philip Arlos

PACKAGE: ODWS AO OG - General	Chemistry		Sa	mple Number	8
(WATER)	,				
(ç	Sample Name	151 Highway 8
				Sample Matrix	Water
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	r - Reg O.169_03			Somple Date	Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg 0.169_03			Sample Date	09/12/2019
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Dissolved Organic Carbon	mg/L	1	5		1
PACKAGE: ODWS_AO_OG - Metals a	and Inorganics		Sa	mple Number	8
(WATER)					
			5	Sample Name	151 Highway 8
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	r - Reg O.169_03		s	Sample Matrix	Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg 0.169_03			Sample Date	09/12/2019
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics					
Nitrite (as N)	as N mg/l	0.003			0.003# <mdl< td=""></mdl<>
Nitrate (as N)	as N mg/L	0.006		10	1 98
	as N mg/L	0.000		10	1.00
	as in hig/L	0.000			1.30
Phosphorus	mg/L	0.003			< 0.003
PACKAGE ODWS AO OG - Microbio			Sa	mple Number	8
			 c	Sample Name	151 Highway 8
			- -		Weter
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	r - Reg O.169_03		5	Sample Matrix	vvater
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg O.169_03			Sample Date	09/12/2019
Parameter	Units	RL	L1	L2	Result
Microbiology					
E. Coli	cfu/100mL	-			0
Total Coliform	cfu/100ml	_			0

CA14306-DEC19 R

Client: Peto MacCallum Ltd

Project: 17HX016, 151 Highway 8, Hamilton

Project Manager: Melissa King

Samplers: Philip Arlos

PACKAGE: ODWS_AO_OG - Microbiolo	gy (WATER)		Sa	mple Number	8
			s	Sample Name	151 Highway 8
1 = ODWS AO OG / WATER / Table 4 - Drinking Water - F	Reg () 169 ()3		s	ample Matrix	Water
L2 = ODWS_MAC / WATER / Table 12 and 2 Drinking Water - N	ter, Beg Q 160, 02			Sample Date	09/12/2019
LZ = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wat	iter - Reg 0.169_03			10	
Parameter	Units	RL	L1	L2	Result
Microbiology (continued)					
Heterotrophic Plate Count (HPC)	cfu/1mL	-			860
PACKAGE: ODWS_MAC - General Cher	mistry		Sa	mple Number	8
(WATER)					
			s	Sample Name	151 Highway 8
11 = ODWS AO OG / WATER / Table 4 . Drinking Water . F	Reg () 169 ()3		s	ample Matrix	Water
12 = ODWS_MAC (WATER / Table 12 and 2 Drinking Water)	ter, Beg Q 160, 02			Sample Date	09/12/2019
Decemptor		ы	14	10	Beeulé
Faranieler	Onits	RL	E1		Result
General Chemistry					
Dissolved Organic Carbon	mg/L	1	5		1
			_		
PACKAGE: ODWS_MAC - Metals and In	norganics		Sa	mple Number	8
(WATER)					
			s	Sample Name	151 Highway 8
L1 = ODWS AO OG / WATER / Table 4 - Drinking Water - F	Reg 0.169 03		s	ample Matrix	Water
L2 = ODWS_MAC / WATER / Table 1.2 and 3 - Drinking Water	ter - Reg 0.169 03			Sample Date	09/12/2019
Parameter	l Inite	RI	11	12	Result
	Units		L 1	LE	Nosuit
Metals and Inorganics					
Nitrite (as N)	as N mg/L	0.003			0.003# <mdl< td=""></mdl<>
Nitrate (as N)	as N mg/L	0.006		10	1.98
Nitrate + Nitrite (as N)	as N mg/L	0.006			1.98
Phosphorus	ma/l	0.003			< 0.003

CA14306-DEC19 R

Client: Peto MacCallum Ltd

Project: 17HX016, 151 Highway 8, Hamilton

Project Manager: Melissa King

Samplers: Philip Arlos

PACKAGE: ODWS_MAC - Microb	biology (WATER)		Sar	nple Number	8
			s	ample Name	151 Highway 8
L1 = ODWS_AO_OG / WATER / Table 4 - Drinkin	ng Water - Reg O.169_03		S	ample Matrix	Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - D	rinking Water - Reg O.169_03			Sample Date	09/12/2019
Parameter	Units	RL	L1	L2	Result
Microbiology					
E. Coli	cfu/100mL	-			0
Total Coliform	cfu/100mL	-			0
Heterotrophic Plate Count (HPC)	cfu/1mL	-			860

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (۹	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0139-DEC19	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0139-DEC19	mg/L	0.003	<0.003	ND	20	100	80	120	101	75	125
Nitrate (as N)	DIO0139-DEC19	mg/L	0.006	<0.006	0	20	105	80	120	109	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Pecover/	(%	6)	Recovery	(%	<u>)</u>
						(76)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0088-DEC19	mg/L	1	<1	0	10	96	90	110	92	75	125

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phosphorus	EMS0064-DEC19	mg/L	0.003	<0.003	0	20	101	90	110	NV	70	130

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-IENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		Ma	trix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery (%)	[,] Limits	Spike Recovery	Recover	/ Limits)
						(%)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9156-DEC19	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Heterotrophic Plate Count (HPC)	BAC9156-DEC19	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9156-DEC19	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment, Health & Safety - Lakefie	Req	uest for ssion St., Lai	r Labora kefield, ON K	atory Se	rvic	es a 52-200	o Fax:	CHA 705-65	2-6365	OF C	CUS	STOI	DY n/envir	ronmei	nt				No:() ()	4640
Received By: <u>Oleg Mozhiw</u> Received Date (mm/dd/ovy): <u>12 9 19</u> (mm/dd/vy) Received Time: <u>16</u> : <u>00</u>	Ri Ci Ci	eceived By (subtraction of the second s	Labora signature): Present: ntact:	itory Inform	estion	1 Sec	Coolin Tempo	Lab g Agen	t Prese Upon F	nt: Receip	t (°C)	-10 	e 9 9	pa	ok		LAB L	IMS #: (Page	Doc 19
REPORT INFORMATION	INVO	ICE INFOR	RMATION		I			PA	4				PROJ	ECT	NFOR	RMAT	ION			
Company: Peto Machallun Ltd. X (s Contact: Melissa King Compa	ame as Repo ny:	ort Informat	ion)		Quota Proje	ation # ct #:	#:	jei n	91 = 17	₩ 1+×	014	2	P.O. # Site L	#:	on/ID:	1	51	Hug	hung 8, 13	Familton
Address: 43 Burford Koad Contac	t:										٦	URNA	ROU	ND TI	ME (1	TAT) F	REQU	IRED	0	
Hamilton, ON Addres	s:		angel H			R	Regula	TAT	(5-7da	ys)			Sampl	are qu es rec	oted in eived a	after 6p	ess da om or o	ys (exclu on weeke	ands: TAT begins next b	weekends). usiness day
Phone: 905-561-2231				A Meril	RUSI	H TAT	(Add	tional	Char	ges N	lay A	pply):	Ē] 1 Da	ay 🗌	2 Da	iys 🗌	3 Day	s 4 Days	
Email: 205-561-6366 Phone:					PLEA	SE C	ONFI	RM RL	ISH F	EASI	BILIT	Y WIT	H SG	S REF	RES	ENTA	TIVE	PRIOR	TO SUBMISSION	
Email: mking & poto maccallum themail:					Spec	ify Du	e Date	:					Rush	Confi	rmatic	on ID:				
REGULATIO	NS				42		NOT	E: DF	RINKIN			BLE) W	ATER	R SAN	ING V	S FOF	RCH	IAN CO AIN OF	NSUMPTION MUST CUSTODY	BE
Regulation 153/04: Other I Table 1 R/P/I Soil Texture: R Table 2 I/C/C Coarse P Table 3 A/O Medium CC Table 2 Fine M	Regulations teg 347/558 (3 wQO M cCME X MISA X	E Day min TA MER Dther:	T)	r By-Law: Sanitary Storm pality:	()	ics	SVOC(all)	octor 🗆	VOC 10 F2-F40	ANA		I lgnit:		TED	litite	5	bratom Ltot	Doc	COMM	ENTS-
RECORD OF SITE CONDITION (RSC) YE SAMPLE IDENTIFICATION D	ATE MPLED S		# OF BOTTLES	MATRIX	Field Filtered (Y/	Metals & Inorgar		PCB Total D	PHC F1-F4 LI BTEX D BTEX/F		Pesticides OC [TCLP M&I 🗆 VC B(a)P 🔲 ABN 🛛	Water Pkg Gen	Sewer Use:	Nutrate /1	Thorphon	E.Coli /ch	HPC and		
1 151 Highway & Decl	09/19	11:45	4	unter	M		100					-			×	X	X	X	an art an an	
2				in the state of			Carlo I		The sector		in the second se				100	10.0			· the state of the state	
3	and a set	a desta la c	ing the second	1.2000 (1.10kg	1201		Ser.	1			1. 19			State of		1.1	1.000		A State State State	
4		Sec. 1		Contractor Property											1.050					
5			and and a set		2010	Contraction of the	144		-				200	1997				Sec. 1		
6		Sare - Sare			1000									12.40		1.10				
7				- Alexandre					a di s		1									
			and a second				11.52				28.28 100000	- 12 - 22	1. (D.)	1857 S		112121				
							120.423	0.000		1997 (S. 1997)		1000		1221- 112-034						
				s			1													
10	Ben the state	and a shake the	- Bergaria	The state of the second	1235				2.56		1-2C	100		Ches.		16184			and the second second	
11								-					de sere			1.19				
12	A CONTRACTOR OF T	ante an an		-	125				1. 10 A.	3						a series of			All the second second	WELS-
Observations/Comments/Special Instructions			. 1	/1/	high															
Sampled By (NAME): Phily Arks	Si	gnature:	fite	Afre	R	ι	ulu d		Date:	12	-1_	09	1	9		(mm/	dd/yy)		Pink Copy - Client	
Relinguished by (NAME):	Si	gnature:	1 1	11	NEL SY	a laact	STR. IT		Date:		_1_	an in s	- main	See 24	1000	(mm/	dd/yy)	2400	Yellow & White Co	INV - SGS

2019-396-LR	CA 14040-DEC19					
Table A: Dioxins and Furans:	Water (ppq)					
			<u>CA 14040-DEC19</u>			
	Lab Blank		December 02/2019			
-		# of	<u>13 Herbert Place</u>	# of		
Furans:		pks		pks		
	ND (1)		ND (1)			
Total TCDFs "	ND (1)		ND (1)	_		
12278 DoCDE			ND (1)			
12370-FECDF						
Total PeCDEs *	ND (1)		ND (1)			
123478-HxCDF	ND (1)		ND (1)			
123678-HxCDF	ND (1)		ND (1)			
234678-HxCDF	ND (1)		ND (1)			
123789-HxCDF	ND (1)		ND (1)			
Total HxCDFs *	ND (1)		ND (1)			
1234678-HpCDF	ND (1)		ND (1)			
1234789-HpCDF	ND (1)		ND (1)	_		
Total HpCDFs *	ND (1)		ND (1)			
OCDE			ND (1)	_		
OCDF						
Dioxins:						
2378-TCDD	ND (1)		ND (1)			
Total TCDDs *	ND (1)		ND (1)			
12378-PeCDD	ND (1)		ND (1)			
Total PeCDDs *	ND (1)		ND (1)			
123478-HxCDD	ND (1)		ND (1)			
123678-HXCDD	ND (1)		ND (1)			
Tatal HyCDDa *	ND (1)		ND (1)			
			ND (T)			
1234678-HpCDD	ND (1)		ND (1)			
Total HpCDDs *	ND (1)		ND (1)			
OCDD	ND (1)		ND (1)			
I-TEQ **	0 ppq		0 ррд			
Approved By:	Dave Potter					
······································	\cap \cap					
Signature:	_ ben let				December 18/2019 12:41 pm	
					Date and Time	
				_		<u> </u>
						<u> </u>

2019-396-LR						
Table A (cont.)						
			<u>CA 14040-DEC19</u>			
	Lab Blank		December 02/2019			
<u>% Recovery</u>			13 Herbert Place			
of Surrogates:						
13C-2378-TCDF	85		83			
13C-2378-TCDD	86		87			
13C-12378-PeCDF	81		79			
13C-23478-PeCDF	78		77			
13C-12378-PeCDD	85		85			
13C-123478-HxCDF	92		89			
13C-123678-HxCDF	91		88			
13C-234678-HxCDF	91		89			
13C-123789-HxCDF	89		81			
13C-123478-HxCDD	98		95			
13C-123678-HxCDD	90		90			
13C-1234678-HpCDF	93		83			
13C-1234789-HpCDF	92		74			
13C-1234678-HpCDD	94		87			
13C-OCDD	92		80			
			·			
ND - none detected (detection lin	nits in brackets)					
NDR - none detected based on p	oeak ratio					
NDS - none detected based on p	eak shape					
DPE - diphenyl ether interference	e present					
* Calculated as the sum of the ind	dividual named PCDDs	/PCE	Fs and other detected unnamed PCDDs	/PCE	DFs.	
The summations do not include	ND and NDR values.					
** The reported TEQ is a calculat	ted parameter.					
Approved By:	Dave Potter					
	$\cap \cap$					
Signature:	_ the Vite			1	December 18/2019 12:41 pm	
					Date and Time	

CA14040-DEC19 R1

17HX016

Prepared for

Peto MacCallum Ltd

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	S
Client	Peto MacCallum Ltd	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	45 Burford Road	Address	185 Concession St., Lakefield ON, K0L 2H0
	Hamilton, ON		
	L8E 3C6. Canada		
Contact	Melissa King	Telephone	705-652-2143
Telephone	(905) 561-2231	Facsimile	705-652-6365
Facsimile	(905) 561-6366	Email	brad.moore@sgs.com
Email	mking@petomaccallum.com;parlos@petomaccallum.com	SGS Reference	CA14040-DEC19
Project	17HX016	Received	12/02/2019
Order Number		Approved	12/13/2019
Samples	Non-Reportable (1)	Report Number	CA14040-DEC19 R1
		Date Reported	12/13/2019

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline MDL - SGS Method Detection Limit

Dioxins/Furans - sub-contracted to Wellington Laboratories. Note: Cyanide reported as total cyanide. The total cyanide incorporates all species of cyanide including free cyanide.

Chloramines is calulation as: [(Total Chlorine) - (Residual Chlorine)]

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:012337

Azinphos-methyl, Malathion and Methoxychlor LCS; recovery for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Azinphos-methyl, Cyanazine, Malathion, Methoxychlor and Parathion Matrix Spike; recovery for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

High TDS required the rasing of the Gross Alpha and Gross Beta reporting limit

Atrazine Method Blank; Result is above MDL, the overall quality control for this analysis meets acceptability criteria.

SIGNATORIES

Raised RL for DQ/PQ, due to SM

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-12
Exceedance Summary	13
QC Summary	14-30
Legend	31
Annexes	32

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

PACKAGE: Chlorophenols (WATER)			San	nple Number	· 9
			Si	ample Name	13 Herbert Place
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	- Reg O.169_03		Si	ample Matrix	Non-Reportable
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	/ater - Reg 0.169_03		8	Sample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
Chlorophenols					
2,4-dichlorophenol	μg/L	0.15	0.3	900	<0.15
2,4,6-trichlorophenol	µg/L	0.25	2	5	<0.25
2,3,4,6-tetrachlorophenol	µg/L	0.2	1	100	<0.2
Pentachlorophenol	µg/L	0.15	30	60	<0.15
General Chemistry					
Alkalinity	mg/L as	2	500		415
	CaCO3				
Colour	TCU	3	5		< 3
Turbidity	NTU	0.10	5	1	1.88
Total Dissolved Solids	mg/L	30	500		1330
Organic Nitrogen	mg/L	0.05	0.15		< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.38
Ammonia+Ammonium (N)	as N mg/L	0.04			0.41
Sulphide	µg/L	6			< 6
Dissolved Organic Carbon	mg/L	1	5		1

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

PACKAGE: Haloacetic Acids (WATER)			Sa	mple Number	9
			s	Sample Name	13 Herbert Place
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Re	g O.169_03		s	ample Matrix	Non-Reportable
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water	r - Reg O.169_03			Sample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
Haloacetic Acids					
Total Haloacetic Acids (HAA5)	µg/L	5.3			<5.3
Bromoacetic Acid	µg/L	2.9			<2.9
Chloroacetic Acid	µg/L	4.7			<4.7
Dichloroacetic Acid	µg/L	2.6			<2.6
Dibromoacetic Acid	µg/L	2.0			<2.0
Trichloroacetic Acid	µg/L	5.3			<5.3
Herbicide					
Diquat	ug/L	1		70	<5↑
Paraquat	ug/L	1		10	<5↑
Glyphosate	ug/L	1		280	<1
Metals and Inorganics					
Cyanide (total)	mg/L	0.002		0.2	< 0.002
Bromate	mg/L	0.003		0.01	<0.003
Chlorate	mg/L	0.01			0.07
Chlorite	mg/L	0.01			<0.01
Total Chlorine	mg/L	0.02			0.02
Residual chlorine	mg/L	0.02			0.02
Chloride	mg/L	0.04	250		390
Fluoride	mg/L	0.06		1.5	0.48
Sulphate	mg/L	0.04	500		180
Nitrite (as N)	as N mg/L	0.003		1	0.232
Nitrate (as N)	as N mg/L	0.006		10	0.791
Nitrate + Nitrite (as N)	as N mg/L	0.006			1.02

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

ACKAGE: Metals and Inorganics (W	VATER)		Sar	nple Number	9
			S	ample Name	13 Herbert Place
I = ODWS_AO_OG / WATER / Table 4 - Drinking Wa	ter - Reg 0.169_03		S	ample Matrix	Non-Reportable
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	g Water - Reg O.169_03			Sample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
letals and Inorganics (continued)					
Hardness	mg/L as CaCO3	0.05	100		882
Aluminum	µg/L	1	100		4
Arsenic	µg/L	0.2		10	< 0.2
Barium	µg/L	0.02		1000	87.6
Boron	µg/L	2		5000	194
Calcium	mg/L	0.01			264
Cadmium	µg/L	0.003		5	0.027
Chromium	µg/L	0.08		50	0.18
Copper	µg/L	0.2	1000		13.2
Iron	ug/L	7	300		164
Mercury	µg/L	0.01		1	0.01
Sodium	mg/L	0.01	200	20	120
Magnesium	mg/L	0.001			53.9
Manganese	µg/L	0.01	50		16.2
Lead	µg/L	0.01		10	3.38
Antimony	µg/L	0.09		6	< 0.09
Selenium	µg/L	0.04		50	0.06
Uranium	µg/L	0.002		20	0.414
Zinc	µg/L	2	5000		50

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

PACKAGE: Methane (WATER)			Sample Nun	ber 9
			Sample Na	me 13 Herbert Place
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wa	ater - Reg 0.169_03		Sample Ma	atrix Non-Reportable
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinkin	ng Water - Reg O.169_03		Sample I	02/12/2019
Parameter	Units	RL	L1 L2	Result
Methane				
Methane	L/m3	0.02	3	<0.02
Microbiology				
Total Coliform	cfu/100mL	0		0
E. Coli	cfu/100mL	0		0
Heterotrophic Plate Count (HPC)	cfu/1mL	0		2
Microcystin (Quantitative)	ug/L	0.1	1.5	<0.1
NDMA				
Nitrosodimethylamine (NDMA)	µg/L	0.0008	0.009	0.0017
NTA				
Nitrilotriacetic acid (NTA)	mg/L	0.03	0.4	< 0.03
Other (ORP)				
рН	no unit	0.05	8.5	7.55

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

PACKAGE: PCBs (WATER)			Samp	le Number	9
			Sar	nple Name	13 Herbert Place
.1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - F	Reg O.169_03		San	nple Matrix	Non-Reportable
.2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ter - Reg O.169_03		Sa	ample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	μg/L	0.04		3	<0.04
Pesticides					
Alachlor	μg/L	0.02		5	< 0.02
Aldicarb	μg/L	0.01			<0.01
Aldrin	µg/L	0.01			<0.01
Dieldrin	µg/L	0.01			<0.01
Aldrin + Dieldrin	µg/L	0.01			<0.01
Atrazine + N-dealkylated metabolites	µg/L	0.01		5	<0.01
Atrazine	µg/L	0.01			<0.01
Desethyl atrazine	µg/L	0.01			<0.01
Azinphos-methyl	µg/L	0.05		20	<0.05
Bendiocarb	µg/L	0.01			<0.01
Carbaryl	µg/L	0.05		90	<0.05
Carbofuran	µg/L	0.01		90	<0.01
Chlordane (total)	µg/L	0.01			<0.01
Chlorpyrifos	µg/L	0.02		90	<0.02
Cyanazine	µg/L	0.03			<0.03
Diazinon	µg/L	0.02		20	<0.02
Dimethoate	µg/L	0.06		20	<0.06
Diuron	µg/L	0.03		150	<0.03
(DDT) + Metabolites	µg/L	0.01			<0.01
Heptachlor	µg/L	0.01			<0.01
Heptachlor epoxide	μg/L	0.01			<0.01

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

PACKAGE: Pesticides (WATER)			Sa	mple Number	9
			5	Sample Name	13 Herbert Place
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wat	ter - Reg O.169_03		5	Sample Matrix	Non-Reportable
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	g Water - Reg O.169_03			Sample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
Pesticides (continued)					
Heptachlor + Heptachlor Epoxide	μg/L	0.01			<0.01
Lindane	μg/L	0.01			<0.01
Malathion	μg/L	0.02		190	<0.02
Methoxychlor	μg/L	0.01			<0.01
Metolachlor	μg/L	0.01		50	<0.01
Metribuzin	μg/L	0.02		80	<0.02
Parathion	μg/L	0.02			<0.02
Phorate	μg/L	0.01		2	<0.01
Prometryne	μg/L	0.03		1	<0.03
Simazine	μg/L	0.01		10	<0.01
Temephos	μg/L	0.01			<0.01
Terbufos	μg/L	0.01		1	<0.01
Triallate	μg/L	0.01		230	<0.01
Trifluralin	μg/L	0.02		45	<0.22↑

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

PACKAGE: Phenoxy Acid Herbicides (WA	TER)		Sar	nple Number	9
			s	ample Name	13 Herbert Place
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg	O.169_03		S	ample Matrix	Non-Reportable
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water	- Reg O.169_03			Sample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
Phenoxy Acid Herbicides					
Dinoseb	µg/L	0.36			<0.36
2,4,5-trichlorophenoxyacetic acid (2,4,5-T)	µg/L	0.22	20		<0.22
2,4-dichlorophenoxyacetic acid (2,4-D)	µg/L	0.19		100	<0.19
Bromoxynil	µg/L	0.33		5	<0.33
Dicamba	µg/L	0.20		120	<0.20
Diclofop-methyl	µg/L	0.40		9	<0.40
МСРА	mg/L	0.00012		0.1	<0.00012
Picloram	µg/L	1		190	<1
Radionuclides					
Gross Alpha	Bq/L	0.1		0.1	<0.2↑
Gross Beta	Bq/L	0.1		0.1	<0.2↑
Tritium	Bq/L	10		7000	<100↑
SVOCs - PAHs					
Benzo(a)pyrene	µg/L	0.004		0.01	<0.004

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

ACKAGE: Taste & Odour (WATER)			San	nple Number	9
			S	ample Name	13 Herbert Place
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Re	eg 0.169_03		Si	ample Matrix	Non-Reportable
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wate	er - Reg O.169_03		:	Sample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
Faste & Odour					
МІВ	ng/L	3			<3
Geosmin	ng/L	3			<3
/OCs					
Carbon tetrachloride	μg/L	0.17		2	<0.17
1,2-Dichlorobenzene	µg/L	0.41	100	200	<0.41
1,4-Dichlorobenzene	µg/L	0.36	1	5	<0.36
1,1-Dichloroethylene (vinylidene chloride)	µg/L	0.33		14	<0.33
1,2-Dichloroethane	µg/L	0.35		5	<0.35
Dichloromethane	µg/L	0.35		50	<0.35
Monochlorobenzene	µg/L	0.30	30	80	<0.3
Tetrachloroethylene (perchloroethylene)	µg/L	0.35		10	<0.35
Trichloroethylene	µg/L	0.44		5	<0.44
Trihalomethanes (total)	µg/L	0.37		100	<0.37
Bromodichloromethane	µg/L	0.26			<0.26
Bromoform	µg/L	0.34			<0.34
Chloroform	µg/L	0.29			<0.29
Dibromochloromethane	µg/L	0.37			<0.37
Vinyl Chloride	µg/L	0.17		2	<0.17

CA14040-DEC19 R1

Client: Peto MacCallum Ltd

Project: 17HX016

Project Manager: Melissa King

PACKAGE: VOCs - BTEX (WAT	TER)		Sar	nple Number	9
			s	ample Name	13 Herbert Place
L1 = ODWS_AO_OG / WATER / Table 4 - Drink	king Water - Reg O.169_03		S	ample Matrix	Non-Reportable
L2 = ODWS_MAC / WATER / Table 1,2 and 3 -	Drinking Water - Reg O.169_03			Sample Date	02/12/2019
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	ug/L	0.32		1	<0.32
Ethylbenzene	ug/L	0.33	1.6	140	<0.33
Toluene	ug/L	0.36		60	<0.36
Xylene (total)	ug/L	0.43	20	90	<0.43
m/p-xylene	ug/L	0.43			<0.43
o-xylene	ug/L	0.17			<0.17

EXCEEDANCE SUMMARY

			ODWS_AO_OG /	ODWS_MAC /
			WATER / Table 4	WATER / Table
			- Drinking Water -	1,2 and 3 -
			Reg O.169_03	Drinking Water -
				Reg O.169_03
Method	Units	Result	L1	L2
	Bq/L	<0.2		0.1
	Bq/L	<0.2		0.1
EPA300/MA300-lons1.3	mg/L	390	250	
SM 2130	NTU	1.88		1
SM 2540C	mg/L	1330	500	
SM 3030/EPA 200.8	mg/L as CaCO3	882	100	
SM 3030/EPA 200.8	mg/L	120		20
	Method EPA300/MA300-lons1.3 SM 2130 SM 2540C SM 3030/EPA 200.8 SM 3030/EPA 200.8	Method Units Bq/L Bq/L Bq/L Bq/L SM 2130 NTU SM 2540C mg/L SM 3030/EPA 200.8 mg/L as CaCO3 SM 3030/EPA 200.8 mg/L	Method Units Result Bq/L <0.2	ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg 0.169_03 Method Units Result L1 Bq/L <0.2 Bq/L <0.2

QCR_SubCategory

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Turbidity	EWL0029-DEC19	NTU	0.10	< 0.10	1	10	100	90	110	NA		

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Alkalinity	EWL0027-DEC19	mg/L as CaCO3	2	< 2	2	10	108	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0027-DEC19	mg/L	0.04	<0.04	4	10	98	90	110	97	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC 5 (%) Re	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0024-DEC19	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0024-DEC19	mg/L	0.003	<0.003	3	20	98	80	120	97	75	125
Nitrate (as N)	DIO0024-DEC19	mg/L	0.006	<0.006	0	20	100	80	120	96	75	125
Chloride	DIO0086-DEC19	mg/L	0.04	<0.04	ND	20	96	80	120	98	75	125
Sulphate	DIO0086-DEC19	mg/L	0.04	<0.04	1	20	95	80	120	102	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0029-DEC19	mg/L	1	<1	2	10	101	90	110	106	75	125

Chlorine

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	•
	Reference		Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover	ry Limits 6)	
						(%)	(%)	Low	High	(%)	Low	High
Residual chlorine	EWL0028-DEC19	mg/L	0.02	< 0.02	ND	20	99	90	110	NA		
Total Chlorine	EWL0028-DEC19	mg/L	0.02	< 0.02	ND	20	100	90	110	NA		

Chlorophenols and Phenoxyacid Herbicides

Method: EPA 515.1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	6/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	y Limits	Spike Recovery (%)	Recover (%	y Limits 6)
							(%)	Low	High		Low	High
2,4,5-trichlorophenoxyacetic acid (2,4,5-T)	GCM0022-DEC19	ug/L	0.22	< 0.22	ND	30	62	50	140	116	50	140
2,4-dichlorophenoxyacetic acid (2,4-D)	GCM0022-DEC19	ug/L	0.19	< 0.19	ND	30	54	50	140	101	50	140
2,4-dichlorophenol	GCM0022-DEC19	ug/L	0.15	< 0.15	ND	30	70	50	140	69	50	140
Bromoxynil	GCM0022-DEC19	ug/L	0.33	< 0.33	ND	30	85	50	140	103	50	140
Dicamba	GCM0022-DEC19	ug/L	0.20	< 0.20	ND	30	52	50	140	74	50	140
Diclofop-methyl	GCM0022-DEC19	ug/L	0.40	< 0.40	ND	30	99	50	140	61	50	140
Dinoseb	GCM0022-DEC19	ug/L	0.36	< 0.36	ND	30	66	40	130	65	30	130
MCPA	GCM0022-DEC19	mg/L	0.00012	< 0.00012	ND	30	57	50	140	88	50	140
Pentachlorophenol	GCM0022-DEC19	ug/L	0.15	< 0.15	ND	30	85	50	140	114	50	140
Picloram	GCM0022-DEC19	ug/L	1	< 1	ND	30	27	20	130	52	20	130
2,3,4,6-tetrachlorophenol	GCM0022-DEC19	ug/L	0.2	< 0.2	ND	30	82	50	140	108	50	140
2,4,6-trichlorophenol	GCM0022-DEC19	ug/L	0.25	< 0.25	ND	30	69	50	140	75	50	140

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits	Spike	Recover	y Limits
						(%)	Becover/	(%	6)	Recovery	(%	6)
						(76)	(%)	Low	High	(%)	Low	High
Colour	EWL0019-DEC19	TCU	3	< 3	ND	10	105	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	y Limits
						(%) Recovery		('	%)	Recovery	(%	b)
						(70)	(%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0038-DEC19	mg/L	0.002	<0.002	ND	10	96	90	110	90	75	125

Disinfection Byproducts by IC

Method: EPA317 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	trix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery (%	/ Limits)	Spike Recovery	Recovery (%	/ Limits .)
						(%)	(%)	Low	High	(%)	Low	High
Bromate	DIO0039-DEC19	mg/L	0.003	<0.003	ND	20	101	80	120	94	75	125
Chlorate	DIO0039-DEC19	mg/L	0.01	<0.01	7	20	108	80	120	97	75	125
Chlorite	DIO0039-DEC19	mg/L	0.01	<0.01	ND	20	103	80	120	96	75	125
Chlorate	DIO0077-DEC19	mg/L	0.01	<0.01	NV	20	107	80	120	96	75	125

Glyphosate

Method: EPA547 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Glyphosate	DIO0078-DEC19	ug/L	1	<1	ND	30	105	70	130	95	70	130

Haloacetic Acids

Method: EPA 552.3 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-013

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (१	ry Limits 6)	Spike Recovery	Recover (%	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Bromoacetic Acid	GCM0095-DEC19	ug/L	2.9	< 2.9	ND	30	104	70	130	109	70	130
Chloroacetic Acid	GCM0095-DEC19	ug/L	4.7	< 4.7	ND	30	103	70	130	109	70	130
Dibromoacetic Acid	GCM0095-DEC19	ug/L	2.0	< 2.0	9	30	103	70	130	109	70	130
Dichloroacetic Acid	GCM0095-DEC19	ug/L	2.6	< 2.6	5	30	106	70	130	122	70	130
Trichloroacetic Acid	GCM0095-DEC19	ug/L	5.3	< 5.3	ND	30	112	70	130	103	70	130

Mercury by CVAAS

Method: SM3112/EPA 245 | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Mercury	EHG0003-DEC19	ug/L	0.01	<0.01	ND	20	100	80	120	101	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	trix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recovery (%	/ Limits)
						(76)	(%)	Low	High	(%)	Low	High
Aluminum	EMS0044-DEC19	ug/L	1	<0.001	ND	20	103	90	110	95	70	130
Arsenic	EMS0044-DEC19	ug/L	0.2	<0.0002	ND	20	99	90	110	102	70	130
Barium	EMS0044-DEC19	ug/L	0.02	<0.00002	0	20	99	90	110	NV	70	130
Boron	EMS0044-DEC19	ug/L	2	<0.002	2	20	106	90	110	NV	70	130
Calcium	EMS0044-DEC19	mg/L	0.01	<0.01	3	20	108	90	110	NV	70	130
Cadmium	EMS0044-DEC19	ug/L	0.003	<0.000003	ND	20	100	90	110	105	70	130
Chromium	EMS0044-DEC19	ug/L	0.08	<0.00008	6	20	102	90	110	102	70	130
Copper	EMS0044-DEC19	ug/L	0.2	<0.0002	3	20	101	90	110	86	70	130
Iron	EMS0044-DEC19	ug/L	7	<0.007	0	20	110	90	110	NV	70	130
Magnesium	EMS0044-DEC19	mg/L	0.001	<0.001	4	20	105	90	110	NV	70	130
Manganese	EMS0044-DEC19	ug/L	0.01	<0.00001	2	20	100	90	110	109	70	130
Sodium	EMS0044-DEC19	mg/L	0.01	<0.01	3	20	105	90	110	NV	70	130
Lead	EMS0044-DEC19	ug/L	0.01	<0.00001	1	20	102	90	110	102	70	130
Antimony	EMS0044-DEC19	ug/L	0.09	<0.0009	ND	20	103	90	110	87	70	130
Selenium	EMS0044-DEC19	ug/L	0.04	<0.00004	ND	20	102	90	110	110	70	130
Uranium	EMS0044-DEC19	ug/L	0.002	2e-006	ND	20	100	90	110	94	70	130
Zinc	EMS0044-DEC19	ug/L	2	<0.002	5	20	100	90	110	92	70	130

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD AC (%)		Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits .)
					(%)		(%)	Low	High	(%)	Low	High
Hardness	EMS0044-DEC19	mg/L as CaCO3	0.05	<0.05	3	20	108	90	110	NV	70	130

Methane

Method: In-House | Internal ref.: ME-CA-IENVIGC-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover	y Limits
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Methane	GCM0067-DEC19	L/m3	0.02	< 0.02	ND	30	89	70	130	NA	70	130

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dupli	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9018-DEC19	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Heterotrophic Plate Count (HPC)	BAC9018-DEC19	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9018-DEC19	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Microcystin (Quantitative)	BAC9114-DEC19	ug/L	0.1	0.1# <mdl< td=""><td>ND</td><td>30</td><td>92</td><td>70</td><td>130</td><td></td><td></td><td></td></mdl<>	ND	30	92	70	130			

NDMA

Method: In-House | Internal ref.: ME-CA-IENVIGC-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank		Matrix Spike / Ref.					
	Reference			Blank	RPD	PD AC	Spike	Recovery Limits (%)		Spike (%)		Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High		
Nitrosodimethylamine (NDMA)	GCM0075-DEC19	ug/L	0.0008	< 0.0008	NSS	30	102	80	120					

NTA

Method: In-House | Internal ref.: ME-CA-[ENV]GC-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		Matrix Spike / Re		
	Reference			Blank	RPD	RPD AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Nitrilotriacetic acid (NTA)	GCM0150-DEC19	mg/L	0.03	< 0.03	ND	30	102	80	120			

Paraquat/Diquat

Method: EPA549.1 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.							
	Reference			Blank	RPD	AC	AC Spike		Spike	Spike	Spike	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High					
Diquat	DIO0023-DEC19	ug/L	1	<1	ND	30	103	70	130	87	50	125					
Paraquat	DIO0023-DEC19	ug/L	1	<1	ND	30	101	70	130	92	50	125					

Pesticides

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	າງ Limits ຝ	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alachlor	GCM0041-DEC19	ug/L	0.02	< 0.02	ND	30	134	50	140	136	50	140
Aldicarb	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	94	50	140	98	50	140
Aldrin	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	95	50	140	110	50	140
Atrazine	GCM0041-DEC19	ug/L	0.01	0.02	2	30	129	50	140	126	50	140
Azinphos-methyl	GCM0041-DEC19	ug/L	0.05	< 0.05	ND	30	180	50	140	187	50	140
Bendiocarb	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	85	50	140	84	50	140
Carbaryl	GCM0041-DEC19	ug/L	0.05	< 0.05	ND	30	114	50	140	112	50	140
Carbofuran	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	94	50	140	93	50	140
Chlorpyrifos	GCM0041-DEC19	ug/L	0.02	< 0.02	ND	30	124	50	140	126	50	140
Cyanazine	GCM0041-DEC19	ug/L	0.03	< 0.03	ND	30	136	50	140	141	50	140
Desethyl atrazine	GCM0041-DEC19	ug/L	0.01	< 0.01	0	30	66	30	130	62	30	130
Diazinon	GCM0041-DEC19	ug/L	0.02	< 0.02	ND	30	124	50	140	123	50	140
Dieldrin	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	121	50	140	121	50	140
Dimethoate	GCM0041-DEC19	ug/L	0.06	< 0.06	ND	30	109	50	140	113	50	140
Diuron	GCM0041-DEC19	ug/L	0.03	< 0.03	ND	30	115	50	140	119	50	140
Heptachlor epoxide	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	120	50	140	118	50	140
Heptachlor	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	102	50	140	118	50	140
Lindane	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	110	50	140	108	50	140
Malathion	GCM0041-DEC19	ug/L	0.02	< 0.02	ND	30	151	50	140	157	50	140
Methoxychlor	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	157	50	140	154	50	140

Pesticides (continued)

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-018

Parameter	QC batch	Units	RL Method		Method Duplicate		LC		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recovery Limits (%)	
						(70)	(%)	Low	High	(%)	Low	High
Metolachlor	GCM0041-DEC19	ug/L	0.01	< 0.01	12	30	136	50	140	139	50	140
Metribuzin	GCM0041-DEC19	ug/L	0.02	< 0.02	ND	30	129	50	140	137	50	140
Parathion	GCM0041-DEC19	ug/L	0.02	< 0.02	ND	30	140	50	140	147	50	140
Phorate	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	106	50	140	111	50	140
Prometryne	GCM0041-DEC19	ug/L	0.03	< 0.03	ND	30	133	50	140	136	50	140
Simazine	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	122	50	140	120	50	140
Temephos	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	117	50	140	113	50	140
Terbufos	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	113	50	140	119	50	140
Triallate	GCM0041-DEC19	ug/L	0.01	< 0.01	ND	30	120	50	140	119	50	140
Trifluralin	GCM0041-DEC19	ug/L	0.02	< 0.02	ND	30	118	50	140	137	50	140

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate L		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike	Recover	y Limits
						(%)	Boower			Recovery	(%	.)
						(70)	(%)	Low	High	(%)	Low	High
рН	EWL0027-DEC19	no unit	0.05	NA	1		100			NA		

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike (%)		y Limits)	Spike Recovery	Recover	y Limits
						(76)	(%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0028-DEC19	ug/L	0.04	< 0.04	ND	30	90	60	140	99	60	140
Total												

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike (%)		Spike Recovery	Recover	y Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Benzo(a)pyrene	GCM0041-DEC19	ug/L	0.004	< 0.004	ND	30	102	50	140	102	50	140

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-IENVIEWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	.CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0033-DEC19	mg/L	30	<30	0	20	96	90	110	NA		

QC SUMMARY

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0023-DEC19	ug/L	6	<0.006	ND	20	91	80	120	NA	75	125

Taste & Odour

Method: In-House | Internal ref.: ME-CA-[ENV]GC-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Geosmin	GCM0059-DEC19	ng/L	3	< 3	NSS	30	96	60	140			
MIB	GCM0059-DEC19	ng/L	3	< 3	NSS	30	88	60	140			

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate LC		CS/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike	Recover	y Limits	
						(%)	Recovery			Recovery	(%)		
							(%)	Low	High	(%)	Low	High	
Total Kjeldahl Nitrogen (N)	SKA0026-DEC19	mg/L	0.05	<0.05	ND	10	103	90	110	107	75	125	

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
1,1-Dichloroethylene (vinylidene chloride)	GCM0030-DEC19	ug/L	0.33	< 0.33	ND	30	90	60	130	93	50	140
1,2-Dichlorobenzene	GCM0030-DEC19	ug/L	0.41	< 0.41	ND	30	101	60	130	103	50	140
1,2-Dichloroethane	GCM0030-DEC19	ug/L	0.35	< 0.35	ND	30	94	60	130	99	50	140
1,4-Dichlorobenzene	GCM0030-DEC19	ug/L	0.36	< 0.36	ND	30	102	60	130	103	50	140
Benzene	GCM0030-DEC19	ug/L	0.32	< 0.32	ND	30	97	60	130	101	50	140
Bromodichloromethane	GCM0030-DEC19	ug/L	0.26	< 0.26	ND	30	99	60	130	104	50	140
Bromoform	GCM0030-DEC19	ug/L	0.34	< 0.34	ND	30	98	60	130	99	50	140
Carbon tetrachloride	GCM0030-DEC19	ug/L	0.17	< 0.17	ND	30	97	60	130	102	50	140
Chloroform	GCM0030-DEC19	ug/L	0.29	< 0.29	ND	30	98	60	130	101	50	140
Dibromochloromethane	GCM0030-DEC19	ug/L	0.37	< 0.37	ND	30	98	60	130	101	50	140
Dichloromethane	GCM0030-DEC19	ug/L	0.35	< 0.35	ND	30	87	60	130	127	50	140
Ethylbenzene	GCM0030-DEC19	ug/L	0.33	< 0.33	ND	30	101	60	130	103	50	140
m/p-xylene	GCM0030-DEC19	ug/L	0.43	< 0.43	ND	30	102	60	130	104	50	140
Monochlorobenzene	GCM0030-DEC19	ug/L	0.30	< 0.30	ND	30	100	60	130	102	50	140
o-xylene	GCM0030-DEC19	ug/L	0.17	< 0.17	ND	30	101	60	130	103	50	140
Tetrachloroethylene	GCM0030-DEC19	ug/L	0.35	< 0.35	ND	30	101	60	130	103	50	140
Toluene	GCM0030-DEC19	ug/L	0.36	< 0.36	ND	30	100	60	130	103	50	140
Trichloroethylene	GCM0030-DEC19	ug/L	0.44	< 0.44	ND	30	99	60	130	102	50	140
Vinyl Chloride	GCM0030-DEC19	ug/L	0.17	< 0.17	ND	30	89	50	140	94	50	140

FINAL REPORT

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment Health & Safety	- Lakefield: 185 Conc	Re ession St., Lake	quest for efield, ON KOL	2H0 Phone:	705-652	ry Se 2-2000 F	ax: 705	:es a 5-652-63	nd G 65 We	b: www	.sgs.co	m/envi	ronme	nt										UTC221
Environment, realities dalog	- London: 657 Conso	rtium Court, Loi	ndon, ON, N6	E 2S8 Phone:	519-67	2-4500	Toll Fre	e: 877-8	48-806	60 Fax:	519-67	2-0361			-	-	-				-		1	Page 1 of 1
eceived By: 0/eq Moshiv eceived Date: 120,02,19 (mm/dd/yy)	Received By (si Custody Seal P	gnature): resent: Yes		ratory	Inform	Cooling	n Sect	Presen	t: Ye			, Ty	pe: /0	e j	had	k			L	AB LIN	AS #: _	JAK	1040-Dec19
eceived Time: <u>15</u> : <u>50</u> (hr:min)	INV	Custody Seal In	MATION		1		Tempe		penn		/									24				
REPORT INFORMATION					Quets	tion #		2	2019	7 3	241	1					P.	0. #:		YAU	e	17,	4×0	16
ompany: 1010 1000 Vinci	(same as Rej	oort informati	50)		Proje	ct #:					1.6	Sel.	1				Si	e Locati	on/ID:	1	24	100		
It P for Park	Company:			1445	110,00								TL	IRNAF	ROUN	DTIM	IE (TAT)	REQUI	RED					L
Idress: 45 Duritie Pour	Contact:		Steel .		D	Re	gular	TAT (5-	7days	5)							TAT Sam	s are quo ples recei	ted in bu ved afte	usiness er 6pm c	days (or on w	eekend	statutory s: TAT be	gins next business day
Hamilton, 01-	Address:	ddress:				TAT	Addit	ional C	harge	s May	Apply	y):	1	10	Day [20	Days 🗌	3 Days	4	Days				
none: $(10) = (1 - 10) = 2(3)$	Dhanai	CE ER			PLEA	SE CO	NFIR	MRUS	H FEA	SIBIL	ITY W	TH S	GS RE	PRES	SENT	ATIVE	PRIOR	TO SUE	BMISSI	ON	-			
ax: <u>705-561</u> 0700	Phone:	The state			Spec	ifv Due	Date:						NO	re: DF	RINKIN	G (PO	TABLE) V	VATER S	AMPLES	FOR H	CHAIN	OF CL	SUMPTIO JSTODY	N MUST BE SUBMITTED
mail: MKing & petornaller num	Email:	(Carlos and		<u></u>							A	NAI	YS	IS R	EQ	UES	TED							
REG	ULATIONS	N.		- Puel		M	& 1		SV	oc	PCB	Ph	IC	VC	C	Pest		Oth	er (plea	ase speci	ify)	1.20	TCLP	
tegulation 153/04: Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium Table Fine	Other Regulation Reg 347/558 PWQ0 CCME MISA	(3 Day min TA MMER Other:	n Sewer Municip	r By-Law: Sanitary Storm pality:		nics EC,SAR-soil)	N) Hg. CrVI	,Mo,Ni,			Arocior					ther	4-1-1					Extended	Specify TCLP tests	COMMENTS
RECORD OF SITE CONDITION (RSC)	YES	NO			X	gar WS),E	uite	IV, CU, Pb				×			195	scify o	2	1 2	1.0	10		icte	Uvoc	O O MINIELITI O
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered (Metals & Inol nel CrvI, CN,Hg pH,(B(H (CI Na-water)	Full Metals S	ICP Metals or Sb,As,Ba,Be,B,Cd,Cr,Co	PAHs only	SVOCS all inci PAHs, ABNs, CPs	PCBs Total	F1-F4 + BTE	F1-F4 only no BTEX	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or spe	C HOJ				Sewer Use: Specify pkg:	Water Chara	B(a)P ABN	
1 13 Herbert Place	Dec/02/19	14:00	34	Water	N		1										×				-			- Antonio Californi
2			and the second second								18			1	2000				1.50					
3						1.1					1			125	1			1						
	Ange Charles		15 24.22	as the		1023	1.1				12.1			1.15	16							1.1	1000	And the second second
*		Constant of	T. Des. C.					-			1								1.0.11					
5		-									1				12		1.2.0		1.52	1.				See State Page
6											-		1						1000	1.24			-	
7	1000	Con Strang				-					19.00				1				1.1.1	1.25		199		12. 10. 10. 10. 10.
8		-	100	1		-		-			-		-	-										The second of the
9	1 24 M	17. 19. 1	New N	12.19										-	-				-					
10		Mil Parts																-		-	-	3.3		Marcana Marcana
11	N R. MAR		and and																			24		
40	. Service datas	in the second		1000		1.1.1					12.2				14					1				A STATE OF THE STATE
Chservations/Comments/Special Instructions		1		1		/	2	2		1		1		and a			19.20%							
Sampled By (NAME): Philes Av	63		Signature:	N	27	-9	/	1				140		dite	Date	10	2,0	2,	19	(m	nm/dd/	vy)		Pink Copy - Client
Balinguished by (NAME):		Sec. State	Signature:	1	/	/		See.	See.	de l'					Date	:		/	_	(m	nm/dd/	yy)		Yellow & White Copy - So
Revision #: 1.2 Date of Issue: 09 Sept, 2019 the contract, or in an alter	GS is acknowledgement mative format (e.g. shipp	that you have be ing documents).	en provided dire {3} Results may terms and conv	be sent by email	e collectio ail to an u	on/handlin Inlimited bies are a	ng and tr number vailable	of addres	ion of sa ses for r uest.) A	amples. no additi ttention	(2) Subm onal cos is drawn	t. Fax is to the li	of samples available mitation	es to SC ble upon of liabil	aS is co reques lity, inde	nsidered t. This mnifica	d authoriza document tion and ju	tion for con is issued by risdiction is	the Com sues defi	ned there	der its C ein.	General (Conditions	of Service accessible at

HYDROGEOLOGICAL INVESTIGATION 13 HERBERT PLACE HAMILTON (DUNDAS), ONTARIO for MR. LUKE HEWITT

PETO MacCALLUM LTD. 45 BURFORD ROAD HAMILTON, ONTARIO L8E 3C6 Phone: (905) 561-2231 Fax: (905) 561-6366 Email: hamilton@petomaccallum.com

Distribution: 1 cc: Mr. Luke Hewitt (via email) 1 cc: AJ Lakatos Planning Consultant (via email) 1 cc: PML Hamilton

PML Ref.: 17HX016 Report: 1 April 2019

April 30, 2019

PML Ref.: 17HX016 Report: 1

Mr. Luke Hewitt 13 Herbert Place Hamilton (Dundas), Ontario L9H 5E1

Dear Mr. Hewitt

Hydrogeological Investigation 13 Herbert Place <u>Hamilton (Dundas), Ontario</u>

Peto MacCallum Ltd. (PML) is pleased to present the results of the hydrogeologic investigation recently completed in connection with the above project. Authorization to proceed with this assignment was provided by Mr. Luke Hewitt in an email dated August 14, 2017 and was confirmed with a signed Engineering Services Agreement dated September 7, 2017.

It is understood that plans call for a severance of a 0.4 ha (1.0 ac) lot from an approximate (0.8 ha) 2.1 ac residential property located at 13 Herbert Place in Hamilton (Dundas), Ontario. The hydrogeological assessment is to be conducted on the lands to be severed in support of development of a single family three bedroom dwelling serviced by an on site sewage treatment system and individual potable water supply well.

Terms of Reference

The purpose of this study is to define the subsurface soil and ground water conditions at the planned lot and based on this information, provide an assessment of the capability for onsite treatment of domestic sewage, mitigation of the nutrient loading from the sewage treatment system and the offsite impact of infiltration of septic effluent on the ground water resource in the area, as well as an evaluation of the feasibility of developing a potable water supply for the severed lot.

Study Methodology

The objectives of the study were accomplished by completing the following tasks:

1. Attend the Site to visually examine the terrain on and in the vicinity of the lands to be severed.

- 2. Review of geotechnical and hydrogeological reports conducted in the area, Ministry of the Environment and Climate Change (MOECC) well records, and published geological data to determine the hydrostratigraphy and hydrogeological conditions in the area.
- 3. Witness excavation of four test pits on the lands to be severed to determine the subsurface conditions on the lot, obtain and conduct laboratory tests on selected soil samples.
- 4. Conduct two particle size distribution analyses on soil samples retrieved from the boreholes to determine appropriate soil permeability parameters for septic bed design.
- 5. Conducting engineering analysis to determine the nitrate loading from septic effluent infiltration on the lands to be severed and retained.
- 6. Preparation of this report to document the factual aspects of the study, summarize the hydrogeologic conditions, document the results of the water quality laboratory test results, provide hydrogeologic comments regarding the feasibility of drilling a new well to supply potable water as well as to assess the capability of the on-site soils to treat domestic sewage.

Site Setting

The land parcels that are the subject of this assessment are described in the following paragraphs and shown on Drawing 1, appended. The entire property at 13 Herbert Place Hamilton (Dundas), Ontario (including the lands to be severed and the lands to be retained) is referred to herein as the "Site".

Lands to be Severed: Comprises 1.03 acres (0.42 ha) of land located on the east side of the Site. It is currently vacant and comprises a grassed lot.

<u>Lands to be Retained</u>: Comprises 1.03 acres (0.42 ha) of land located on the west side of the Site. It is currently occupied by a three bedroom residential dwelling, a shed, and a swimming pool.

According to the 2017 survey plan provided to PML, the lands to be retained and the lands to be severed are located on Lot 1, Concession 1, formerly in the Township of West Flamborough, now in the Town of Dundas, Regional Municipality of Hamilton, Ontario.

Adjacent land uses include a vacant lot to the east at 15 Hauser Place. To the south is the road Hauser Place followed by a residential dwelling at 17 Herbert Place. To the west is the road Herbert Place followed by a residential dwelling at 12 Herbert Place. To the North is residential dwellings at 145 and 147 The King's Highway No. 8.

Physiographic and Geologic Setting

The Site is situated within the physiographic region known as the Flamborough Plain. This area is bounded to the northwest by the Galt moraine, and on the south by the silts and sands of glacial Lake Warren. A few drumlins are found scattered over this limestone plain and swamps are plentiful (Chapman and Putnam, 1984).

Ontario Base Map (OBM) data published in 2004 on the Geography Network Canada online GIS service was reviewed and topographic contours indicate the grade of the Site was near elevation 232 (metric, geodetic) at the northwest corner of the property sloping to elevation 226 (metric, geodetic) at the southeast corner of the property.

According to Paleozoic Geology Map 2336, the area is underlain by bedrock of the Eramosa Member: dark brown or black, bituminous dolostone of the Lockport and Amabel Formation. According to Bedrock Topography Map 2034, geologic data indicates that bedrock underlying the Site is near elevation 198 to 206 (metric, geodetic), or 20 to 30 m below the ground surface.

Hydrogeology

Surface Water

No surface water bodies, creeks or streams were observed on Site. Tributaries of Spencer Creek are located approximately 350 m north and 800 m south of the Site and Christie Lake/Reservoir is located about 900 m northwest of the Site. Cootes Paradise/Burlington Bay/Lake Ontario is located approximately 6.5 km east/southeast of the Site.

Aquifers and Local Ground Water Use

Published water well records were obtained from the Ministry of the Environmental and Climate Change (MECP), formerly MOECC, Environmental Monitoring and Reporting Branch, Water Well Records Management for the Site and adjacent lands. These records were reviewed in order to establish the general hydrogeological environment in the area and determine anticipated well capacities.

Based on water well information obtained from the MECP, 117 wells were reported to be located within an approximate 500 m radius of the centroid of the Site. The well records for seven of the nearest water wells and a summary of the 117 well records are included in Appendix A.

Based on the records, we note the following:

• Forty (40) of the wells were terminated in the sand, gravel and/or clay overburden at depths of 8.2 to 44.2 m and generally encountered water at 5.5 to 43.6 m, with static levels at 1.2 to 30.5 m.

Pump tests conducted following installation of the wells in the overburden indicate the yield of wells typically ranged from 3.8 to 75.7 L/min with an average of 33 L/min.

The water quality reported on 36 of the 40 overburden well records was generally fresh; one overburden well was reported as sulphur water; and three overburden wells reported unknown quality.

• Seventy-five (75) of the wells comprised 150 mm diameter drilled wells developed in the bedrock at depths of 9.1 to 60 m. The bedrock aquifer generally encountered water at depths of 7.0 to 45.7 m, with static levels at 1.8 to 35.1 m.

Pump tests conducted following installation of the wells in bedrock indicate the yield of wells ranged from 3.8 to 132.5 L/min with an average of 39.9 L/min.

The water quality reported on 46 of the 75 bedrock well records was generally fresh; 19 bedrock wells reported sulphur water; and 10 bedrock wells reported unknown quality.

• For two of the well records, no soil descriptions and water details were provided.

Based on the potentiometric surface deduced from the static water level documented on the well records and using Google Earth for approximate elevations, the inferred regional ground water flow is expected to be north (towards Spencer Creek) with components to the southeast (towards the Niagara Escarpment) in both the overburden and bedrock.

Potable Water Supply Assessment

Water Quantity

Based on the published well records drawing, Well No. 6813459 is the well located on the lands to be retained. The record indicated the subsurface conditions comprised sandy clay, over limestone, with a layer of sand and gravel. The well was 18.3 m deep and was completed on March 27, 2001. The current occupant reported sufficient yield from the well.

The existing well is a drilled well developed in a bedrock deposit of limestone. The pump test conducted following installation the well indicates the yield is 114 L/min and the static water level in the well was 4.5 m. The water quality reported was fresh.

The five closest wells to the Site indicated the following:

 Four of the wells were terminated in the sand and/or gravel overburden at depths of 17.1 to 28.7 m and generally encountered water at 16.8 to 28.7 m, with static levels at 4.9 to 25.6 m.

Pump tests conducted following installation of two of the wells indicates the yield typically ranged from 9.5 to 76 L/min with an average of 38 L/min. The water quality reported was fresh.

• One of the wells was terminated in the limestone bedrock at a depth of 22.5 m and generally encountered water at 22 m, with a static level at 10.7 m.

A pump test conducted following installation of the well indicated a yield of 34 L/min; the water quality was reported as fresh.

For preliminary planning purposes, the water demand for the proposed residential three bedroom dwelling is considered to approximate the daily sewage flow rate. A daily sewage flow of 1,600 L/day corresponds to 1.1 L/min for a 24 hour period.

Since the majority of the water demand will be limited to two, 2 hour periods in the day, a well yield of at least 6.7 L/min will be required to service the peak water demand of the development. The measured yield in four close wells was an average of 38 L/min, which is sufficient to supply the demand of a three bedroom residential dwelling. An adequate water supply therefore, should be able to be developed on the lands to be severed.

It should be noted that the assessed water demand exceeded the reported yield of a few of the wells developed in the overburden and bedrock aquifers within 500 m of the property, however a majority of the reported well yields were sufficient. It is noteworthy that sulphur water was identified in some bedrock and overburden wells.

Pump tests will be required to confirm that an adequate water supply can be developed on the property and the sustained pumping rate will not have an adverse impact on other wells in the area.

Water Quality

In order to check the quality of the ground water, a sample of raw water was retrieved from the water well on the lands to be retained (13 Herbert Place). The sample was tested for turbidity, hardness, pH, E. coli, total coliform and Schedule 23 inorganic parameters, which includes nitrate.

Laboratory Certificates of Analysis are included in Appendix B. The measured values of the tested parameters and the corresponding Standards are shown on the Certificates of Analysis with the levels exceeding the applicable Standards highlighted in orange.

Three additional samples were obtained for nitrate from properties within a 500 m radius of the site (45 Marshboro Avenue, 48 Marshboro Avenue, and 51 Marshboro Avenue).

The results of the water quality testing were compared to the Ontario Drinking Water Quality Standards (ODWQS), Ontario Regulation 169/03 of the Safe Drinking Water Act, 2002. The results indicate that the level of nitrate met the criteria of 10 mg/L, as summarized below:

Sample ID/Address	Nitrate Concentration (mg/L)	Type of Well	Well Depth (m)
13 Herbert Place	0.291	Drilled	18.3
45 Marshboro Avenue	2.41	Drilled	27.4
48 Marshboro Avenue	2.97	Drilled	16.8
51 Marshboro Avenue	2.23	Drilled	36.6

A background nitrate concentration of 2.97 mg/L was used for the subsequent nitrate loading calculation.

Regarding the remaining parameters tested, the measured concentrations met the ODWQS.

The wells had treatment systems including ultraviolet light and water softener systems, with the exception of 51 Marshboro Avenue having no treatment systems.

Based on the reported use of treatment systems in the area, a private water treatment system may be desired to improve the water quality. If a system for treated drinking water is installed, PML recommends that a sample be obtained and tested to ensure the treatment system is functioning properly and the quality of the water meets the ODWQS. It is noted that additional water quality testing will likely be required by The City of Hamilton.

Sewage Treatment System

Test Pit Investigation

The field work was carried out on October 12, 2017 and comprised a total of four test pits (Test Pits 1 to 4) excavated to depths of 3.0 m. The test pit (TP) locations are shown on Drawing 1, appended.

The test pit locations were selected and established in the field by PML. Ground surface elevations and UTM co-ordinates at the test pit locations were determined by PML. The following temporary benchmark (TBM) was used for vertical reference:

TBM: Top of culvert located on the west side of Herbert Place, approximately 20 m north of Hauser Place. Elevation: 229.3 m (geodetic)

The test pits were excavated using a John Deere 410J rubber tire backhoe. The backhoe was supplied and operated by a specialist contractor, working under the full time supervision of a PML technical staff member.

The ground water conditions at the test pit locations were assessed during excavation by visual examination of the soil as the samples were retrieved and when appropriate by measurement of the water level in the open test pit.

The recovered soil samples were returned to our laboratory for detailed visual examination and classification. Laboratory testing was completed by PML on selected samples to determine index properties and soil classification (moisture content, grain size).

Summarized Subsurface Conditions

Reference is made to the appended Log of Test Pit sheets for details of the subsurface conditions including soil classifications, inferred stratigraphy, ground water observations, and the results of laboratory grain size analysis and moisture content determinations.

Due to the soil sampling procedures and limited sample size, the depth demarcations on the test pit logs must be viewed as transitional zones between layers and cannot be construed as exact geologic boundaries between layers. PML would be pleased to assist in defining geologic boundaries during construction if required.

The subsurface stratigraphy revealed in the test pits generally comprised topsoil or topsoil fill, overlying fill, over silt, underlain by sand.

<u>Topsoil</u>

A 50 and 240 mm thick sandy/clayey silt topsoil layer was contacted at the ground surface of Test Pits 2 and 4. The moisture content of the topsoil was judged to be damp/drier than plastic limit (DTPL).

Topsoil Fill

In Test Pits 1 and 3, a 210 and 110 mm thick sandy silt topsoil fill layer was contacted at the ground surface. The topsoil fill was judged to be damp.

<u>Fill</u>

A 0.2 and 1.0 m thick layer of sand and silt fill was encountered below the topsoil fill and was penetrated at 0.5 and 1.1 m (elevation 229.5 and 227.7) in Test Pits 1 and 2, respectively. The fill contained occasional rootlets, cobbles, and metal and shale fragments. The fill was judged to be damp to moist with moisture content ranging from 6 to 15%.

<u>Silt</u>

Silt was encountered below the topsoil and fill at depths of 0.1 to 1.1 m (elevation 227.0 to 229.5) in the test pits. The silt was contacted to the termination depths of 3.0 m (elevation 225.3 to 226.9) in Test Pits 1, 2, and 3. Locally, in Test Pit 4, the silt was penetrated at a depth of 2.7 m (elevation 224.5). The moisture content of the silt ranged from 14 to 29% and was judged to be damp to moist.

The results of two grain size tests (Figure 1 and 2) indicate that the silt stratum comprises 0 to 8% gravel, 4 to 28% sand, 58 to 81% silt, and 7 to 14% clay.

Sand

In Test Pit 4, sand was contacted below the silt at 2.7 m (elevation 224.5) and extended to the termination depth of 3.0 m (elevation 224.2). The in situ moisture content level was 19% and was judged to be wet.

Ground Water

Upon completion of excavation, no seepage or cave was observed in the test pits. Ground water levels will fluctuate subject to seasonal variations and precipitation patterns.

Particle Size Distribution Testing

Two soil samples were submitted for particle size analysis. The results are included in Figures 2 and 3. Based on the grain size distribution curves, the percolation rate "T" of the native soils at the sample locations is considered to be 20 to 50 min/cm.

Nitrate Loading Considerations

Assessment of the nitrate loading from infiltration of effluent from the sewage treatment systems was conducted in accordance with the following documents:

- Procedure D-5-4 Technical Guideline for Individual On Site Sewage Systems: Water Quality Impact Assessment (MOEE April 1996);
- Hydrogeological Technical Information Requirements for Land Development Chapter 4, Section 4.5 (MOEE April 1995).
- Guidelines for Hydrogeological Studies and Technical Standards for Private Services (City of Hamilton, November 2013)

Nitrate in septic effluent is attenuated by dilution with infiltrating surface water and water discharged into the septic bed as well as ground water seepage from the upstream to the downstream side of the property (ground water flux). Ground water flux was not considered in the nitrate dilution calculation for this lot; consequently, the nitrate loading assessment is considered to be conservative.

The surface water infiltration rate was computed in accordance with the procedure noted in the MOEE information document. This procedure involves a three step process:

- a) A water budget analysis to compute the 'water surplus' (total rainfall evapotranspiration).
- b) Selection of infiltration factors for the conditions at this particular Site to compute the rate of infiltration (sum of infiltration factors x water surplus).
- c) Computation of the nitrate loading on the ground water resource.

The water budget analysis was conducted using the Thornwaite and Mather procedure noted in the MOEE information document. This method is based on classic storm water management principles. Since the equations employed to compute the volume of surface water runoff were developed for heavy rainfall events of short duration, and a large volume of the precipitation occurs at a light to moderate rate over an extended period of time, the procedure over-estimates the volume of runoff and yields a conservative assessment of the infiltration rate.

The water surplus and infiltration rates noted in the following table were computed from rainfall data provided by Environment Canada and the infiltration factors noted in the MOEE information document:

Total	.0.6
Cover	. <u>0.1</u>
Soil	.0.3
Topography	.0.2

Monitoring Station	Annual Precipitation	Water Surplus ¹	Infiltration Rate
	(mm)	(mm/year)	(mm/year)
Millgrove ²	973	388.2	232.9

- 1. Computed by the Thornwaite and Mather Method
- 2. Millgrove Monitoring Station was used since it was the closest station with a complete set of data.

The nitrate loading computation was based on the following equation and input parameters noted in the MOEE Procedure and City of Hamilton Guidelines (November 2013).

$$N_{L} = \frac{N_{s} V_{s} + N_{b} V_{b}}{V_{i} + V_{b}}$$

where N_L = nitrate loading mg/L

- N_s = nitrate concentration in septic effluent (40 mg/L, per MOEE and City of Hamilton Guidelines)
- N_b = background nitrate concentration (2.97 mg/L; maximum measured)
- V_s = daily sewage flow volume (L)
- V_b = volume of sewage effluent

Vi =	infiltration vo (infiltration r	olume (ate x la	(L) and area)/365 days
infiltra	ation rate	=	232.9 mm/year
land a	area	=	0.42 ha

For an effluent nitrate concentration of 40 mg/L, the nitrate concentration at the down gradient property line of the approximate 1.0 acres (0.42 ha) parcel of land to be severed and retained is computed to be 11.7 mg/L, which does not satisfy the regulatory requirement of 10.0 mg/L. A copy of this calculation is provided on Figure 4.

To achieve a nitrate concentration down gradient of the property line that satisfies the regulatory requirement of 10 mg/L a maximum effluent nitrate concentration of 33 mg/L is required, which is an 18% reduction from the 40mg/L required by the MOEE and City of Hamilton Guidelines. In this regard, a tertiary treatment system is required to reduce the nitrate concentration by a minimum of 18%, which results in a downgradient concentration of 9.8 mg/L. A copy of this calculation is provided on Figure 5. It is noted that tertiary treatment systems can a achieve a minimum of 25% nitrate reduction, up to 90 to 95%, depending on the chosen system.

Per a City of Hamilton 2012 staff memo, the use of a tertiary treatment systems is recommended for properties within a vulnerable area located in a source water protection area. These at-risk areas are generally located in Wards 12, 14 and 15 (Site is situated in Ward 14).

Leaching Bed Design Criteria

The silt on Site is considered capable of treating domestic sewage. Ground water was not observed in the test pits. Provided Site grades are maintained or raised during development, the minimum 900 mm clearance requirement between the water level and the base of the trench excavated for leaching beds should be satisfied.

The leaching bed should be designed based on the maximum daily sewage effluent loading. The total daily sewage flow (Q) for a three-bedroom house was deemed to be 1,600 L/day based on the 2006 Ontario Building Code (Table 8.2.1.3A)

Based on the grain size distribution curve of a sample of the silt (Figures 2 and 3), it is expected the native soils will exhibit a coefficient of permeability, K in the order of 10⁻⁵ to 10⁻⁶ cm/sec. It is considered that a percolation rate "T" of 20 to 50 min/cm may be used for design purposes and a fully raised leaching bed may be required.

For planning purposes, the minimum required area for the leaching bed in accordance with Table 8.7.4.1.A of the OBC can range from 250 to 500 m². Once the location of the sewage treatment system is selected, we recommend field percolation tests to determine the in situ percolation rate and confirm the required area of the leaching bed.

The sewage treatment system should be designed and constructed in accordance with the Ontario Building Code and/or local regulations.

General recommendations for management practices are provided on Table 1.

Engineering Discussion and Recommendations

It is understood that plans call for a severance of a 0.4 ha (1.0 ac) lot from an approximate 0.84 ha (2.08 ac) residential property located at 13 Herbert Place in Hamilton (Dundas), Ontario. Current plans call for the construction of a three bedroom residential dwelling serviced by an on site sewage treatment system and individual potable water supply well on the lands to be severed.

Based on the findings of this study, PML's summarized comments are provided below.

1. It is likely that the ground water aquifer on this Site will be capable of meeting the water demand for the development, subject to the results of pump testing. A private water treatment system may also be required.

Pump tests will be required to confirm the aquifer characteristics, yield and the potential for an adverse impact to the ground water resource in the area and neighbouring wells. Additional water sampling and testing will also be required per the City of Hamilton Guidelines.

- 2. It is recommended that a sample of the treated drinking water from the well to be installed on the lands to be severed be obtained and tested to ensure the treatment system is functioning properly and the quality of the water meets the ODWQS.
- 3. In order to achieve a nitrate loading less than the regulatory requirement of 10 mg/L from a sewage system constructed to service a three bedroom dwelling, the effluent nitrate concentration must be reduced from 40 mg/L to 33 mg/L (minimum 18% reduction) by employing tertiary treatment on both the lands to be severed and retained.
- 4. Provided tertiary treatment is installed, it is considered that infiltration of septic effluent from the severed and/or retained lots will not have significant impact on the ground water resource.
- 5. On site treatment of domestic sewage is considered to be feasible through the installation of a septic bed; the minimum area required is estimated to be 250 to 500 m² for a three bedroom dwelling.
- 6. Once the location of the sewage treatment system is selected, we recommend field percolation tests to determine the in-situ percolation rate and confirm the required area of the leaching bed.
- 7. The sewage treatment system should be designed and constructed in accordance with the Ontario Building Code and/or local regulations, including confirmation of existing conditions and set backs.

<u>Closure</u>

We trust the information presented in this report is sufficient for your present purposes. Please do not hesitate to contact our office should you have any questions.

Sincerely

Peto MacCallum Ltd.

Melissa King, P.Geo., QP_{ESA} Director Discipline Head, Geoenvironmental and Hydrogeological Services

TF/KF:ld

Enclosures:

 Table 1 – Recommended Construction and Management Practices For Private Septic Tile Leaching Bed Sewage

 Disposal Systems

 Figure 1 – Topography Map

 Figures 2 and 3 - Particle Size Distribution Charts

 Figures 4 and 5 – Nitrate Loading Calculations

 List of Abbreviations Sheet

 Test Pit Logs 1 to 4

 Drawing 1 – Test Pit Location Plan

 Appendix A – Water Well Records

 Appendix B – SGS - Certificate of Analysis

References

Topographic, Physiologic, Geologic, and Hydrologic Setting Maps

Ontario Basic Maps (OBM) ArcIMS Service, Environmental Systems Research Institute Canada, 2004, http://www.geographynetwork.ca/

Google Earth[™], http://www.google.com/earth/index.html

Chapman, L.J., and Putnam, D.F., 1984: The Physiography of Southern Ontario; Ontario. Ontario Research Foundation.

M2605; Quaternary Geology, Hamilton, Southern Ontario; Ministry of Natural Resources; 1983; Scale: 1:50 000.

M2034; Bedrock Topography of the Hamilton Area, Southern Ontario; Ontario Department of Mines, 1958; Scale: 1:63,360.

P495; Drift Thickness Series, Hamilton Sheet, Southern Ontario; Ontario Department of Mines, 1968.

M2336; Paleozoic Geology, Hamilton, Southern Ontario; Ontario Division of Mines, 1975; Scale: 1:50 000.

M2033; Pleistocene Geology of the Hamilton Area, Southern Ontario; Ontario Department of Mines, 1962; Scale: 1:63,360.

Publications

Ministry of Environment and Energy (MOEE) Hydrogeological Technical Information Requirements for Land Development Applications, April 1995, Her Majesty the Queen in Right of Ontario as Represented by the Minister of Environment and Energy.

Ministry of the Environment and Energy (MOEE), Procedure D-5-4 – Technical Guideline for Individual on Site Sewage Systems: Water Quality Impact Assessment, April 1996.

O. Reg. 169/03 Ontario Drinking Water Quality Standards, Safe Drinking Water Act, 2002.

O. Reg. 170/03 Drinking Water Systems, Safe Drinking Water Act, 2002.

Guidelines for Hydrogeological Studies and Technical Standards for Private Services (City of Hamilton, November 2013)

Well Records

Ontario Ministry of the Environment (MOE) Environmental Monitoring and Reporting Branch, Water Well Records Management

TABLE 1

RECOMMENDED CONSTRUCTION AND MANAGEMENT PRACTICES FOR PRIVATE SEPTIC TILE LEACHING BED SEWAGE DISPOSAL SYSTEMS

- 1. Lot drainage should be accentuated to ensure positive runoff of storm water away from the tile field. Sewage effluent should not compete with infiltrating storm water which may overload the tile field capacity.
- 2. Provided it is allowed by local authorities, eavestrough downspouts should be connected directly into the storm sewer, eliminating a potential water source to compete for ground infiltration.

If storm sewers are not available, the downspouts and extensions should be planned for the opposite side of the house away from the leaching bed.

3. Water conservation should be exercised to reduce the volume of effluent to be handled by the tile field.

The tile field should be fenced off before construction proceeds.

- 4. All heavy construction equipment and stockpiling of fill should be prohibited on the tile field area, since soil compaction will result which could severely restrict evapotranspiration within the bed area.
- 5. Vehicular traffic of any type should not be permitted on the surface of the leaching bed following construction.
- 6. In order to prevent frost damage, the snow cover should be left in place and measures taken to ensure it is not packed by surface use.
- 7. Construction of the leaching bed system should be supervised by geotechnical personnel.
- 8. Routine maintenance is necessary to control growth of excessive vegetation such as trees and heavy growth of weeds over the leaching bed area.
- 9. To ensure continued bacterial breakdown of sewage effluent, the septic tank should be pumped periodically to remove sludge build-up.
- 10. If the septic system is equipped with a grease trap, a routine maintenance program must be implemented to ensure it is cleaned regularly.
- 11. Backwash water from water softener systems can adversely affect bacterial action and concrete components of the sewage system. Therefore, the water should not be discharged to the sewage system.
- 12. Chemicals such as drain cleaners, petroleum products, solvents, degreasers, etc. will also affect bacterial action and should not be discharged into the sewage system.

PROJECT NO. 17HX016

PARTICLE SIZE DISTRIBUTION CHART

FIGURE NO. 2

SILT, TRACE GRAVEL, SAND, AND CLAY

PROJECT NO. 17HX016

PARTICLE SIZE DISTRIBUTION CHART

FIGURE NO. 3

SILT, SOME SAND AND CLAY

Hydrogeological Investigation, 13 Herbert Place – Hydrogeological Service PML Ref.: 17HX016, Report: 1, 13 Herbert Place, Hamilton, Ontario April 30, 2019

Nitrate Loading Calculations	Figure	4		
Use/Notes	Use/# Units	Sewage flow volume (L)	Total L/day	
Land to be Retained/Severed (3 bedroom dwelling)	1	1000	1000	
TOTAL Volume			1000	
Water Budget Calculation	388.15	mm		
Infiltration factors				
topo.	0.2			
soil	0.3			
cover	<u>0.1</u>			
	0.6			
Infiltration=Infiltration factor*water budget balance	232.9	mm/year		
Infiltration area	0.42	ha		
	4,176	m ²		
	, -	1 1		
days in year	365			
Infiltration Volume =Infiltration* area/365 days	2664.8	L/day		
· · · · · · · · · · · · · · · · · · ·		,		
Background - Maximum Nitrate Results from SGS	2.97	mg/L		
		Ŭ		
Note: Nitrate volume < 10 mg/L required				
nitrate loading (per MOE)	40	mg/L		
nitrate concentration for site equals:	11.7	mg/L N	>10	
nitrate loading*flow volume				
vol.infiltration+flow volume				

Hydrogeological Investigation, 13 Herbert Place – Hydrogeological Service PML Ref.: 17HX016, Report: 1, 13 Herbert Place, Hamilton, Ontario April 30, 2019

Nitrate Loading Calculations

Nitrate Loading Calculations		Figure	5	
Use/Notes	Use/# Units	Sewage flow volume (L)	Total L/day	
Land to be Retained/Severed	1	1000	1000	
TOTAL Volume			1000	
Water Budget Calculation	388.15	mm		
In filtration footons				
Inflitration factors	0.0			
lopo.	0.2			
COVER	0.3			
	<u>0.1</u> 0.6			
	0.0			
Infiltration=Infiltration factor*water budget balance	232.9	mm/year		
Infiltration area	0.42	ha		
	4,176	m ²		
	,	F		
days in year	365			
Infiltration Volume =Infiltration* area/365 days	2664.8	L/day		
Background - Maximum Nitrate Results from SGS	2.97	mg/L		
Note: Nitrate volume < 10 mg/L required		4		
nitrate loading (18% reduction)	33	mg/L		
nitrate concentration for site equals:	0.0	ma/L N	-10	
nitrate loading*flow volume	9.8	111g/∟ N	<10	
vol infiltration+flow volume				

PENETRATION RESISTANCE

Standard Penetration Resistance N: - The number of blows required to advance a standard split spoon sampler 0.3 m into the subsoil. Driven by means of a 63.5 kg hammer falling freely a distance of 0.76 m.

Dynamic Penetration Resistance: - The number of blows required to advance a 51 mm, 60 degree cone, fitted to the end of drill rods, 0.3 m into the subsoil. The driving energy being 475 J per blow.

DESCRIPTION OF SOIL

The consistency of cohesive soils and the relative density or denseness of cohesionless soils are described in the following terms:

<u>CONSISTEN</u>	<u>ICY N (blows/0.3 m)</u>	<u>c (kPa)</u>	<u>DENSENESS</u>	<u>N (blows/0.3 m)</u>
Very Soft	0 - 2	0 - 12	Very Loose	0 - 4
Soft	2 - 4	12 - 25	Loose	4 - 10
Firm	4 - 8	25 - 50	Compact	10 - 30
Stiff	8 - 15	50 - 100	Dense	30 - 50
Very Stiff	15 - 30	100 - 200	Very Dense	> 50
Hard	> 30	> 200		
WTPL \	Netter Than Plastic Limit			
APL A	About Plastic Limit			
DTPL [Drier Than Plastic Limit			

ΤW

ΤP

TYPE OF SAMPLE

SS	Split Spoon	
WS	Washed Sample	

- Scraper Bucket Sample SB

Thinwall Open **Thinwall Piston**

- OS **Oesterberg Sample**
- AS Auger Sample
- FS Foil Sample RC **Rock Core**
- Chunk Sample ST Slotted Tube Sample
 - PH Sample Advanced Hydraulically
 - Sample Advanced Manually PM

SOIL TESTS

CS

Qu	Unconfined Compression	LV	Laboratory Vane
Q	Undrained Triaxial	FV	Field Vane
Qcu	Consolidated Undrained Triaxial	С	Consolidation
Qd	Drained Triaxial		

PROJECT Hydrogenergiest meetingtion PROJECT Hydrogenergiest meetingtion PROJECT PROJECT<					L	OG C)F	TE 581085	ST F E 4791	PIT 555N	NO.	1								1 of
Solu ProPILE SAMPLES Selexest Stream Charlen (20) Users (20)	PROJ LOCA EXCA	IECT Hydrogeological Investigation ATION 13 Herbert Place, Hamilton (Dundas AVATION METHOD John Deere 410.1 Ruhl	s), Onta per Tire	irio Back	hoe			EX	CAVAT	ON DA	TE Oo	ctober 1	2, 201	7		PML ENG TEC	L REF GINEE CHNIC	: R IAN	17HX016 K. Furbacher K. Pettitt	
221 DESCRIPTION 1/2 2/2 <th< th=""><th></th><th>SOIL PROFILE</th><th></th><th></th><th>SAM</th><th>PLES</th><th>щ</th><th>SHEAF</th><th>R STRE</th><th>NGTH</th><th>(kPa)</th><th></th><th></th><th>N</th><th></th><th><u> </u></th><th></th><th></th><th></th><th></th></th<>		SOIL PROFILE			SAM	PLES	щ	SHEAF	R STRE	NGTH	(kPa)			N		<u> </u>				
Spendoc ELDATION 2204 6 7 2 3 0 1 cs 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	DEPTH ELEV metres	DESCRIPTION	IRAT PLOT	NUMBER	TYPE	1" VALUES	EVATION SCAL	+FIEL	D VANI KET PE 0 10		VANE DMETE 50 2 ETRAT	0 Qu R O Q 00 10N ×	PLAS LIMIT W _P				IQUID LIMIT W _L	UNIT WEIGHT	GROUND V OBSERVA AND REM	VATER TIONS IARKS RAIN SIZE
0.21 C		SURFACE ELEVATION 229.94 TOPSOIL FILL: 210 mm dark brown sandy silt topsoil fill. damp	LS	1	GS	2	ELE	2	0 4	0 6	0 8	30	1	0 2	0 3	0 4	ю 	kN/m ³	DISTR GF	RIBUTION (R SA SI
0.45 XX	<u>0.21</u> 229.73	FILL: Brown sand fill, some silt and gravel, moist	Ň	2	GS		_						0							
2.5 229 0 <td><u>0.45</u> 229.49</td> <td>SILT: Light brown silt, trace gravel, sand, and clay, moist</td> <td></td> <td>*</td> <td></td>	<u>0.45</u> 229.49	SILT: Light brown silt, trace gravel, sand, and clay, moist		*																
2.5 228 0 0 0 0 0 2.4 4 65 228 0 0 0 3.0 5 65 227 0 0 0 3.0 1 1 1 1 1 1 1																				
25 228 228 0 0 0 27.4 with reddish brown Taylers 5 GS 227 0 0 0 3.0 228.9 TEST PIT TERMINATED AT 3.0 m 5 GS 227 0 0 0				3	GS		229							0					8	4 81
2.5																				
25				4	GS		228							0				-		
223 with reddish brown layers 5 GS o o 3.0 227 o o o o 226.9 TEST PIT TERMINATED AT 3.0 m I																				
3.0 5 GS 227 0 0 0 0 228.9 TEST PIT TERMINATED AT 3.0 m 0 0 0 0 0 0	<u>2.5</u> 227.4	with reddish brown layers	+++																	
TEST PIT TERMINATED AT 3.0 m Upon completion of excavation, no seepag cave	3.0			5	GS		227							0				_		
	226.9	TEST PIT TERMINATED AT 3.0 m																	Upon completion excavation, no se cave	of epage, no
	NOT																			

					L	.0G ()F	TEST 581109E 47	PIT 91540N	NO. 2							1 of
	PROJ LOCA	ECT Hydrogeological Investigation), Onta	ario	h			EXCAVA	TION D	ATE October	12, 20	17		PML I ENGII	REF. NEER	2	17HX016 K. Furbacher
	EXCA	SOIL PROFILE	erne	васкі	SAM	PLES	ш	SHEAR ST	ENGTH	(kPa)						4/V	
	<u>DEPTH</u> ELEV	DESCRIPTION	AT PLOT	MBER	ΥPE	ALUES	ATION SCA	+FIELD VA ▲POCKET 50	PENETR 100 1	OMETEROC 50 200		C		RE LIC	NIT MIT ₩L	IT WEIGH1	GROUND WATER OBSERVATIONS AND REMARKS
0.0 —	(metres)	SURFACE ELEVATION 228.28	STR/	DR		 	ELEV	DYNAMIC C STANDARD 20	ONE PEI PENETF 40	NETRATION RATION TEST 60 80	• w	ATER	CONT	ENT (%	5) k	S N/m ³	GRAIN SIZI DISTRIBUTION GR SA SI
-	228.23	TOPSOIL: 50 mm dark brown sandy sitt topsoil, trace gravel, damp; occasional rootlets SILT: Grey silt, some clay and sand, damp; occasional roots		2	GS		228					0					
-	0 <u>.6</u> 8 227.60	becoming brown sandy silt, some clay, moist		-			_										
- - 0. -																	
-				3	GS		227					0					0 28 58
- - -																	
-							226										
-				4	GS								0				
- - 8.0 —	<u>3.0</u> 225.3	TEST PIT TERMINATED AT 3.0 m		5	GS							0					Upon completion of
-																	excavation, no seepage, n cave
-																	
- - 4.0 –																	
-																	
-																	
- 5.0 —																	

	PROJI LOCA EXCA	ECT Hydrogeological Investigation TION 13 Herbert Place, Hamilton (Dundas) VATION METHOD John Deere 410J Rubbi	, Onta er Tire	rio Backl	noe			EX	CAVAT	ION DA	TE Oc	tober 12	2, 201	7		PML ENG TEC	. REF. SINEE HNIC	R IAN	17HX016 K. Furbacher K. Pettitt
		SOIL PROFILE			SAM	PLES	ЦП	SHEA	R STRE		kPa)	0.00			TURA	L		F	
<u>D</u> E (m	EPTH ELEV netres)	DESCRIPTION	TRAT PLOT	NUMBER	ТҮРЕ	N" VALUES	EVATION SCA	+FIE ▲PO DYNA STAN	LD VAN CKET PI 50 10 MIC CO DARD P		ETRAT	0 Qu R O Q 00 10N × TEST ●		ATER C		E LI T	IQUID LIMIT WL 	UNIT WEIGHT	GROUND WATEF OBSERVATIONS AND REMARKS
		SURFACE ELEVATION 228.83	w S S S S S S S S S S S S S S S S S S S			-	Ē	:	20 4	0 60	3 0	0	1	0 20	30	4	0	kN/m ³	GR SA S
2	28.72	silt topsoil fail, trace gravel and clay, damp; occasional rootlets FILL: Dark brown silt fill, some clay and gravel, damp; occasional rootlets, cobbles, metal and shale fragments		2	GS									0					
- 2	28.38	brown to dark brown sand fill, some silt and gravel, moist		3	GS								c						
-			\bigotimes																
	1.1 227.7	SILT: Brown silt, some sand and clay, trace		4	GS		-						0						
-		gravel, moist																	
-				5	GS		227	,						0					
-																			
-							_												
-				6	GS		226	;							0				
-	3.0 225.8	TEST PIT TERMINATED AT 3.0 m																	Upon completion of excavation, no seepage, cave
-																			
-																			
-																			
-																			
-																			
-																			

PRO. LOCA EXCA	IECT Hydrogeological Investigation ATION 13 Herbert Place, Hamilton (Dundas AVATION METHOD John Deere 410J Rubb), Ontai ber Tire	rio Backł	noe			EX	CAVAT	'ION DA	TE 0	ctober 12	2, 201	7		PML ENG TEC	. REF GINEE CHNIC	: R CIAN	17HX016 K. Furbacher K. Pettitt
	SOIL PROFILE	OT	R	SAM	PLES	N SCALE	SHEAL +FIEL	R STRE	ENGTH	(kPa) RVANE OMETE	0 Qu R 0 Q	PLAS LIMIT	TIC N/ MC CC	ATURA DISTUR	AL L RE L NT	IQUID LIMIT	EIGHT	GROUND WATER OBSERVATIONS
<u>DEPTH</u> ELEV (metres)	DESCRIPTION	STRAT PI	NUMBE	ТҮРЕ	"N" VALU	ELEVATIO	DYNAI	MIC CO				WP 	ATER		ENT	(%)	UNIT W	AND REMARKS GRAIN SIZE DISTRIBUTION
	SURFACE ELEVATION 227.20 TOPSOIL: 240 mm grey clayey silt topsoil, some sand, trace gravel, DTPL; occasional rootlets	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1	GS		227							0 2	0 3	0 4		kN/m	GR SA SI
	SILT: Brown sandy silt, trace gravel, moist		2	GS		226							0					
<u> </u>	SAND: Brown silty sand, trace gravel, wet		3	GS		225							c	,				
224.2 - - - - - - - - - - - - - - - - - - -																		Upon completion or excavation, no seepage, n cave

Hydrogeological Investigation, 13 Herbert Place – Hydrogeological Service PML Ref.: 17HX016, Report: 1, 13 Herbert Place, Hamilton, Ontario April 30, 2019

Appendix A

Water Well Records

Hydrogeological Investigation, 13 Herbert Place – Hydrogeological Service PML Ref.: 17HX016, Report: 1, 13 Herbert Place, Hamilton, Ontario April 30, 2019

Lands to Be Retained (Well No. 6813459)

	orio Ministry			The	Ontario Water	Resou	rces Act
	di IO of the Environment				WATER WE	LL RE	CORD
Mark correct box	with a checkmark, where applic \mathcal{O}		6	813459	Municipality Co	n. DIN I I I	22 23 24
County or District	014 - WENTH	Township/Bo	orough/City/Town/Villag 57 FLAM BC	e RO	Con block tract surve	y, etc. L	ot 25-27
		Address			Date completed	27 dav	<i>3 61</i> month vear
21	M 10	N 12 17 18		RC Elevation RC	Basin Code ii		
0	LOG	OF OVERBURDEN A	ND BEDROCK MAT	FERIALS (see instructio	ons)	Den	th - feet
BILLED 7	Most common material	Other n	naterials	General		From	То
BROWN	SANDY CLAY	101121 402		WEILAND, ON	: 236 248	0	16
GREY	SANDYCLAY			LOUSE		18	48
GREY	LIMESTONE			HARD		48	50
BROWN	SAND & GRAVEL			LEOSE		50	5-2
GREY	LINESTONE			HARD		52	60
31				<u> </u>			
32							LLL U
41 WATE	R RECORD 51		N HOLE RECORD	feet	pening ³¹⁻³³ Diameter	34-38 Len	75 80 39-40
at - feet	Kind of water diam Eresh ³ Sulphur ¹⁴	Material t	hickness nches From	To Material ar	nd type	inches Depth at top	feet of screen 30
2	Salty 6 Gas	2 Galvanized 3 Concrete	188				41-44 feet
5 C 15-18 1 🖄 2 🗌	Fresh 3 Supplur 19 Salty 6 Gas	4 Open hole 5 Plastic		61 P	LUGGING & SEALING	RECOR)
20-23 1 🗌 2 🗋	Fresh ³ Sulphur ²⁴ 4 Minerals Salty ⁶ Gos	2 Galvanized 3 Concrete		Depth set at -	feet Material and type (Ce	Abandonn	nent
25-28 1	Fresh 3 Sulphur 29	4 2 Open hole 5 D Plastic		27.30	14-17		
30-33 1 []	Fresh ³ Sulphur ³⁴ ⁶⁰	2 Galvanized 3 Concrete		18-21	22-25		
2	Salty ⁴ Gas	4 ∐ Open hole 5 □ Plastic		26-29	30-33 80		
71 Pumping test me	Bailer Gf	Duration of pumping	17-18 Mins	LOCA	ATION OF WELL		
Static level Wa	ater level 25 Water levels during	1 🗆 Pumping 2 🗷 F	Recovery	In diagram below show Indicate north by arrow.	distances of well from r	oad and lo	t line.
	$\frac{3}{5} e^{22\cdot 24}$ 15 minutes 15 $\frac{30}{5} e^{22\cdot 24}$ 15 minutes 15 $\frac{30}{5} e^{25\cdot 28}$	45 minutes -31 / 5 - 32-34 / 60 m	ninutes 5 ⁻³⁵⁻³⁷ アクルモ	STELAMOCHO	TO PUNDA		>
If flowing give rat	feet feet te ³⁸⁻⁴¹ Pump intake set at	feet feet Water at end of test	feet 7 42 3	HWY	48	1	r
Recommended pu	GPM free free free free free free free fre	ieet Clear .	Cloudy 2 46-49 0) à		Ń	
□ Shallow	Deep pump second	pump rate	GPM	HERBERT	-]		
FINAL STATUS	OF WELL 54			1 Phat		- /	~
 ¹ Water supplier ² Observation ³ Test hole 	iy 5 Abandoned, insufficier n well 6 Abandoned, poor qual 7 Abandoned (Other)	nt supply 9 □ Unfinished ity 10 □ Replacemen	t well		INF C	611	/
4 🗌 Recharge w	vell ⁶ Dewatering				Π		
1 Domestic	55-56 5 🗋 Commercial	9 🗌 Not use					
2 🗌 Stock 3 🗌 Irrigation 4 🗌 Industrial	6	10 🗌 Other					
METHOD OF C	ONSTRUCTION 57	-					
¹ A Cable tool ² D Rotary (con	⁵ Air percussion ventional) ⁶ Boring	⁹ Driving ¹⁰ Digging					
 ³ □ Rotary (reve ⁴ □ Rotary (air) 	erse) ⁷ Diamond ⁸ Jetting	11 🗌 Other				226	986
Name of Well Contrac	ctor	Well Contractor's Li	cence No.	se Contractor	59-62 Date recei	ved	63-68 80
CCONNO, Address	RWELLDRILLING LT	P. 4005		f inspection	05 APR	052	201
RR #/ MIK	IGROVE, ONT. LOR	IVO Well Tashnisianis 13		dre .			
W.HOWE		7 5 18					
Signature of Technicia \mathcal{YB} . $\mathcal{O}^{*}C_{T}$	arvontractor	Submission date day mo	yr NW		(CSS.ES	

~			
2 - MINISTRY	OF THE	ENVIRONMENT	COPY
Hydrogeological Investigation, 13 Herbert Place – Hydrogeological Service PML Ref.: 17HX016, Report: 1, 13 Herbert Place, Hamilton, Ontario April 30, 2019

Wells Within 500 m Radius of Site

© Queen's Printer, 2009

Page: 1 / 10

	TOWNSHIP	1	date ²	CASING	5.6	STAT LVL/PUMP LVL ⁷	WATER	SCREEN	WELL # (AUDIT#) WELL TAG #
	CONCESSION (LOT)	UTM	CNTR 3	dia ⁴	WATER	RATE ⁸ /TIME HR:MIN	USE ⁹	info ¹⁰	DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
			CIVIIC		DETAIL			-	
WEST	FLAMBOROUGH TOW	17 581099	2000/06	06 06	FR 0046	010 / 011	DO		6813342 (212243)
CON	01(003)	4791428"	4005			020 / 1:0			BRWN CLAY SNDY 0042 GREY LMSN 0043
									BRWN GRVL SAND 0044 GREY LMSN 0050
WEST	FLAMBOROUGH TOW	17 581148	2000/06	06 06	FR 0043	008 / 009	DO		6813343 (212241)
CON	01(003)	4791328"	4005		FR 0046	020 / 1:0			BRWN CLAY SNDY 0015 BRWN SAND 0037
									GREY LMSN 0038 BRWN GRVL 0040 GREY
									LMSN 0050
WEST	FLAMBOROUGH TOW	17 581148	2000/08	06 06	FR 0042	006 / 008	DO		6813370 (212263)
CON	01(003)	4791221"	4005		FR 0046	025 / 1:0			BRWN CLAY SNDY 0031 BRWN SAND GRVL
									0038 BLCK LMSN 0050
WEST	FLAMBOROUGH TOW	17 581078	2000/09	06 06	FR 0048	009 / 016	DO		6813389 (212317)
CON	01(003)	4791212 ^w	4005		UK 0046	015 / 1:0			BRWN CLAY SNDY 0010 BRWN SAND 0034
									BRWN SAND GRVL 0040 GREY LMSN 0052
WEST	FLAMBOROUGH TOW	17 581176	2000/10	06 06	FR 0043	008 / 012	DO		6813391 (212327)
CON	01(003)	4791234^{W}	4005		FR 0046	018 / 1:0			BRWN CLAY SNDY LOOS 0030 BRWN GRVL
									SAND LOOS 0040 GREY LMSN 0050
WEST	FLAMBOROUGH TOW	17 581005	2000/11	06 06	FR 0056	021 / 040	DO		6813410 (212310)
CON	01(003)	4791372 ^w	4005			015 / 0:0			BRWN CLAY SNDY LOOS 0025 GREY CLAY
									LOOS 0042 BRWN GRVL SAND LOOS 0053
									GREY LMSN HARD 0060
WEST	FLAMBOROUGH TOW	17 580819	2001/10	06	FR 0043	015 / 030	DO		6813564 (227127)
CON	01(003)	4791380 ^w	4005		FR 0048	025 / 1:0			BRWN CLAY SNDY 0022 BRWN SAND GRVL
					FR 0055				0035 BRWN GRVL SAND 0040 GREY LMSN
									0060
WEST	FLAMBOROUGH TOW	17 581113	2000/11	06 06	FR 0044	012 / 035	DO		6813411 (212311)
CON	01(003)	4791215^{W}	4005		UK 0056	020 / :0			BRWN CLAY SNDY LOOS 0030 BRWN SAND
									GRVL LOOS 0040 GREY LMSN HARD 0060
WEST	FLAMBOROUGH TOW	17 581085	2001/03	06	FR 0056	015 / 030	DO		6813459 (226986)
CON	01(003)	4791488^{W}	4005		FR 0054	030 / :0			BRWN CLAY SNDY LOOS 0018 GREY CLAY
									SNDY LOOS 0048 GREY LMSN HARD 0050
									BRWN SAND GRVL LOOS 0052 GREY LMSN
									HARD 0060
WEST	FLAMBOROUGH TOW	17 580460	1953/08	06 06	FR 0090	057 /	DO		6805510 ()
CON	01(005)	4791322 ^w	4810			001 / :0			MSND CLAY 0063 LMSN 0093
WEST	FLAMBOROUGH TOW	17 580475	1965/04	06 06	FR 0142	095 / 120	DO		6805519 ()
CON	01(005)	4791525 ^w	2803			010 / 1:0			BRWN CLAY 0015 BLUE CLAY 0099 LMSN
									0145
WEST	FLAMBOROUGH TOW	17 580778	2009/06						7125850 (Z91290) A080318
CON	01(006)	4791336 ^w	7184						
WEST	FLAMBOROUGH TOW	17 580638	1950/04	06	FR 0104	075 / 082	DO		6805523 ()
CON	01(006)	4791588^{W}	2309			004 / 2:0			BRWN MSND 0020 BLUE CLAY 0040 YLLW
									CLAY 0050 QSND 0080 FSND 0094 CSND
									0104
WEST	FLAMBOROUGH TOW	17 580610	1951/08	06 06	FR 0075	024 /	DO		6805524 ()
CON	01(006)	4791428^{W}	4810			/ :0			CLAY 0015 STNS GRVL 0045 MSND 0050
									LMSN 0078
WEST	FLAMBOROUGH TOW	17 580714	1953/04	06 06	SU 0123	045 / 125	DO		6805525 ()
CON	01(006)	4791573 ^w	4810			/ 0:10			CLAY GRVL 0030 BLDR 0032 CLAY MSND
									0055 MSND 0109 LMSN 0125

© Queen's Printer, 2009

Page: 2 / 10

TOWNSHIP CONCESSION (LOT)	UTM ¹	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
WEST FLAMBOROUGH TOW CON 01(006)	17 580720 4791511 [₩]	1953/04 4810	06 06	SU 0120	042 / / 0:10	DO		6805526 () CLAY GRVL 0030 CLAY MSND 0070 MSND 0102 LMSN 0120
WEST FLAMBOROUGH TOW CON 01(006)	17 580754 4791363 [₩]	1953/05 4810	06 06	FR 0080	036 / 036 / :0	DO		6805527 () CLAY GRVL 0040 MSND 0054 LMSN 0082
WEST FLAMBOROUGH TOW CON 01(006)	17 580750 4791408 [₩]	1953/05 4810	06 06	FR 0078	028 / / :0	DO		6805528 () CLAY 0015 STNS 0025 MSND 0052 LMSN 0080
WEST FLAMBOROUGH TOW CON 01(006)	17 580832 4791423 [₩]	1953/06 4810	06 06	SU 0105	040 / 005 / :0	DO		6805529 () CLAY GRVL 0040 CLAY 0105 LMSN 0110
WEST FLAMBOROUGH TOW CON 01(006)	17 580699 4791601 [₩]	1954/10 4810	06	FR 0069	049 / 050 010 / :0	IN		6805531 () BLDR 0020 CLAY GRVL 0050 MSND GRVL 0069
WEST FLAMBOROUGH TOW CON 01(006)	17 580619 4791403 [₩]	1955/10 4810	06 06	FR 0095	044 / 054 012 / :0	DO		6805532 () CLAY 0020 GRVL 0070 CLAY 0081 LMSN 0098
WEST FLAMBOROUGH TOW CON 01(006)	17 580724 4791445 [₩]	1957/11 5417	06					6805533 () PRDG 0042 BLUE CLAY MSND 0101 CLAY LMSN 0103 GREY LMSN 0120
WEST FLAMBOROUGH TOW CON 01(006)	17 580784 4791493 [₩]	1958/03 5417	06	FR 0018 FR 0008	004 / 013 001 / 0:20	NU		6805534 () RED LOAM MSND 0018 GREY CLAY MSND 0027
WEST FLAMBOROUGH TOW CON 01(006)	17 580722 4791393 [₩]	1958/03 5417	06 06	FR 0073	036 / 062 004 / 0:45	DO		6805535 () RED LOAM MSND 0017 RED LOAM MSND FSND 0040 BLUE CLAY 0052 GREY LMSN 0076
WEST FLAMBOROUGH TOW CON 01(006)	17 580739 4791333 [₩]	1958/03 5417	06 06	FR 0075	027 / 072 018 / 0:30	DO		6805536 () RED LOAM MSND 0020 RED LOAM MSND GRVL 0035 GREY CLAY MSND 0055 GREY LMSN 0077
WEST FLAMBOROUGH TOW CON 01(006)	17 580709 4791583 [₩]	1958/04 5417	06 06	SU 0125	057 / 113 001 / 1:0	DO		6805537 () RED LOAM MSND 0018 GREY CLAY 0111 GREY LMSN 0127
WEST FLAMBOROUGH TOW CON 01(006)	17 580728 4791435 [₩]	1958/10 5417	06 06	FR 0090 FR 0079	036 / 045 021 / 0:30	DO		6805538 () BRWN LOAM 0012 BRWN LOAM MSND GRVL 0030 GREY CLAY 0077 LMSN 0091
WEST FLAMBOROUGH TOW CON 01(006)	17 580854 4791629 [₩]	1958/10 5417	06	FR 0051	046 / 049 011 / 0:30	DO		6805539 () BRWN LOAM MSND GRVL 0042 GRVL CLAY 0051 GRVL CSND 0057
WEST FLAMBOROUGH TOW CON 01(006)	17 580714 4791465 [₩]	1958/12 5417	06 06	SU 0114	042 / 105 001 / 1:0	DO		6805540 () BRWN LOAM MSND 0019 GREY CLAY MSND GRVL 0031 GREY CLAY SILT MSND 0042 GREY CLAY 0100 GREY LMSN 0115
WEST FLAMBOROUGH TOW CON 01(006)	17 580804 4791351 ^w	1959/02 5417	06 06	FR 0078	042 / 070 006 / 0:30	DO		6805541 () BRWN LOAM MSND 0008 BRWN CLAY GRVL 0012 RED CLAY GRVL 0026 GREY CLAY 0065 GREY CLAY GRVL 0073 GREY LMSN 0080

© Queen's Printer, 2009

Page: 3 / 10

	TOWNSHIP CONCESSION (LOT)	\mathtt{UTM}^1	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER S USE ⁹ 1	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
WEST CON	FLAMBOROUGH TOW 01(006)	17 580824 4791377 [₩]	1959/02 5417	06	FR 0090	042 / 062 020 / 0:30	DO		6805542 () BRWN LOAM MSND 0007 RED CLAY GRVL 0031 GREY CLAY 0090 GREY LMSN GRVL 0092
WEST CON	FLAMBOROUGH TOW 01(006)	17 580849 4791361 [₩]	1959/02 5417	06 06	SU 0150	054 / 142 002 / 0:45	DO		6805543 () BRWN LOAM MSND 0010 BRWN CLAY GRVL 0020 GREY CLAY GRVL 0036 GREY CLAY 0098 GREY LMSN 0152
WEST CON	FLAMBOROUGH TOW 01(006)	17 580856 4791343 [₩]	1959/03 5417	06	FR 0032	026 / 028 005 / 0:30	DO		6805544 () BRWN LOAM MSND 0013 BRWN CLAY GRVL 0025 GREY CLAY 0032 MSND GRVL 0038
WEST CON	FLAMBOROUGH TOW 01(006)	17 580799 4791329 [₩]	1959/03 5417	06	FR 0030	019 / 022 008 / 0:30	DO		6805545 () BRWN LOAM MSND 0008 BRWN CLAY GRVL 0014 GREY CLAY GRVL 0022 GRVL BLDR 0026 RED CLAY MSND GRVL 0032
WEST CON	FLAMBOROUGH TOW 01(006)	17 580789 4791323 [₩]	1959/03 5417	06	FR 0078	032 / 069 008 / 1:0	DO		6805546 () BRWN LOAM MSND 0015 GREY CLAY GRVL 0028 GREY GRVL 0036 GREY CLAY MSND 0052 GREY CLAY 0078 GRVL LMSN 0079 LMSN 0080
WEST CON	FLAMBOROUGH TOW 01(006)	17 580879 4791373 [₩]	1959/03 5417	06 06	SU 0122	057 / 113 002 / 0:45	DO		6805547 () BRWN LOAM MSND 0014 RED CLAY MSND GRVL 0026 GREY CLAY GRVL 0035 BRWN CLAY GRVL 0044 GREY CLAY 0101 GREY LMSN 0123
WEST CON	FLAMBOROUGH TOW 01(006)	17 580762 4791288 [₩]	1959/03 5417	06 06	FR 0023 FR 0083	030 / 074 008 / 0:30	DO		6805548 () BRWN LOAM 0005 BRWN CLAY 0019 GREY CLAY 0023 GREY CLAY GRVL 0029 RED CLAY MSND GRVL 0040 GREY CLAY 0054 GREY LMSN 0084
WEST CON	FLAMBOROUGH TOW 01(006)	17 580762 4791268 [₩]	1959/03 5417	06 06	FR 0027 FR 0076	025 / 066 005 / 0:30	DO		6805549 () BRWN LOAM 0008 BRWN CLAY 0014 BRWN CLAY GRVL 0019 GRVL 0024 GREY CLAY GRVL 0040 GREY CLAY 0050 0076
WEST CON	FLAMBOROUGH TOW 01(006)	17 580769 4791241 [₩]	1959/03 5417	06 06	FR 0069	024 / 056 005 / 0:45	DO		6805550 () BRWN LOAM MSND 0007 BRWN CLAY GRVL 0020 RED CLAY GRVL 0035 GREY CLAY GRVL 0050 GREY LMSN 0070
WEST CON	FLAMBOROUGH TOW 01(006)	17 580700 4791267 ^w	1959/09 5417	06 06	FR 0064	038 / 057 007 / 0:45	DO		6805551 () BRWN LOAM MSND 0008 GREY CLAY MSND 0032 GREY CLAY 0050 GREY LMSN 0067
WEST CON	FLAMBOROUGH TOW 01(006)	17 580818 4791363 ^W	1967/12 3001	36	FR 0023	023 / 025 010 / 1:0	DO		6805552 () BRWN CLAY STNS 0007 BLUE CLAY 0010 BRWN CLAY STNS 0020 BLUE CLAY STNS 0027 STNS 0029
WEST CON	FLAMBOROUGH TOW 01(006)	17 580854 4791373 [₩]	1969/04 1620	06					6807047 () BRWN CLAY 0018 GREY CLAY 0100 LMSN 0102

© Queen's Printer, 2009

Page: 4 / 10

	TOWNSHIP CONCESSION (LOT)	\mathtt{UTM}^1	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
WEST CON	FLAMBOROUGH TOW 01(006)	17 580556 4791359 [₩]	1973/04 2801	07 06	SU 0146 FR 0106	052 / 084 016 / 4:30	PS		6808718 () BRWN CLAY STNS 0013 GREY CLAY 0016 GREY GRVL SAND 0018 BRWN CLAY 0023 GREY CLAY 0033 GREY CLAY LMSN 0038 GREY CLAY CLAY SILT 0053 BRWN LMSN 0071 BRWN LMSN 0078 BRWN LMSN 0082 BRWN LMSN 0091 BLCK LMSN 0101 GREY LMSN 0107 BLCK LMSN SHLE CLAY 0125 BRWN LMSN 0129 GREY LMSN 0137 GREY SHLE CLAY LMSN 0141 BRWN LMSN 0147 GREY LMSN 0150 BRWN LMSN 0153 BRWN LMSN 0158 BRWN LMSN 0160 GREY LMSN 0166
WEST CON	FLAMBOROUGH TOW 01(006)	17 580867 4791528 [₩]	1974/05 3030	36	FR 0055		DO		6808822 () BRWN LOAM 0001 BRWN CLAY STNS 0015 BRWN SAND CLAY LYRD 0045 BRWN CLAY 0055 BRWN SAND 0067
WEST CON	FLAMBOROUGH TOW 01(006)	17 580830 4791524 [₩]	1974/09 3030	30 24	FR 0066	066 / / :0	DO		6808943 () BRWN CLAY BLDR 0015 BRWN GRVL 0030 BRWN SAND BLDR 0060 BRWN GRVL 0072
WEST CON	FLAMBOROUGH TOW 01(006)	17 580899 4791551 [₩]	1975/07 2803	06	FR 0078	068 / 068 012 / 1:0	DO		6809359 () PRDG 0062 BRWN CLAY 0076 GREY GRVL 0078
WEST CON	FLAMBOROUGH TOW 01(006)	17 580794 4791503 [₩]	1977/10 2803	06	FR 0072	057 / 059 020 / 1:0	DO		6809745 () LOAM 0004 BRWN CLAY STNY 0070 GREY GRVL 0072
WEST CON	FLAMBOROUGH TOW 01(006)	17 580774 4791463 ^w	1979/02 4005	06	SU 0116	040 / 115 004 / 2:0	DO		6809927 () BRWN CLAY SNDY LOOS 0020 BRWN SAND BLDR LOOS 0025 BRWN CLAY SNDY LOOS 0085 GREY CLAY LOOS 0100 BRWN CLAY SNDY LOOS 0106 GREY LMSN HARD 0118
WEST CON	FLAMBOROUGH TOW 01(006)	17 580889 4791267 [₩]	1974/12 3637	30 32 21	FR 0071	067 / 016 / 2:0	ST		6810384 () BRWN CLAY SAND HARD 0027 GREY CLAY SAND HARD 0043 BRWN MSND 0067 BLCK CSND LOOS 0070 BLCK MSND 0080
WEST CON	FLAMBOROUGH TOW 01(007)	17 581100 4791427 [₩]	2002/04 4005	06 06	FR 0076 FR 0087	032 / 080 015 / 1:0	DO		6813631 (241262) BRWN CLAY SNDY 0056 GREY SAND GRVL 0060 GREY LMSN SAND LOOS 0063 GREY LMSN HARD 0092
WEST CON	FLAMBOROUGH TOW 01(007)	17 581194 4791123 ^w	1983/05 4208	06	FR 0061	021 / 025 030 / 1:0	DO		6810623 () BRWN CLAY 0015 GREY CLAY 0057 GREY LMSN 0063
WEST CON	FLAMBOROUGH TOW 01(007)	17 581254 4791143 ^w	1983/04 4208	06	FR 0059	026 / 050 025 / 1:0	DO		6810622 () BRWN CLAY SNDY 0015 GREY CLAY 0056 GREY LMSN 0061
WEST CON	FLAMBOROUGH TOW 01(007)	17 581254 4791143 ^w	1981/11 2803	06	FR 0059	035 / 049 015 / 1:0	DO		6810379 () LOAM 0004 BRWN CLAY SNDY 0040 BLUE CLAY 0057 GREY LMSN 0060
WEST CON	FLAMBOROUGH TOW 01(007)	17 581359 4791255 ^W	1981/07 2803	06	FR 0047	033 / 040 015 / 1:0	DO		6810378 () LOAM 0006 BRWN CLAY SNDY 0044 BRWN SHLE STNS 0047

Well Computer Print Out Data as of January 27 2012

© Queen's Printer, 2009

Page: 5 / 10

	TOWNSHIP	1	DATE ²	CASING		STAT LVL/PUMP LVL	WATER	SCREEN	WELL # (AUDIT#) WELL TAG #
	CONCESSION (LOT)	UTM-	CNTR ³	dia ⁴	WATER''' DETAIL	RATE ⁸ /TIME HR:MIN	USE ⁹	INFO ¹⁰	DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
WEST	FLAMBOROUGH TOW	17 581354	1981/07	06	FR 0035	020 / 024	DO		6810377 ()
CON	01(007)	4791203 ^w	2803			020 / 1:0			LOAM 0005 BRWN CLAY SNDY 0033 BRWN
									LMSN 0035 UNKN 0044
WEST	FLAMBOROUGH TOW	17 580934	1980/04	36	FR 0040	040 /	DO		6810119 ()
CON	01(007)	4791623 ^w	3030			/ :0			BRWN LOAM 0001 BRWN CLAY SNDY 0010
									BRWN GRVL 0012 BLUE CLAY 0020 BRWN
									SAND DRY 0025 BRWN CLAY 0032 BRWN SAND
									0035 BRWN SAND DRY 0037 BRWN CLAY SNDY
		15 501014	1000/000						0044 BLUE SILT 0055
WEST	FLAMBOROUGH TOW	17 581314	1976/07	06	FR 0076		DO		
CON	01(007)	4/91003	4005						BRWN CLAY LOOS 0076 BRWN SAND GRVL
MECT	EI AMBOBOLICH TOW	17 501005	1074/05	06	ED 0046	010 / 020			6008007 ()
CON	01(007)	4791185 ^W	1620	00	FR 0040	0.25 / 1:0	DO		BRWN CLAY 0028 SAND CRVI. 0042 LMSN
CON	01(007)	1791105	1020			025 / 100	20		0046
WEST	FLAMBOROUGH TOW	17 581254	1971/12	06	FR 0110	055 / 108	DO		6808004 ()
CON	01(007)	4791483 ^W	2309	00	110 0110	004 / 2:0	20		BRWN CLAY 0030 GRVL 0045 MSND 0070
									MSND 0082 CLAY MSND 0112
WEST	FLAMBOROUGH TOW	17 581194	1971/05	06 06	FR 0040	010 / 014	DO		6807808 ()
CON	01(007)	4791213 ^w	2309			035 / 26:0			BRWN CLAY MSND 0032 BRWN FSND 0034
									BRWN ROCK 0043
WEST	FLAMBOROUGH TOW	17 581032	1954/07	06 06	SU 0130	058 /	DO		6805559 ()
CON	01(007)	4791678 ^w	4810			006 / :0			CLAY 0101 LMSN 0140
		15 501016	1000/10						
WEST	FLAMBOROUGH TOW	17 581216	1989/10	06	UK 0057	029 / 042	DO		6811794 (55681)
CON	01(007)	4/91160	4005			020 / 1:0			BRWN CLAY LOOS UUI/ BRWN CLAY GRVL
WECT	FLAMBOROUCH TOW	17 581229	2006/11	06	0120	059 / 120	DO		6814593 (737908) 3034344
CON	01(007)	4791707 ^W	4005	00	0120	004 / 1:0	DO		BRWN CLAY SNDY 0038 BLDR 0039 BRWN
001	01(00))	1/91/0/	1005			001 / 10			CLAY SLTY 0060 BRWN SILT SNDY 0078
									GREY CLAY 0095 GREY LMSN 0125
WEST	FLAMBOROUGH TOW	17 581175	2011/04						7163034 (Z111329)
CON	01(007)	4791379 [₩]	7329						
WEST	FLAMBOROUGH TOW	17 580899	1952/05	06	FR 0063	016 / 021	DO		6805554 ()
CON	01(007)	4791611"	4810			020 / :0			CLAY STNS MSND 0063
		10 501100	1050/00	06.06		016 /	5.0		
WEST	FLAMBOROUGH TOW	17 581180 4701420 ^W	1953/08	06 06	FR 0032	016 /	DO		6805558 () GLAN 0020 LMGN 0025
CON	01(007)	4/91429	4010			/ .0			CLAI 0020 LMSN 0035
WEST	FLAMBOROUGH TOW	17 581324	1964/10	06 06	FR 0115	050 / 128	DO		6805672 ()
CON	01(008)	4791673 ^w	2803	00 00	110 0115	/ 2:0	20		BRWN CLAY 0015 BLUE CLAY 0091 LMSN
001	01(000)	1,910,9	2000			, 20			0128
WEST	FLAMBOROUGH TOW	17 581324	1962/08	06	FR 0060	050 / 070	DO	66 4	6805661 ()
CON	01(008)	4791658^{W}	2803			008 / 2:0			BRWN CLAY 0006 CLAY MSND 0060 MSND
									0070
WEST	FLAMBOROUGH TOW	17 581379	1959/07	06	FR 0073	060 / 060	DO		6805641 ()
CON	01(008)	4791679^{W}	1620			005 / 0:30			BRWN CLAY 0030 FSND 0060 FSND GRVL
									0075
WEST	FLAMBOROUGH TOW	17 581354	1959/04	06 06	SU 0110	060 / 110	DO		6805639 ()
CON	UT(UU8)	4/91628	2309		SU U140	008 / T:0			BRWN CLAY UU5U CLAY MSND UU8U FSND 0005 imgn 0142

© Queen's Printer, 2009

Page: 6 / 10

	TOWNSHIP CONCESSION (LOT)	UTM^1	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER SCREEN USE ⁹ INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
WEST CON	FLAMBOROUGH TOW 01(008)	17 581412 4791773 [₩]	1949/07 4810	06	FR 0088	078 / 083 010 / :0	DO	6805594 () CLAY 0080 GRVL 0088
WEST CON	FLAMBOROUGH TOW 01(008)	17 581354 4791703 ^w	1969/06 2519	30	FR 0037	038 / 047 003 / 1:0	DO	6807096 () BRWN CLAY MSND 0016 GREY CLAY BLDR 0037 BRWN MSND 0042 GREY CLAY STNS 0050
WESI CON	FLAMBOROUGH TOW 01(008)	17 581374 4791793 [₩]	1967/07 2803	06 06	SU 0126	050 / 128 002 / 2:0	DO	6805706 () BRWN CLAY 0010 BLUE CLAY 0097 LMSN 0128
WESI CON	FLAMBOROUGH TOW	17 581396 4791643 [₩]	1967/04 2803	06	FR 0076	056 / 062 010 / 3:0	DO	6805700 () BRWN CLAY 0010 BLUE CLAY 0070 GRVL 0076
WESI CON	FLAMBOROUGH TOW 01(008)	17 581402 4791465 [₩]	1966/07 1620	06				6805694 () LOAM MSND 0030 BLUE CLAY 0062 CSND 0063 BLUE CLAY 0081
WESI CON	FLAMBOROUGH TOW 01(008)	17 581422 4791699 [₩]	1965/03 3001	36	FR 0069	068 / 072 005 / 0:30	DO	6805688 () BRWN MSND CLAY 0012 GREY MSND SHLE 0050 HPAN 0053 STNS MSND 0069 FSND 0077
WESI CON	FLAMBOROUGH TOW 01(008)	17 581316 4791695 [₩]	1965/02 2803	06 06	SU 0119	050 / 120 001 / 1:0	DO	6805674 () BRWN CLAY 0010 BLUE CLAY 0070 CLAY MSND 0080 BLUE CLAY 0101 LMSN 0120
WEST CON	FLAMBOROUGH TOW	17 580836 4791470 [₩]	2000/06 4207		SU 0107 SU 0140	057 / 110 002 / 5:0	DO	6813435 (211032) PRDR 0021 GREY CLAY 0104 GREY LMSN 0144
WESI CON	FLAMBOROUGH TOW 02(006)	17 580511 4791601 [₩]	1958/01 1643	06 06	SU 0147	040 / 090 004 / 1:0	PS	6805873 () CLAY 0040 QSND 0138 GREY LMSN 0147
WESI CON	FLAMBOROUGH TOW 02(006)	17 580633 4791968 [₩]	1965/06 1205	06 06	FR 0041	015 / 041 002 / 0:30	DO	6805875 () FILL 0004 LMSN 0043
WESI CON	FLAMBOROUGH TOW 02(006)	17 580703 4792104 [₩]	1965/07 4602	06 06	FR 0026	018 / 032 005 / 1:0	DO	6805876 () SILT 0003 BRWN LMSN 0032
WEST CON	FLAMBOROUGH TOW 02(006)	17 580796 4792063 [₩]	1967/02 4602	06 06	FR 0024	006 / 035 002 / 1:30	DO	6805877 () SILT 0003 LMSN 0035
WESI CON	FLAMBOROUGH TOW 02(006)	17 580741 4792027 [₩]	2002/11 4005		UK 0076	/ 128 003 / 1:0	DO	6813753 (241390) BRWN CLAY SNDY 0008 GREY LMSN 0060 GREY LMSN 0136
WESI CON	FLAMBOROUGH TOW 02(006)	17 580504 4791980 [₩]	1990/09 2803	06	FR 0030	010 / 028 003 / 1:0	DO	6811964 (61783) LOAM 0005 GREY SHLE ROCK 0032
WESI CON	FLAMBOROUGH TOW 02(006)	17 580481 4791983 [₩]	1990/09 2803	06	FR 0029	010 / 029 003 / 1:0	DO	6811965 (61781) LOAM 0002 GREY SHLE ROCK 0032
WESI CON	FLAMBOROUGH TOW 02(006)	17 580720 4791973 [₩]	1997/08 4207	06 06	UK 0025	015 / 030 004 / 1:0	DO	6812955 (186200) BRWN CLAY STNS 0006 GREY LMSN 0030

© Queen's Printer, 2009

Page: 7 / 10

TOWNSHIP CONCESSION (LOT)	UTM^1	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
WEST FLAMBOROUGH TOW CON 02(006)	17 580694 4792103 [₩]	1983/08 4005		FR 0022	015 / 030 005 / 1:0	DO		6810532 () BRWN LOAM LOOS 0001 GREY LMSN HARD 0035
WEST FLAMBOROUGH TOW CON 02(007)	17 581151 4791776 ^w	1961/11 4810	06 06	SU 0130	072 / 130 007 / 1:30	DO		6805878 () BRWN CLAY 0030 BRWN CLAY STNS 0090 BLUE CLAY 0109 GREY LMSN 0133
WEST FLAMBOROUGH TOW CON 02(007)	17 580934 4791745 ^w	1967/10 2803	06	FR 0094	084 / 086 010 / 2:0	DO		6805880 () BRWN CLAY STNS 0030 BLUE CLAY 0085 GRVL 0094
WEST FLAMBOROUGH TOW CON 02(007)	17 580964 4791753 ^w	1967/11 2803	06	FR 0084	078 / 080 010 / 2:0	DO		6805881 () BRWN CLAY STNS 0032 BLUE CLAY 0082 GRVL 0090
WEST FLAMBOROUGH TOW CON 02(007)	17 581249 4791823 ^w	1967/03 2803	06	FR 0093	078 / 083 010 / 2:0	DO		6805935 () BRWN CLAY STNS 0025 BLUE CLAY STNS 0083 GRVL 0093
WEST FLAMBOROUGH TOW CON 02(007)	17 581274 4791813 ^w	1969/05 2803	06	FR 0092	078 / 080 010 / 2:0	DO		6807150 () BRWN CLAY 0023 BLUE CLAY 0090 GRVL 0092
WEST FLAMBOROUGH TOW CON 02(007)	17 580994 4791963 [₩]	1972/10 1620	06	FR 0032	018 / 036 002 / 1:0	PS		6808293 () LOAM 0002 SHLE 0004 LMSN 0036
WEST FLAMBOROUGH TOW CON 02(007)	17 581034 4791783 [₩]	1979/07 4005	06	FR 0092	075 / 082 010 / 2:0	DO		6809965 () BRWN CLAY BLDR SNDY 0045 BRWN SAND BLDR LOOS 0060 GREY CLAY SNDY LOOS 0092 GREY GRVL PCKD 0093
WEST FLAMBOROUGH TOW CON 02(007)	17 580954 4791723 [₩]	1979/08 4005	06	FR 0072	035 / 065 009 / 1:0	DO		6809982 () BRWN CLAY SNDY LOOS 0015 BRWN SAND LOOS 0050 GREY CLAY LOOS 0068 GREY LMSN HARD 0074
WEST FLAMBOROUGH TOW CON 02(007)	17 580914 4791803 [₩]	1979/10 4005	06	SU 0085 SU 0088 SU 0071	035 / 081 009 / 1:0	DO		6810004 () PRDR 0069 GREY LMSN HARD 0090
WEST FLAMBOROUGH TOW CON 02(008)	17 581329 4791881 [₩]	2007/05 6865	05 06	FR 0108	080 / 094 001 / 1:0	DO	99 -30	7045912 (Z74751) A034706 BRWN SAND 0023 CLAY SAND 0055 GREY CLAY 0070 SAND 0077 SAND 0084 CLAY SAND STNS 0094 GRVL CLAY 0104 CLAY 0110
WEST FLAMBOROUGH TOW CON 02(008)	17 581414 4791983 [₩]	1981/08 4208	06	FR 0097	056 / 100 004 / 1:0	DO		6810349 () GREY CLAY 0092 GREY LMSN 0100
WEST FLAMBOROUGH TOW CON 02(008)	17 581319 4791818 [₩]	1955/05 2309	06 06	SU 0120	080 / / :0			6805893 () GRVL BLDR 0032 GREY CLAY 0074 GREY FSND CLAY 0087 GRVL 0091 HPAN 0112 GREY CLAY MSND 0118 SLTE 0140
WEST FLAMBOROUGH TOW CON 02(008)	17 581402 4791831 [₩]	1964/05 2803	06 05	FR 0114	050 / 128 001 / 4:0	DO	113 3	6805927 () BRWN CLAY 0010 BLUE CLAY 0100 BLUE

MSND 0116 LMSN 0128

© Queen's Printer, 2009

Page: 8 / 10

	TOWNSHIP	тттм ¹	DATE 2	CASING	warre ^{5,6}	STAT LVL/PUMP LVL'	WATER	SCREEN	WELL # (AUDIT#) WELL TAG #
	CONCESSION (LOT)	0111	CNTR 3	DIA 4	DETAIL	RATE ⁸ /TIME HR:MIN	USE	INFO	DEPTHS TO WHICH FORMATIONS EXTEND ^{3,11}
WEST	FLAMBOROUGH TOW	17 581329	1973/04						6808507 ()
CON	02(008)	4791863 ^w	2801						BRWN CLAY BLDR 0006 BRWN CLAY GRVL
									0012 BRWN GRVL SAND CLAY 0023 BRWN
									CLAY GRVL 0063 GREY CLAY 0067 GREY
									CLAY 0075 BRWN CLAY 0080 GREY CLAY
									SAND 0114 GREY LMSN 0125 BLCK LMSN
									0129 GREY LMSN 0147 GREY LMSN 0157
									BRWN LMSN 0168 GREY LMSN 0197
WEST	FLAMBOROUGH TOW	17 581394	1976/07	06	FR 0091	065 / 090			6809505 ()
CON	02(008)	4792043 ^w	4208			008 / 3:0	DO		BRWN CLAY GRVL 0045 GREY CLAY 0085
									GREY GRVL CLAY HPAN 0091
WEST	FLAMBOROUGH TOW	17 581414	1976/07	06	FR 0083	055 / 080	DO		6809507 ()
CON	02(008)	4792083 ^w	4208			004 / 4:0			BRWN CLAY GRVL 0030 GREY CLAY GRVL
									STNS 0075 GREY GRVL CMTD 0083
WEST	FLAMBOROUGH TOW	17 581374	1976/09	05 06	UK 0073	070 / 073	DO	73 3	6809513 ()
CON	02(008)	4791943 ^w	4208			020 / 1:0			BRWN CLAY GRVL 0022 GREY CLAY 0070
									BRWN SAND GRVL 0073 BRWN GRVL 0076
									BRWN CLAY 0090
WEST	FLAMBOROUGH TOW	17 581374	1976/09	06	FR 0102	077 / 100			6809516 ()
CON	02(008)	4791983"	4208			008 / 1:0	DO		BRWN CLAY 0050 GREY CLAY 0096 BRWN
									SAND GRVL 0102
WEST	FLAMBOROUGH TOW	17 581374	1976/07	06	SU 0144	115 / 150			6809524 ()
CON	02(008)	4791983"	4208			004 / 1:0	DO		BRWN CLAY GRVL 0050 GREY CLAY 0114
		15 501054	1000 / 000			100 / 110			GREY LMSN 0150
WEST	FLAMBOROUGH TOW	17 581354	1977/07	06	SU 0143	100 / 143	DO		6809619 ()
CON	02(008)	4791863"	4005			002 / 2:30			BRWN CLAY SNDY LOOS UUZU BRWN CLAY
									GRVL SNDY 0045 BRWN CLAY GRVL BLDR
									1002 BRWN CLAY LOUS 0075 GREY CLAY
									CLAS 1090 BRWN SAND LOOS 0113 GREY
									CLAI LOOS UIIS BRWN FSND LOOS UII9
WECT	FLAMBOROUCH TOW	17 581414	1070/11	06	FP 0121	078 / 114			6810013 ()
CON	02(008)	4701023 ^W	4005	00	FR UIZI	008 / 2:0	DO		REWN SAND LOOS 0041 CREV SAND LOOS
CON	02(000)	1791925	1005			0000 / 200	DO		0049 CREV CLAV LOOS 0054 CREV CLAV
									SAND LOOS 0066 GREY CLAY LOOS 0093
									BRWN FSND LOOS 0115 GREY SAND GRVL
									PCKD 0121
WEST	FLAMBOROUGH TOW	17 581414	1980/05	06	FR 0122	096 / 114	DO		6810099 ()
CON	02(008)	4791903 ^W	4005	00	110 0122	/ 3:0	20		BRWN SAND LOOS 0043 GREY SAND LOOS
						,			0050 GREY CLAY LOOS 0090 GREY SAND
									LOOS 0113 GREY SAND GRVL LOOS 0118
									GREY CLAY LOOS 0121 GREY GRVL PCKD
									0122
WEST	FLAMBOROUGH TOW	17 581414	1980/08	06	FR 0107	065 / 110	DO		6810223 ()
CON	02(008)	4792003 [₩]	4208			007 / 2:0			GREY CLAY SAND GRVL 0104 GREY LMSN
									0110
WEST	FLAMBOROUGH TOW	17 581354	1981/08	06 05	FR 0080	070 / 090		81 4	6810350 ()
CON	02(008)	4791823 ^w	4208			001 / 2:0	DO		BRWN CLAY STNY 0030 GREY CLAY 0080
									GREY SAND GRVL MUCK 0090

© Queen's Printer, 2009

Page: 9 / 10

TOWNSHIP CONCESSION (LOT)	UTM ¹	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
WEST FLAMBOROUGH TOW	17 581108	2000/08	06 06	UK 0042	015 / 018	DO		6813368 (212265)
CON 03(001)	4791395 ^w	4005		UK 0056	015 / 1:0			BRWN CLAY SNDY 0032 BRWN SAND GRVL
								0034 GREY LMSN 0036 BRWN SAND GRVL
								0037 GREY LMSN LOOS 0038 BRWN LMSN
								HARD 0060
WEST FLAMBOROUGH TOW	17 581011	2000/08	06 06	FR 0052	015 / 016	DO		6813369 (212271)
CON 03(001)	4791341 ^w	4005			015 / 1:0			BRWN CLAY SNDY 0032 BRWN GRVL SAND
								0040 GREY CLAY 0048 GREY LMSN 0050
								BLCK LMSN 0056
WEST FLAMBOROUGH TOW	17 581265	2008/06	63	FR 0098	081 / 095	DO		7114174 (Z79380) A070616
02()	4791834 ^w	4207			009 / 1:0			BRWN CLAY SILT 0095 BRWN GRVL 0098
WEST FLAMBOROUGH TOW	17 581141	2006/11	06	0071	010 / 034	DO		6814594 (Z37909) A034345
()	4791550 ^w	4005		0065	008 / 1:0			BRWN CLAY SLTY 0018 GREY CLAY STNS
								0024 GREY CLAY 0045 GREY LMSN 0075
WEST FLAMBOROUGH TOW	17 581322	2006/11	02			NU	32 7	7039015 (Z50665) A045284
()	4791392 ^w	7238						BRWN SILT SAND CLAY 0029 GREY LMSN
								0038
DUNDAS TOWN	17 581424	2007/09	36	0055	054 /	DO		7050827 (Z68298) A054901
(061)	4791500 ^w	3030		0060	/ :0			BRWN LOAM 0001 BRWN CLAY SNDY 0016
				0068				GREY SILT 0055 GREY SILT STNS 0060
								GREY SAND 0067 GREY SAND 0072

Notes:

- 1. UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid
- 2. Date Work Completed
- 3. Well Contractor Licence Number
- 4. Casing diameter in inches
- 5. Unit of Depth in Feet
- 6. See Table 4 for Meaning of Code

- 7. STAT LVL: Static Water Level in Feet ; PUMP LVL: Water Level After Pumping in Feet
- 8. Pump Test Rate in GPM, Pump Test Duration in Hour : Minutes
- 9. See Table 3 for Meaning of Code
- 10. Screen Depth and Length in feet

11. See Table 1 and 2 for Meaning of Code

	1. Core Material and Descriptive terms											
Code	Description		Code	Description		Code	Description		Code	Description	 Code	Description
BLDR	BOULDERS		FCRD	FRACTURED		IRFM	IRON FORMATION		PORS	POROUS	SOFT	SOFT
BSLT	BASALT		FGRD	FINE-GRAINED		LIMY	LIMY		PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
CGRD	COARSE- GRAINED		FGVL	FINE GRAVEL		LMSN	LIMESTONE		PRDR	PREV. DRILLED	STKY	STICKY
CGVL	COARSE GRAVEL		FILL	FILL		LOAM	TOPSOIL		QRTZ	QUARTZITE	STNS	STONES
CHRT	CHERT		FLDS	FELDSPAR		LOOS	LOOSE		QSND	QUICKSAND	STNY	STONEY
CLAY	CLAY		FLNT	FLINT		LTCL	LIGHT- COLOURED		QTZ	QUARTZ	THIK	THICK
CLN	CLEAN		FOSS	FOSILIFEROUS		LYRD	LAYERED		ROCK	ROCK	THIN	THIN
CLYY	CLAYEY		FSND	FINE SAND		MARL	MARL		SAND	SAND	TILL	TILL
CMTD	CEMENTED		GNIS	GNEISS		MGRD	MEDIUM- GRAINED		SHLE	SHALE	UNKN	UNKNOWN TYPE
CONG	CONGLOMERATE		GRNT	GRANITE		MGVL	MEDIUM GRAVEL		SHLY	SHALY	VERY	VERY
CRYS	CRYSTALLINE		GRSN	GREENSTONE		MRBL	MARBLE		SHRP	SHARP	WBRG	WATER- BEARING
CSND	COARSE SAND		GRVL	GRAVEL		MSND	MEDIUM SAND		SHST	SCHIST	WDFR	WOOD FRAGMENTS
DKCL	DARK- COLOURED		GRWK	GREYWACKE		MUCK	MUCK		SILT	SILT	WTHD	WEATHERED
DLMT	DOLOMITE		GVLY	GRAVELLY		OBDN	OVERBURDEN		SLTE	SLATE		
DNSE	DENSE		GYPS	GYPSUM		PCKD	PACKED		SLTY	SILTY		
DRTY	DIRTY		HARD	HARD		PEAT	PEAT		SNDS	SANDSTONE		
DRY	DRY		HPAN	HARDPAN		PGVL	PEA GRAVEL		SNDY	SANDY		

2.	Core Color	3. Water Use							
Code	Description	Code	Description	Code	Description				
WHIT	WHITE	DO	Domestic	OT	Other				
GREY	GREY	ST	Livestock	TH	Test Hole				
BLUE	BLUE	IR	Irrigation	DE	Dewatering				
GREN	GREEN	IN	Industrial	МО	Monitoring				
YLLW	YELLOW	CO	Commercial						
BRWN	BROWN	MN	Municipal						
RED	RED	PS	Public						
BLCK	BLACK	AC	Cooling And						
BLGY	BLUE-GREY	NU	Not Used						

	4. Water Detail												
Code	Description	Code	Description										
FR	Fresh	GS	Gas										
SA	Salty	IR	Iron										
SU	Sulphur												
MN	Mineral												
UK	Unknown												

		- V	
		68	Nº 5880
Elev R The Ontario Water Reso	urces Commission Act		MAR REPORT
Basin 24 WATER WEL	L RECOR		CEC Of Ministeries
County or District Montworth T	ownship, Village, Town o	or City W.J	famporo
Con Lot L	Date completed 30	Cett.	year) 67
	dress 300 Me	Havk E.	Hamilton
Casing and Screen Record		Pumping Test	
Inside diameter of casing	Static levei	<u>z 4</u>	
Total length of casing	Test-pumping rate	10	G.P.M.
Type of screen	Pumping level	6 5 1.	1
Length of screen	Duration of test pump		1 · · · ·
Depth to top of screen	Water clear or cloudy :	at end of test	ear
Diameter of finished hole	Recommended pumpi	ng rate	G.P.M.
	with pump setting of	feet b	elow ground surface
Well Log		_ Denth(s) a	t Kind of water
Overburden and Bedrock Record	ft.	ft. found	(s) (fresh, salty, sulphur)
Brown Storey Hay	103	o 94	hest
- AD I T	- 20 8	5	Y
- Sur day			
Course Gravel	85 9	4	
		10 · · · · ·	
For what purpose(s) is the water to be used?		ocation of Well	
	In diagram bel	ow show distances of	well from
Is well on upland, in valley, or on hillside?	road and lot l	ine. Indicate north	by arrow.
Drilling or Boring Firm		- H 1-	Υ
		-	
Address		2507	17
		Ĩ.	, s
Licence Number 3326	ROGEBOUS	H.AVE	Å
Name of Driller or Borer Thank che	,		N N
Address 115 aldereres ave			
Date UCK 130 Mamiltan		well be	
(Signature of Lieensed Drilling or Boring Contractor)	st wet	×	\rightarrow
Form 7 15M-60-4138	CAST MAR	> ±	-
OWRC COPY	50 AARST		, 1
	~ Ku.		CS8.58

Ministry of the	S WAT	The Ontario Water Resourd	RECORD
Ontario	PACES PROVIDED	6810119	
COUNTY OR DISTRICT	TOWNSHIP, BOROUGH, CITY, TOWN, VILLAGE	CON. BLOCK. TRACT. SURVEY	
	S T T PO		DATE COMPLETED 49-53
	255 1500 200 1000 21		
LO MOST	G OF OVERBURDEN AND BEDRO	GENERAL DESCRIPTION	DEPTH - FEET
GENERAL COLOUR COMMON NATERIAL			
BROWN JOPS	C. AY		1 10
BROWN GRAVE	EL	MOIST	10 12
BLUE CLAY	/		12 20
BROWN SAND		OPY	20 25
BROWN CLA	1		25 32
BROWN SAND	<u>/</u>		32 35
BROWN SANN	1	OKY	35 37
CROWN SAND	T CLAY	moisi	3/ 77
5805 51LT		m0121	
$\begin{array}{c c} \hline 31 \\ \hline 900 \\ \hline 810 $	1629681 001261111	002,030,5 002,562868	10032605
4) WATER RECORD	51) CASING & OPEN HOLE	A3 RECORD Z SIZE (S) OF OPENING (SLOT NO)	45 75 40 31-33 DIAMETER 34-38 LENGTH 39-40
WATER FOUND AT - FEET KIND OF WATER	INSIDE MATERIAL WALL DIAM MATERIAL THICKNESS FR	DEPTH - FEET	INCHES FEET DEPTH TO TOP 41-44 10 DE SCREEN
$\frac{40.513}{40.552} = 3 \text{ and } 3 \text{ bulphur } 14$	10-11 1 🖸 STEEL 12 2 🖸 GALVANIZED	13-16 O SAND FIC	FEET FEET
15-18 1 _ FRESH 3 _ SULPHUR ¹⁹ 2 _ SALTY 4 _ MINERAL	56 CONCRETE 5 C	() (CO) > 61 PLUGGING	G & SEALING RECORD
20-23 1 [] FRESH 3 [] SULPHUR 24 2 [] SALTY 4 [] NINERAL	17-18 1 🗍 STEEL 19 2 🗋 GALVANIZED 3 🗍 CONCRETE	FROM 10	ATERIAL AND TYPE LEAD PACKER, ETC)
25-28 1 □ FRESH 3 □ SULPHUR ²⁹ 2 □ SALTY 4 □ MINERAL	4 OPEN HOLE 24-25 1 STEEL 26	27.30 18-21 22-25	
30-33 1 [] FRESH 3 [] SULPHUR ³⁴ 80	2 GALVANIZED 3 CONCRETE	26-29 30-33 80	
PUNPING TEST METHOD 10 PUNPING RATE	11-14 DURATION OF PUMPING		FWELL
	GPM 15-16 17-18 HOURS MINS	IN DIAGRAM BELOW SHOW DISTANCE	S OF WELL FROM ROAD AND
LEVEL PUMPING WATER LI	ZULS DURING Z RECOVERY 30 MINUTES 45 MINUTES 60 MINUTES	LOT LINE INDICATE NORTH BY AF	irow 1
<u>й</u> 040 Го <i>FEET FEET FEET</i>	8 29-31 32-34 35-37 T FEET FEET FEET		tu i
C IF FLOWING, S8-41 PUMP INTAKE S GIVE RATE	ET AT WATER AT END OF TEST 42		KIP
RECOMMENDED PUNP TYPE RECOMMENDED	43-45 RECOMMENDED 46-49 PUMPING DOD 3	THE AECO	LOC AN 20
SO-53			(-4Km)
FINAL	5 🗋 ABANDONED, INSUFFICIENT SUPPLY	Huy # 8.	57.455
OF WELL	7 🗍 UNFINISHED		J Km -D
55-56 1 DOMESTIC 2 STOCK	S [] COMMERCIAL 6 [] MUNICIPAL		new T
USE 01 3 IRRIGATION	7 D PUBLIC SUPPLY D COOLING OR AIR CONDITIONING		CON IT
\$7		MESH	ing of
METHOD CF CONVENT	6 BORING 10NAL) 7 DIAMOND) 8 JETTING	Monto Bolto	por 1.
DRILLING 4 I ROTARY (AIR) 5 I AIR PERCUSSION	9 🗖 DRIVING	Dir.	
NAME OF WELL CONTRACTOR		Sata SS CONTRACTOR 39-62	-S-107 80
6 Johnson Bart Wood	Boung (O 3030	Z (JU30 DATE OF INSPECTION INSPECTOR	Manca 182
RRINT Reasont	ONT .	U D REMARKS:	pu
S John Part - Redu	Smith SUBNISSION DATE	FICE	CS5.58
John Bach.	DAY MO YR,	5	
MINISTRY OF THE EN	VIRONMENT COPY	an a suggest and a strand strand strandstrandstrandstrandstrandstrandstrandstrandstrandstrandstrandstrandstrand	FORM NO. 0506477 FORM 7

	541'				
	* De #		ICCI V E	68 Nº	5584
	X	ĺ	JUN 1 9 1952		
	ONTABIO		GEOLOGICAL BRAN	СН	
			EPARTMENT OF MI	NES	
Department of 1	Mines, Pro	vince of	Ontario		
TT 7 T	** ••				
water v	Vell	Ke	cord		
Y1) 7 T		7'11 (7)		P. I.	
	р, у Сом	m or City	own or City, .W	A lam	0020
	s.Z	Vest	Flamboro	<u> </u>	•••••
Date Completed	f Well (exclu	iding pur	np)		••••
Pipe and Casing Record			Pumping Test		
Casing diameter (s)	Date				• • • • • • • • • • • •
Length (s) of casing (s)	Static level		6	••••••	
Length of screen	Pumping le	vel 🚣	1	•••••••••••••••••••••••••••••••••••••••	•••••
Distance from top of screen to ground level	Duration of	ite	e. gar par x	manula.	• • • • • • • • • • • •
Is well a gravel-wall type?	Distance fr	om cylind	ler or bowls to groun	d level	
W	ater Record				
Vied freedown in 19		•		1	
Quality (hard soft contains iron culabur etc.)	. A.res	A.	Depth(s) to Water	Kind of Water	No. of Feet Water Rises
Appearance (clear, cloudy, coloured)	Clea	\mathcal{N}	Horizon(s)		-
For what purpose(s) is the water to be used?	Hou	se	····· 62	fresh	
		•••••			
How far is well from possible source of contamination?	••••	••••			
Enclose a copy of any mineral analysis that has been mod	••••••••••••••••••••••••••••••••••••••	•••••			
Well Lod	e of water	•••••	····	= 	<u> </u>
Overburden and Bedrock Record	From	To	Loc	ation of Well	
	0 ft.	ft.	In diagram b	elow show dist	ances of
Clay & Stores & Sand	C	- 63	well from ro	ad and lot lin	e. In-
/			dicate north	by arrow.	VI
		_	50' £.1	Ni Rd.	
				Κ.	T -
		-	x		\sim
				150	le la compañía
		_		50 (
		-		1	
		-			•
				•	
		-			
Situation: Is well on upland, in valley, or on hillside?	•••••	• • • • • • • • •	•••••••••••	• • • • • • • • • • • • • • • •	•••••
Address. R. R. H. S. Simcou	• • • • • • • • • • •	• • • • • • • •	••••••••••••••••••••••	•••••	• • • • • • • • •
Name of Driller.	••••••	Addres	Same	••••••••••••••••••••••••••••••••••••••	• • • • • • • • •
Date	•••••••••	. Licence	Number	21	••••••
FORM 5			gay J	vaye	
•			/ Þignature of	Licensee	

			STRY OF THE		T		· · · · · · · · · · · · · · · · · · ·	
	WA		WEL	L R	EC	ORD	40	p Ba
Ontario	1. PRINT ONLY IN SP. 2. CHECK 🗵 CORREC	ACES PROVIDED T BOX WHERE APPLICABLE		6809	359.	68006	CON.	V 0/
	TWORTH	TOWNSHIP, BOROUGH, CIT	FLAN	BOR	9 CON.,	BLOCK, TRACT, SURVEY,	ETC.	LOT 65-27
		Ďu	NDA	20			DATE COMPLETED	07.53
	*	ING 132	RC.	ELEVATION	RC.	BASIN CODE	09.19	77 315 7
GENERAL COLOUR	MOST		AND BEUKU	UKMAIENIA	LO (SEE IN	STRUCTIONS)		DEPTH - FEET
	DUG WELL			<u> </u>	GENERA		F	ком то
DA								
BROWN	CLAY				<u></u>	······································	6	276
CREY (GRAVEL						7,	: 78
						<u></u>		
						•		
	······		· · · · · · · · · · · · · · · · · · ·					
			•1			····		
		0078						
	ER RECORD	51 CASING &	OPEN HOLE F	43 RECORD		OF OPENING 31- IO.)	65 33 DIAMETER	75 80 34-38 LENGTH 39-40
AT - FEET	FRESH 3 D SULPHUR	DIAM. NATERIAL NCHES STEEL 1	THICKNESS INCHES FR	ом то 7 У О 46		AL AND TYPE	DEPTH OF SCR	NCHES FEET TO TOP 41-44 80 IEEN
	FRESH 3 SULPHUR 19 SALTY 4 MINERAL	2 ☐ GALVANIZED 3 ☐ CONCRETE 4 ☐ OPEN HOLE		0078	61	PLUGGING	& SEALING	RECORD
20-23 i 2 2	FRESH 3 I SULPHUR 24 SALTY 4 I MINERAL	17-18 1 □ STEEL 2 □ GALVANIZED 3 □ CONCRETE	9	20-23	DEPTH SE FROM 10-13	T AT - FEET MAT TO MAT 14-17	ERIAL AND TYPE	(CEMENT GROUT, LEAD PACKER, ETC.)
²⁵⁻²⁸ 1 [] 2 [] 30-33	FRESH 3 SULPHUR SALTY 4 MINERAL 34 BO	4 OPEN HOLE 24-25 1 STEEL 2 2 GALVANIZED	6	27-30	18-2	1 22-25		
	FRESH 3 SULPHUR SALTY 4 MINERAL	3 CONCRETE]	26-29	30-33 80		
	WATER LEVEL 25		UNPING 16 00 17-18 URS MINE	I IN DIA		SHOW DISTANCES C		8091
	END OF WATER LEVE	LS DURING 2	RECOVERY 60 MINUTES		INE. INDIO	CATE NORTH BY ARRO		
IF FLOWING. GIVE RATE	38-41 PUNP INTAKE SET	FEET F	EET FEET OF TEST 42	6		-		
	GPM. TYPE RECOMMENDED PUNP	FEET 1 CLEAR	2 CLOUDY	S H				6
50-53	DEEP SETTIG	C CAPACITY	GPM.	M	RSH	BOKO, DK	<u> </u>	Ă
FINAL STATUS	1 D WATER SUPPLY 2 OBSERVATION WELL 3 TEST HOLE	5 🗌 ABANDONED, INSUL 6 🔲 ABANDONED, POOR 7 🔲 UNFINISHED	FFICIENT SUPPLY	L L		à		
OF WELL 55-1	4 RECHARGE WELL			1ot		N .		
	2 STOCK 6 3 IRRIGATION 7 4 INDUSTRIAL 8	MUNICIPAL PUBLIC SUPPLY COOLING OR AIR COND	ITIONING		3	10	N M.	н. 1
NAETUOD A		9 🗆 NOT 	USED	1	an for	0		
OF DRILLING	2 CONVENTION 3 ROTARY (CONVENTION 3 ROTARY (REVERSE) 4 ROTARY (AIR) 5 AIR PERCUSSION	AL) 7 🗌 DIAMOND 8 🗌 JETTING 9 🗋 DRIVING			1	<u> </u>		~
NAME OF WELL CO				DRILLERS REMARK	58 CON	TRACTOR 59-62 DAT		A 7 6 63-68 80
ADDRESS	Alderan	Y And H	1003	DATE OF INSPEC			No la	
NAME OF DRILLER	OR BORER		CENCE NUMBER			1	<u></u>	P 5.
O SIGNATURE OF CO	te Ince	SUBMISSION DATE	YR	OFFI	-		CSS.58	WI
MINISTRY	OF THE ENVIRO	NMENT COPY					F	ORM 7 MOE 07-091

	Ontario Ontario	istry ne ironment		WA	TER	e Ontario	Water Resourc	REC	ORD
	COUNTY OR DISTRICT	I. PRINT ONLY IN 2. CHECK 🛛 CORF	SPACES PROVIDED RECT BOX WHERE APPLICABLE		6809	982	6B006	Can	02
	WEN TWO	orth	TOWNSHIP, BOROUGH, CI	TY. TOWN. VILLAGI	E	CON	CON. 2	ETC	Q07
			* * # 1	JUN DAS	ONT.	<u> </u>		DATE COMPLETED	48-53 8 70
				500	RC ELEVATION		BASIN CODE	DAY MO	YR. Y
		¹² LC					31		47
	GENERAL COLOUR	MOST COMMON MATERIAL	OTHER MA	TERIALS		GENER	AL DESCRIPTION	DE	PTH - FEET
	BROWN	SAN DY CLAY			LO	OSE		FROM	
	BROWN	SAN D			I	OOSE		15	50
	GREY	CLAY			IA	OOSE		50	68
	GREY	LIMESTONE			H	ARD		68	74
				· · · · · · · · · · · · · · · · · · ·					
						······································			
			· · · · · · · · · · · · · · · · · · ·	<u></u> _					
ĺ	31 0015	40581177 19950	6 28 77 0068	205771	0074215	73			
L D									
K	WATER FOUND		5 CASING & C	OPEN HOLE	RECORD		OF OPENING 31-3: NO)	3 DIAMETER 34-38	LENGTH 39-40
	v72 ¹⁰⁻¹³	FRESH 3 SULPHUR	DIAM MATERIAL INCHES 10-11 1 STEFI 12	THICKNESS INCHES FI	RОМ ТО 13-16		IAL AND TYPE	DEPTH TO TOP OF SCREEN	41-44 30
-	15-18 1 0 1	FRESH 3 SULPHUR	Concrete	.188 +	1 0068				FEET
-	20-23 1 D F	FRESH 3 SULPHUR 24	17-18 OPEN HOLE		20-23	DEPTH SE	PLUGGING &	RIAL AND TYPE	ORD
+	2 🗆 S	RESH 3 TI SULPHUR	GALVANIZED 3 CONCRETE 4 OPEN HOLE	61	B (0074	FROM 10-1	10 3 14-17	LEAD	PACKER, ETC.1
$\left \right $	2 🗌 S	ALTY 4 AMINERAL	24-25 1 390EEL 26 2 GALVANIZED) 27-30	10-2	1 22-25		
ļ	2	ALTY 4 MINERAL	3 CONCRETE 4 COPEN HOLE			26-29	9 30-33 80		
Œ	PUMPING TEST METHOD		11-14 DURATION OF PU	MPING 17-18		LC	CATION OF	WELL	
	STATIC W	ATER LEVEL 25 END OF WATER LEVE	GPM HOUR LS DURING 1	S MINS		AGRAM BELOW	V SHOW DISTANCES OF	WELL FROM ROAD	AND
	035 035	65 22-24 (5 MINUTES 26-24	30 HUNUTES 29-31 29-31 32-3	60 MINUTES			ATE NORTH BT ARROW		
	J FEET	FEET FEET 30-41 PUMP INTAKE SET	FEET FEE AT WATER AT END OF	T FEET			1.		~
	RECOMMENDED PUMP T		FEET 1 CLEAR	2 CLOUDY				eNT	
ā	SHALLOW		FEET RATE	аб-43 Срм	NUNDO.	,	VERY	COT7.	1234
	54	<u> </u>			Fine		101.	(well.	Karle
	FINAL STATUS	2 OBSERVATION WELL 3 TEST HOLE	S ABANDONED, INSUFF ABANDONED POOR Q UNFINISHED	ICIENT SUPPLY UALITY		AB	BUDE-	<u> </u>	1,
╞	OF WELL 55-56	4 RECHARGE WELL			WEST. ELAMBO	RO AL	undinum unku	R.	
	WATER DI	2 STOCK 6	D COMMERCIAL MUNICIPAL D PUBLIC SUPPLY		ļ <u> </u>				
	USE	4 [] INDUSTRIAL 0	COOLING OR AIR CONDITI	ONING SED			Henry #	1	m
T	57 METHOD	CABLE TOOL	6 D BORING			С	UNTE		
		ROTARY (CONVENTION: ROTARY (REVERSE) ROTARY (AIR)	AL) 7 [] DIAMOND 8 [] JETTING 9 [] DRIVING						
		5 AIR PERCUSSION			DRILLERS REMARKS	S.			
R R	OCONNO	R WELL DRILL	ING LTD.	CE NUMBER		58 CONT	RACTOR 59-62 DATE RI	700	7 0 80
ACTC	ADDRESS RR #	1 MILLGROVE	ONT. LOR IN	0	O DATE OF INSPEC	TION	INSPECTOR	May	28/82
NTR	NAME OF DRILLEB OF	BORER	LICEN	CE NUMBER			İ	15	n
8	SIGNATURE OF CONTR	RACTOR	SUBMISSION DATE		FFIC		C	\$\$ \$8	
L	MINISTRY	FTHE ENIVIDOR		YR	ō	······································	· C	ky 1.2 4 k 7 17 1	
								FORM NO	0. 0506477

				MIN	ISTRY OF THE	ENVIRO	NMENT					
[5]		- 55	\.//		Sofario Wate	r Kesol					- 6	· ·
		net	VV/-		VVEL					4	DPE	9a/
On	itario '	1.	PRINT ONLY IN SP CHECK 🔀 CORREC	ACES PROVIDED		L			28006	Çd	<u>, </u>	01
COUN	TY OR DISTRICT	TUDDT	TH .	TOWNSHIP, BOROUGH,	CITY, TOWN, VILLAGE	BOK	0	CON., BLOC	CK, TRACT, SURVEY,	ETC.		LOT 27
OWNE		RST)	28-47	ADDRESS	ighvier					DATE COMP	LETED 05	E V
	MAKKA	<u>- ZONE</u>	ONSTRE EASTING	CTION . 2 TY	surt .	DC (N	IDAS ATION	RC. BASI	IN CODE	DAY 30	M	YP/7
68	808822	17	580853	47913	05 4	. 79	92	4 24	AU G	09,	1977	315 5
Ľ				G OF OVERBURD	EN AND BEDR	UCK MA	TERIALS	(SEE INSTR	UCTIONS	····-	DEPTH	
GENI	ERAL COLOUR		MATERIAL	OTHER I	MATERIALS			GENERAL DI	ESCRIPTION		FROM	то
B	ROWN	TOP	5014		<u> </u>						0	1.
	ROUN	LL	AY	. 1/	JONE	<u>s</u>	50	1.9				15.
	SROWN	SAN		AY Secom	5		<u> </u>				$\frac{13}{\sqrt{c}}$	55
	ROWN	SPA		1 <u>7</u>		à	i de la				<u>73</u> 56	62
6	MOUN	JHI					- <u>6</u>	· · · · · ·			22	6,
												
\square	\											
31	000	1602	0015	60512 00	456280574	005	5605	100	67628			
32		14 15	21						OPENING 31	65 33 DIAMET	I I I I I I I I I I I I I I I I I I I	75 80
41	R FOUND					DEPTH - FI		(SLOT NO.)			INCHES	FEET
	10-13 /		SULPHUR 14	INCHES	THICKNESS INCHES F	ROM		MATERIAL	AND TYPE		DEPTH TO TOR OF SCREEN	41-44 80
P	<u>55</u> ²	3 SALTY 4 0	MINERAL SULPHUR ¹⁹	2 [] GALVANIZI 3 [] CONCRETE	ا ت ع			61		& SFAI	ING RECO	
	20-23		MINERAL	4 OPEN HOL	E 19		20.23	DEPTH SET A	T - FEET MA	TERIAL AND	TYPE (CEM	ENT GROUT, PACKER, ETC.)
	25-28	SALTY 4	MINERAL 29	2 🗌 GALVANIZ 3 📑 CONCRETE 4 🗍 OPEN HOL	ED			10-13	14-17			
	2	SALTY 4	MINERAL	24-25 1 🗍 STEEL 2 🗌 GALVANIZI	26 ED		27.30	18-21	22-25			
L	30-33 1 [] FRESH 3 []] SALTY 4 []	SULPHUR 3400 Mineral	3 🗌 CONCRETE 4 🗌 OPEN HOL	E			26-29	30-33 80			
71	PUMPING TEST ME	тнор 1	0 PUMPING RATE	11-14 DURATION C	DF PUMPING 15-16 17-18]	Ault	LOC	ATION OF	WEL	L 80	91
M	STATIC	WATER LEVEL	25 WATER LEV	GPM1 VELS DURING	HOURS MINS		אסך IN DIAGRA LOT LINE	AM BELOW S	HOW DISTANCES	OF WELL I	FROM ROAD	AND
EST	19-21	PUMPING 22-2	4 15 MINUTES	30 MINUTES 45 MINU	CTES 60 MINUTES	1	70	DUN	DAS	what		Ы
L D	FEE	T FEE 38-4		FEET FEET	FEET FEET		Ę	well	. B			A .
MPIL	GIVE RATE	GP	м.	FEET 1 , 🗆 CL	EAR 2 CLOUDY		9	1			9	0
PU	RECOMMENDED PU		RECOMMENDED PUMP SETTING	6 4 FEET	46-49		-	MA	KS H BU RD	>	Þ	
	50-53		GPM./FT. SPEC	FIC CAPACITY]		f f	3D -			
	FINAL		ATER SUPPLY SERVATION WELL	5 🗌 ABANDONED, H 6 🛄 Abandoned, P	NSUFFICIENT SUPPLY OOR QUALITY							
	OF WELL		ST HOLE CHARGE WELL	7 🗌 UNFINISHED	"		<u> </u>	A	2 =			
		2 🗌 ST	OMESTIC OCK	5 🖸 COMMERCIAL 6 🔲 MUNICIPAL				/		<		V
	USE) / 3 🗆 IR 4 🗆 IN		7 DUBLIC SUPPLY 8 COOLING OR AIR CO			/	']			ې بو	2
		57		5 [P ROBIN			d	/			-	3
	METHOD OF	6 2 1 RC 3 1 RC	DTARY (CONVENTI) DTARY (REVERSE)	DNAL) 7 DIAMO 8 JETTI	ND NG	To	Not					
	DRILLING	4 🗌 RC 5 🗌 AI	DTARY (AIR) R PERCUSSION	9 🗋 DRIVI)	4G		ERS REMARKS:	No 8	HWY			
	NAME OF WELL	CONTRACTOR	1 1 10 1	10			TA URCE	58 CONTRA	ACTOR 59-62 D/	TE RECEIVED	***	63-68 80
TOR	ADDRESS	on - Ba	it hel	(Boring	5030	ONI I	TE OF INSPECTIO		INSPECTOR	17	1057	4
RÀC	240 NAME OF DRILL	EB OR BORER	Geo Ka	Grantfor	LICENCE NUMBER		MARKS:					
ONT	S.	Sack								CSS.S	8	<u> [s</u>
°		Dica	1	DAY 30	мо. <u>5</u> ук75	OF					1	WI
	MINISTR	Y OF TI	HE ENVIR	ONMENT CO	PY						FOF	RM 7 07-091

Hydrogeological Investigation, 13 Herbert Place – Hydrogeological Service PML Ref.: 17HX016, Report: 1, 13 Herbert Place, Hamilton, Ontario April 30, 2019

Appendix B

SGS Canada Inc., Certificate of Analysis

CA14348-OCT17 R

17HX016

Prepared for

Peto MacCallum Ltd

First Page

CLIENT DETAILS		LABORATORY DETAIL	LS
Client	Peto MacCallum Ltd	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	45 Buford Rd	Address	185 Concession St., Lakefield ON, K0L 2H0
	Hamilton, ON		
	N2C 1R4.		
Contact	Karel Furbacher	Telephone	705-652-2000
Telephone	905-561-2231	Facsimile	705-652-6365
Facsimile	905-561-6366	Email	deanna.edwards@sgs.com
Email	kfurbacher@petomaccallum.com	SGS Reference	CA14348-OCT17
Project	17HX016	Received	10/12/2017
Order Number		Approved	10/18/2017
Samples	Non-Reportable (6)	Report Number	CA14348-OCT17 R
		Date Reported	10/18/2017

COMMENTS

MAC - Maximum Acceptable Concentration MDL - SGS Method Detection Limit

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present: Yes Custody Seal Present:Yes

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwards

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365 www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	
Holding Time Summary	5-6
QC Summary	7-10
Legend	11
Annexes	12

RESULTS

	Sample I	Number	5	6	7	8
	Sample	e Name	MAC	Half MAC	AO/OG	MDL
	Sample	e Matrix	Non-Reportable	Non-Reportable	Non-Reportable	Non-Reportable
Parameter	Units	RL	Result	Result	Result	Result
Anions by IC						
Method: EPA300/MA300-lons1.3 Inte	ernal ref.: ME-CA-[ENV]I	C-LAK-A	N-001			
Nitrite (as N)	as N mg/L	0.003	1		-	0.003
Nitrate (as N)	as N mg/L	0.006	10		-	0.006
Nitrate + Nitrite (as N)	as N mg/L	0.006			-	0.006
Mercury by CVAAS						
Method: SM3112/EPA 245 Internal re	ef.: ME-CA-[ENV]SPE-L	AK-AN-0	04			
Mercury	µg/L	0.01	1	0.5	-	0.01
Metals in aqueous samples - ICP-MS						
Method: SM 3030/EPA 200.8 Interna	I ref.: ME-CA-[ENV]SPE	-LAK-AN	I-006			
Arsenic	µg/L	0.2	25	12.5	-	0.2
Barium	µg/L	0.02	1000	500	-	0.01
Baran	ug/l	2	5000	2500	_	2

Me	ethod: SM3112/EPA 245 Internal ref.: ME-CA-	[ENV]SPE-l	_AK-AN-004					
	Mercury	µg/L	0.01	1	0.5	-	0.01	

Arsenic	µg/L	0.2	25	12.5	-	0.2	
Barium	µg/L	0.02	1000	500	-	0.01	
Boron	µg/L	2	5000	2500	-	2	
Cadmium	µg/L	0.003	5	2.5	-	0.003	
Chromium	µg/L	0.03	50	25	-	0.03	
Antimony	µg/L	0.02	6	3		0.02	
Selenium	µg/L	0.04	50	25	-	0.04	
Uranium	µg/L	0.002	20	10		0.002	

pН

method:	SM 4500	Internal ref.: ME-CA-[ENV]EWL-LAK-	AN-006					
pН		units	s (0.05	-	 6.5-8.5	0.05	

Turbidity

M	ethod: SM 2130 Internal ref.: ME-CA-[EN	/JEWL-LAK-AN-0	03				
	Turbidity	NTU	0.10	1	 5	0.10	

RESULTS

Sam	ple Name	NR 13 Herbert Place	NR 51 Marshboro Avenue
Sam, Sa Sar	ampled By	Non-Reportable Kurtis P	Non-Reportable Kurtis P
Parameter Units	RL	Result	Result

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

					2
Nitrite (as N)	as N mg/L	0.003	0.038	<0.003	
Nitrate (as N)	as N mg/L	0.006	0.253	2.41	
Nitrate + Nitrite (as N)	as N mg/L	0.006	0.291	2.41	

Mercury by CVAAS

Method: SM3112/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

|--|

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Arsenic	µg/L	0.2	< 0.2	
Barium	µg/L	0.02	59.4	
Boron	µg/L	2	308	
Cadmium	µg/L	0.003	0.006	
Chromium	µg/L	0.03	0.12	
Antimony	µg/L	0.02	0.04	
Selenium	µg/L	0.04	0.11	
Uranium	µg/L	0.002	0.218	

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003 Hardness mg/L as 0.05 903 -- CaCO3 CaCO3 -- -- --

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

E. Coli	cfu/100mL	-	0	
Total Coliform	cfu/100mL	-	<2↑	

pН

Me	thod: SM 4500 Internal ref.: ME-CA-[ENV]EWL-I	_AK-AN-006	3		
	рН	units	0.05	6.63	

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

Turbidity	NTU	0.10	3.39	

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

MAC		5		10/12/2017	10/14/2017	10/14/2017		10/17/2017
AO/OG		7		10/12/2017	10/14/2017	10/14/2017		10/17/2017
MDL	NA	8		10/12/2017	10/14/2017	10/14/2017		10/17/2017
NR 13 Herbert Place	DIO0248-OCT17	9	10/12/2017	10/12/2017	10/14/2017	10/14/2017	10/19/2017	10/17/2017
NR 51 Marshboro Avenue	DIO0220-OCT17	10	10/12/2017	10/12/2017	10/14/2017	10/14/2017	10/19/2017	10/17/2017

Mercury by CVAAS

Method: SM3112/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

MAC		5		10/12/2017	10/16/2017	10/16/2017		10/16/2017
Half MAC		6		10/12/2017	10/16/2017	10/16/2017		10/16/2017
AO/OG		7		10/12/2017	10/16/2017	10/16/2017		10/16/2017
MDL	EHG0024-OCT17	8		10/12/2017	10/16/2017	10/16/2017		10/16/2017
NR 13 Herbert Place	EHG0024-OCT17	9	10/12/2017	10/12/2017	10/16/2017	10/16/2017	11/09/2017	10/16/2017

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

MAC	NA	5		10/12/2017	10/17/2017	10/17/2017		10/18/2017
Half MAC	NA	6		10/12/2017	10/17/2017	10/17/2017		10/18/2017
AO/OG		7		10/12/2017	10/17/2017	10/17/2017		10/18/2017
MDL	EMS0100-OCT17	8		10/12/2017	10/17/2017	10/17/2017		10/18/2017
NR 13 Herbert Place	EMS0100-OCT17	9	10/12/2017	10/12/2017	10/17/2017	10/17/2017	12/11/2017	10/18/2017

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

NR 13 Herbert Place	EMS0100-OCT17	9	10/12/2017	10/12/2017	10/17/2017	10/17/2017	11/09/2017	10/18/2017

Microbiology Method: SM 9222 | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-003

NR 13 Herbert Place	BAC9220-OCT17	9	10/12/2017	10/12/2017	10/13/2017	10/13/2017	10/14/2017	10/16/2017

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

MAC		5		10/12/2017	10/13/2017	10/13/2017		10/16/2017
AO/OG		7		10/12/2017	10/13/2017	10/13/2017		10/16/2017
MDL		8		10/12/2017	10/13/2017	10/13/2017		10/16/2017
NR 13 Herbert Place	EWL0204-OCT17	9	10/12/2017	10/12/2017	10/13/2017	10/13/2017	10/19/2017	10/16/2017

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

MAC	5	10/12/2017	10/12/2017	10/12/2017	10/13/2017
AO/OG	7	10/12/2017	10/12/2017	10/12/2017	10/13/2017

HOLDING TIME SUMMARY

NR 13 Herbert Place

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Turbidity (continued)								
Method: SM 2130 Internal ref.: ME-CA-[EN	VJEWL-LAK-A	AN-003						
MDL	NA	8		10/12/2017	10/12/2017	10/12/2017		10/13/2017

10/12/2017

10/12/2017

10/12/2017

10/12/2017

10/14/2017

10/13/2017

EWL0197-OCT17

9

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits 6)
						(76)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0220-OCT17	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0220-OCT17	mg/L	0.003	<0.003	ND	20	101	80	120	93	75	125
Nitrate (as N)	DIO0220-OCT17	mg/L	0.006	<0.006	0	20	102	80	120	105	75	125
Nitrate + Nitrite (as N)	DIO0248-OCT17	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0248-OCT17	mg/L	0.003	<0.003	ND	20	103	80	120	104	75	125
Nitrate (as N)	DIO0248-OCT17	mg/L	0.006	<0.006	ND	20	103	80	120	104	75	125

Mercury by CVAAS

Method: SM3112/EPA 245 | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Mercury	EHG0024-OCT17	ug/L	0.01	<0.01	ND	20	99	90	110	87	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recovery (%	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Arsenic	EMS0100-OCT17	ug/L	0.2	< 0.2	ND	20	108	90	110	104	70	130
Barium	EMS0100-OCT17	ug/L	0.02	< 0.01	ND	20	103	90	110	99	70	130
Boron	EMS0100-OCT17	ug/L	2	< 2	ND	20	99	90	110	NV	70	130
Cadmium	EMS0100-OCT17	ug/L	0.003	< 0.003	ND	20	98	90	110	105	70	130
Chromium	EMS0100-OCT17	ug/L	0.03	< 0.03	ND	20	104	90	110	98	70	130
Antimony	EMS0100-OCT17	ug/L	0.02	< 0.02	ND	20	95	90	110	NV	70	130
Selenium	EMS0100-OCT17	ug/L	0.04	< 0.04	ND	20	94	90	110	91	70	130
Uranium	EMS0100-OCT17	ug/L	0.002	< 0.002	ND	20	93	90	110	88	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-IENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike Recovery	Recover (%	ry Limits 6)
						(76)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9220-OCT17	cfu/100mL	-	ACCEPTE	ACCEPT							
				D	ED							
Total Coliform	BAC9220-OCT17	cfu/100mL	-	ACCEPTE	ACCEPT							
				D	ED							

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0204-OCT17	no unit	0.05	NA	0		100			NA		

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0197-OCT17	NTU	0.10	< 0.10	8	10	98	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\mathsf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS Environment,	Req - Lakefield: 185	uest for]	Laborato	Dry Servic	es an	nd CI	HAIN	N OF	F CU	STO	DY	265		No:
Health and Safety	- London: 657 Co	onsortium Cou	rt, London, O	N, N6E 2S8 Ph	one: 51	9-672-4	500 To	ll Free	: 877-84	48-806) Fax: 519-672-0	361 Web: ww	w.ca.sgs.	Page of
Received By: Stephanic Barber Received Date: 10/12/17 (mm/dd/yy) Received Time: 3:00 am (pm Qtircle)	ž	Labo Received By Custody Sea	(signature):	N (circle)	Lab use	e only	Cool	ling Ag	ent Pres	ent: Y) N Type: 10	pack	C L	AB LIMS #: Oct 143
REPORT INFORMATION	IN	VOICE INF	ORMATIC	ON	1		Tem	peratur	e Upon]	Receipt		828	5-5	38,9,82
Company: PER Michnum up.	(same as R	eport Informat	tion)	511	Quot	ation #.					PROJECT IN	FORMAT	ION	
Contact: KAREL FURGACHER	Company:				Proje	ation #.	1740				P.	0. #:		
Address: 45 BURLORD ROAD UTMUTON	Contact:						1111				Si	te Location/II	D:	
the second second second second		a the second		a franciska se		/	0.000		T	URNA	ROUND TIN	IE (TAT) H	REQUIE	RED
Phone: 907-561-2.231	Address:					Regu	ılar TA'	T (5-70	lays)	Samp	les received after	3pm or on we	exclude sta	atutory holidays & weekends). TAT begins the next business da
Fax: 905 Th1-(211			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		RUS	Н ТАТ	(Addit	ional (Charges	s May	Apply)] 1 Day		2 Days 3-4 Day
T	Phone:				PLE	ASE CO	ONFIR	M RU	SH FEA	ASIBI	ITY WITH SG	S REPRESE	NTATIV	E PRIOR TO SUBMISSION
smail: ETUT Dachere peromacuallumicom	_ Email:				Speci	fy Due	Date:		1.1.1.1.	di sina	Ru	sh Confirmat	ion ID:	
REG	ULATIONS				1.00	DRINK	ING W	/ATEF	RSAM	PLES				
	Other F	Regulations:	Se	wer By-Law:				SUBM	IITTED	WITH	SGS DRINKIN	IG WATER	CHAIN C	ONSOMPTION) MUST BE
Table 1 Res/Park Soil Texture:	Reg 347/55	8 (3 Day min 7	TAT)	Sanitary					ALVO					
Table 2 Ind/Com Coarse	PWQO	MMER		Storm				AN	ALYS	SIS H	EQUESTED			
Table 3 Agri/Other Medium	CCME	Other:	Muni	cipality:							2			
I able Fine	MISA	0. Reg. 169	103				٤		1		fer			COMMENTS:
ECORD OF SITE CONDITION (RSC) 🗌 YES 🗌	NO				Ter for	2		÷		30			Field Filtered (F)
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	Hd	E. Coli	Popul Col	Vitrate.	Pubidit	hadness	cchedue 2			(P)
13 HEREERT PLACE	OUTOBER 12,2017	9:15 A M	5	NAVER	K	X	X	X	N	V	* *			
51 MARSHBORD AVENUR	1	10:00 P.M.	1	1	,			X	N	~				
	1.1.24			and the second										
		and the second second				1910		1.00						
					1.0.1									
the second s	and in cases	and the second	Conto gala	Sugar States										
			and the second			1								and the second second
		Second and	N. J. W. Stars	Sec. Maria		1.17								a letter and a second
						The second								
servations/Comments/Special Instructions	Mar Mar A	(all the start)	1. N. A. Y. S.	and granter							1			
mpled By (NAME): Kulture Alar		<u>.</u>	nh-	14	7						1 Bertin	12.50		
linguished by (NAME).		Signature:	1h	1 Alt	-		>	1	Date: _	1 0	11211	<u>7</u> (mm	n/dd/yy)	Pink Copy - Client
interior to y (MAINE): Marie With the		Signature:	10	11-			-	1	Date:	10	11211	7 (mm	/dd/vv)	Yellow & White Conv SGS

Date of Issue: 25 July, 2016

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

3

CA14667-OCT17 R1

17HX016

Prepared for

Peto MacCallum Ltd

First Page

CLIENT DETAILS		LABORATORY DETAIL	_S
Client	Peto MacCallum Ltd	Project Specialist	Deanna Edwards, B.Sc, C.Chem
		Laboratory	SGS Canada Inc.
Address	45 Buford Rd	Address	185 Concession St., Lakefield ON, K0L 2H0
	Hamilton, ON		
	N2C 1R4.		
Contact	Karel Furbacher	Telephone	705-652-2000
Telephone	905-561-2231	Facsimile	705-652-6365
Facsimile	905-561-6366	Email	deanna.edwards@sgs.com
Email	kfurbacher@petomaccallum.com	SGS Reference	CA14667-OCT17
Project	17HX016	Received	10/23/2017
Order Number		Approved	10/26/2017
Samples	Non-Reportable (4)	Report Number	CA14667-OCT17 R1
		Date Reported	10/26/2017

COMMENTS

MAC - Maximum Acceptable Concentration MDL - SGS Method Detection Limit

Temperature of Sample upon Receipt: 10 degrees C Cooling Agent Present: Yes Custody Seal Present: No

SIGNATORIES

Deanna Edwards, B.Sc, C.Chem

searra Edwards

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365 www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3
Holding Time Summary	4
QC Summary	5
Legend	6
Annexes	7-8

RESULTS

Sar	mple Number	5	6	7	8	
s	ample Name	MAC	MDL	NR 45 Marshbolo	NR 48 Marshbolo	
				Avenue	Avenue	
S	ample Matrix	Non-Reportable	Non-Reportable	Non-Reportable	Non-Reportable	
	Sampled By			T Feather	T Feather	
	Sample Date			20/10/2017	20/10/2017	
Parameter Units	RL	Result	Result	Result	Result	

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Nitrite (as N)	as N mg/L	0.003	1	0.003	<0.003	0.013
Nitrate (as N)	as N mg/L	0.006	10	0.006	2.97	2.23
Nitrate + Nitrite (as N)	as N mg/L	0.006		0.006	2.97	2.24

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Anions by IC								

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

MAC	NA	5		10/23/2017	10/24/2017	10/24/2017		10/25/2017
MDL	NA	6		10/23/2017	10/24/2017	10/24/2017		10/25/2017
NR 45 Marshbolo Avenue	DIO0359-OCT17	7	10/20/2017	10/23/2017	10/24/2017	10/24/2017	10/27/2017	10/25/2017
NR 48 Marshbolo Avenue	DIO0359-OCT17	8	10/20/2017	10/23/2017	10/24/2017	10/24/2017	10/27/2017	10/25/2017

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recover Recovery (%		y Limits ६)	
						(70)	(%)	Low	High	(%)	Low	High	
Nitrate + Nitrite (as N)	DIO0359-OCT17	mg/L	0.006	<0.006	NA		NA			NA			
Nitrite (as N)	DIO0359-OCT17	mg/L	0.003	<0.003	4	20	100	80	120	100	75	125	
Nitrate (as N)	DIO0359-OCT17	mg/L	0.006	<0.006	1	20	101	80	120	103	75	125	

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

SGS SGS Health	Invironment, and Safety	Request for Laboratory Services and CHAIN OF CUSTODY - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Toll Free: 877-747-7658 Fax: 705-652-6365									No: Page_t_of					
Received By: BOOK Received Date 0 25 29 Juniv Received Time: 2 0 a	dd/yy) m m circle)	201401.03700	Labo Received By Custody Sea Custody Sea	(signature): Present: Y Intact: Y /	N, N6E 2S8 Pr mation Section - / N (circle) N	one: 519-67.	Coolir Temp	Free: 877-	esent	Rax: 519-6	72-0361 We	E E E E E E E E E E E E E E E E E E E	CA LAB LIN	14667- 15# 07-1		
REPORT INFORMA	TION	INV	OICE INF	ORMATI	ON				p	ROJEC	TINFOR	- K		10×5		
Company: PETO MAUALLUM Contact: Kalel Fulball	LTD.	Company:	eport Informat	ion)		Quotation	#: 1 1	Vol			P.O. #:		11			
Iddress: AS BW told Rdr.	Hanslitor	Contact:	20-11	1.1129-, 612.,	an ain an an An San Ain Ain		1111	XU IO			Site Loca	tion/ID: _		atsis (6)		
005 561-222	e an dis alla ang	Address:	ester ortalit			R	gular TAT	(5-7days)	TAT's a Sample	ROUND re quoted i s received	TIME (T. n business of after 3pm of	AT) RE days (excl r on week	QUIRED ude statutory l ends : TAT be	holidays & weekends).		
ux: 905-361-536	53	Phone:				RUSH TA	T (Additio	onal Charg	es May A	oply) TV WITI		Day	2 Da	ys 3-4 Da		
mail: KFWrbacher@feto	mallallumio	Email:		in the second	nosilatus i kus	Specify D	e Date:	, neon n		11 W111	Rush Con	firmation		OR TO SUBMISSION		
	REG	ULATIONS				DRI	NKING W	ATER SAM	IPLES (E							
Regulation 153 (2011 Table 1 Res/Park): oil Texture:	Other R	egulations:	CAT)	ewer By-Law:		5	SUBMITTE	D WITH	SGS DRII	NKING WA	TER CH	AN CONSU	IMPTION) MUST BE STODY		
]Table 2 Ind/Com	Coarse	PWQ0	MMER		Storm			ANALY	SIS RE	QUEST	ED					
Table 3 Agri/Other	Medium Fine		Other:	9/03 Mur	nicipality:								a spectra	COMMENTO		
ECORD OF SITE CONDI	TION (RSC	V(RSC) VES NO						Field Filtered (F)								
SAMPLE IDENTIFICAT	ION	DATE SAMPLED	TIME SAMPLED	# OF BOTTLES	MATRIX	1.71946								Preserved (P)		
195 Marth bolo Alm	ho	071.20 2017	125000	9	1 (1)-	2 V										
48 MAISTA bolo AV	ww	4	Disp		VIE	X										
Alexandro A	Non a superior and		-									1.194				
The state of the state	tent of the of the	and the second second	and and an an									9		AUN WAR MENN		
	and magnet		ors of available	in a suit	Contractory									elonoia.		
			No. No. of Street, Str	1000	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1.10		tes Herbicions		
off or an off station	ente qui reale ade	lander and the code		n in second di	ou ont bog, end									De la Mourie Maal Fourier		
	and the second					1.11										
oprotional/Comment /2																
ervations/Comments/Special Instruction	ons		an an an taon an		der og her so											
apled By (NAME): TIMOTU	Feather		Signature: 🖌	Tinth	Chita			Data	10	20	17	(1/) D -1 C	CII'		
nguished by (NAME):	ALL FOR.	the	Signature:	NE				Date:	10		17	(mm/de	d/yy) Pink C	opy - Client		

Date of	of Issue	: 25 July	2016

SGS

SAMPLE INTEGRITY REPORT

Project Number: MHX616						
	ONTARIO REG	ULATION 15	3/04			
SGS Sample ID CA 1466 1 - 0C7 1						
Date / Time Sampled						
Client Sample ID See Cot C	ALL					
Temperature >10.0 upon receipt if not compled some day.	e Submission Gener	al Sample Integr	ity Violations	1		
No evidence of cooling trend initiated if semaled area de						
Chain of Custody not submitted						
Chain of Custody incomplete						
Chain of Custody not signed / dated						
Chain of Custody not a current version						
Bottles / Samples listed on CoC but not received						
Bottles / Samples received but not listed on the CoC						
Sample container received empty						
	ample Specific Sam	ole Integrity Viol	ations	_		
Sample received past hold time						
Incorrect preservation (including no preservation where required)						
Headspace present in VOC vial (aqueous)						
Sample(s) received frozen						
Bottle(s) broken or damaged in transport						
Discrepancy between sample label and chain of custody						
Analysis requirements absent / unclear						
Missing or incorrect sample label(s)						
Inappropriate sample container used						
Insufficient number of bottles received						
Insufficient sample volume						
Sample contains multiple phases						
	Sedime	nt Log	_			
Groundwater samples contain visible sediment / particulate						
Groundwater contains greater than 1cm of sediment / particulate matter in bottle						
Additional Comments/Remarks:	/					
No issues upon receipt		Initials:	KH	1		

}

August 21, 2019

PML Ref.: 17HX016

Mr. Luke Hewitt 13 Herbert Place Hamilton (Dundas), Ontario L9H 5E1

Dear Mr. Hewitt

Hydrogeological Investigation 13 Herbert Place Hamilton (Dundas), Ontario

This letter provides our response to the comments from the City of Hamilton (City) on the report titled "Hydrogeological Investigation, 13 Herbert Place, Hamilton (Dundas), Ontario" dated April 30, 2019 completed by Peto MacCallum Ltd. (PML) (PML Ref.: 17HX016, Report 1). The subject property is referred to herein as the "Site".

This letter specifically addresses the comments received from the City of Hamilton Water Division -Source Protection Planning as outlined in an email dated May 31, 2019 from Mike Christie, Project Manager, Source Water Protection and as detailed in the peer review report by Cambium Inc. dated May 31, 2019.

The following section provides the City of Hamilton/peer review comment in bold, followed by our corresponding response.

Comment 1: The water quality sampling program was limited and did not include water quality parameters inclusive of Tables 1 through 4 of the ODWQS as per the City of Hamilton's Guidelines for Hydrogeological Studies and Technical Standards for Private Services (City Guidelines). The supply well at 13 Herbert should be re- sampled for the required sample parameters (all of Reg 169/03, except that only Gross Alpha and Gross Beta scans can be done initially under Table 3). The data should be summarised in a table format with any exceedances clearly outlined. The closest overburden wells should be sampled for septic related parameters (nutrients, bacteria, and DOC), before treatment if possible, to determine the existing overburden quality, or a shallow well installed on site to provide the same. A representative sample of the overburden aquifer is necessary given it supplies the majority of adjacent residences.

It is understood that sampling potable water at the Site is required for approval of the lot severance, which is recommended in our report. Water sampling and analysis will occur at a later date once the balance of the comments have been resolved and approval for the lot severance will proceed.

Comment 2: Groundwater flow in both aquifers is reportedly in both the north and south directions, this should be clarified in terms of what wells were relied upon and where they were screened, a figure showing the contours as per the Guideline would be useful.

Refer to the appended Site Plans depicting the ground water flow direction in the Overburden Aquifer (Drawing 2) and in the Bedrock Aquifer (Drawing 3).

Comment 3: The predictive assessment for characterizing water quality impacts from the proposed septic system should be recalculated with 40 mg/L effluent, 1000 L/day sewage flow for a 3 bedroom home (increase 200 L per additional bedroom), 194 mm/a infiltration rate, along with a reduction in available infiltration area given impermeable surfaces onsite.

Daily Sewage Flow

It is understood that the applicant has a potential buyer and they have confirmed that a three bedroom house will be constructed on the severed lot, therefore the daily sewage flow of 1,000 L/day is appropriate. A letter of intent is included in Appendix A for reference.

Land Cover

Regarding the land cover infiltration factors; the MOEE Hydrogeological Technical Information Requirements for Land Development Applications (April 1995) provides two options, cultivated lands or woodland. Since the Site has been developed and is not woodland, the more conservative factor of 0.1 was selected.

Soil Type and Infiltration Rate

With respect to the infiltration rate of 232.9 mm/year used by PML, the description of the soil within the proposed septic bed location was based on grain size analyses and classified as silt, comprising 0 to 8% gravel, 4 to 28% sand, 58 to 81% silt, and 7 to 14% clay using the Unified Soil Classification System (USCS). PML selected a soil type infiltration factor of 0.3 since the soil was between medium combinations of clay and loam and an open sandy loam.

The MOEE Hydrogeological Technical Information Requirements for Land Development Applications does not reference USCS for soil description. In this regard, United States Department of Agriculture (USDA) Natural Resources Conservation Service soil triangle was referenced to support the soil description as used in the MOEE document. The USDA soil triangle identified the soils as follows:

Sample 1: Silt Sample 2: Silt loam

Reference is made to Figure 1, appended. Based on Chapter 4, Table 2, of the MOEE Hydrogeological Technical Information Requirements for Land Development Applications, April 1995, this would indicate a soil infiltration description of open sandy loam to medium combination of clay and loam.

Based on testpits completed on Site, the overburden comprised surficial topsoil/fill underlain by strata of silt and sand, to bedrock at a depth of about 15 m.

Reference is also made to Appendix B for Figure 2.16 depicting recharge rates for the Hamilton Source Protection Region. The area of the Site corresponds to an average annual recharge rate of 220 to 260 mm (source: Report on Tier 1 Water Budget and Water Quantity Stress Assessment for Halton-Hamilton Source Protection Region and Report on Tier 2 Water Budget and Water Quantity Stress Assessments for the Upper West Branch of Sixteen Mile Creek and Middle Spencer Creek Subwatersheds dated August 27, 2010).

The infiltration rate used in the nitrate loading calculations is based on Site specific parameters as well as extensive experience we have in the area correlating the measured nitrate concentration with values predicated by the Thornwaite and Mather mass-balance procedure. The MOEE Hydrogeological Technical Information Requirements for Land Development Applications document (April 1995) acknowledge that the mass water balance procedure is conservative. In this regard, it is our opinion that an infiltration rate of 232.9 mm/year is reasonable.

Predictive Assessment vs. Monitoring Data

PML has been extensively involved in hydrogeologic assessment for other properties in the area of the Site (6 lots on Marshboro Avenue, 3 lots on Herbert Place, and 1 lot on Highway 8) and has accumulated over 15 years of monitoring data for nitrate concentrations in the ground water. Nitrate concentrations have ranged from <0.01 to 7.6 mg/L, thus demonstrating no health risks or off site impacts. It is noteworthy that the water sample for the highest value obtained from the monitoring program data was retrieved from a monitoring well located within the effluent plume of an existing septic system.

When the nitrate concentration determined using the predictive assessment calculation (11.7 mg/L) is compared to site specific measurements of actual nitrate concentrations in overburden wells closest to the Site at 12 Herbert Place (4.74, 3.86 and 7.62 mg/L), the predictive assessment / theoretical computation is shown to be conservative as demonstrated in the difference in concentrations.

Based on the above rationale, the lot severance is not likely to have an impact on the ground water resource. Furthermore, the client has agreed to install a tertiary treatment system at the lands to be retained and conditions can be placed on the severance approval to require the lands to be severed to also install tertiary treatment. Tertiary treatment systems can reduce nitrate by up to 60% and many manufacturers/suppliers have pre-paid maintenance and monitoring programs that can be implemented to ensure compliance.

Impermeable Surfaces

Regarding the infiltration area and impermeable surfaces. It is understood that the Site and surrounding area are not serviced by municipal storm sewers, the precipitation is directed from the impermeable surfaces towards on Site permeable areas through downspouts and is not being diverted off Site, therefore this will not reduce the amount of ground water recharge.

We trust this letter adequately addresses the City of Hamilton / peer reviewer comments. Please do not hesitate to contact our office should you have any questions.

Sincerely

Peto MacCallum Ltd.

Matthew D. St Denis, P.Eng. Associate Manager, Geotechnical Services

Melissa King, P.Geo., QP_{ESA} Director Discipline Head, Geoenvironmental and Hydrogeological Services

MAK:Id

Enclosures: Figure 1 – Soil Type Drawing 2 - Overburden Aquifer Ground Water Flow Direction Drawing 3 - Bedrock Aquifer Ground Water Flow Direction Appendix A – Letter of Intent Appendix B- Figure 2.16, Recharge Rates for the Hamilton Source Protection Region

Distribution:

- 1 cc: Mr. Luke Hewitt (via email)
- 1 cc: Mr. Joe Lakatos, BLA, MCIP, RPP (via email)
- 1 cc: PML Hamilton

MECP WELL 6808822 EL. 243

> MECP WELL 7188096 EL. 230 ⊈EL. 221.8

APPENDIX A

LETTER OF INTENT

June 21, 2019

To Whom it may concern

Re: Intent to purchase proposed severed portion (1.03 acres) of lands municipally known as 13 Herbert Place, Hamilton (Dundas/Greensville), ON

Please be advised that we, <u>Daryl Steven Lewis and Gayle Diane Lewis of 40 Marshboro</u> <u>Avenue, Hamilton (Dundas), ON</u> have expressed interest in purchasing the proposed building lot (1.03 acres) to be severed from lands municipally known as 13 Herbert Place.

Once a successful severance of the building lot is obtained from the City of Hamilton our intent is to build a 1800-2000 sq. ft. three(3) bedroom single-family dwelling.

Regards Dary Steven Lewis

Gayle Diane Lewis

40 Marshboro Avenue Hamilton (Dundas), ON L9H 5E1

APPENDIX B

FIGURE 2.16, RECHARGE RATES FOR THE HAMILTON SOURCE PROTECTION REGION

This mapping is produced by Conservation Halton and should be used for information purposes only. The data displayed are derived from sources with varying accuracies and all boundaries should therefore be considered approximate. Data on this map is used under license with the Hamilton Conservation Authority. Ontario Ministry of Natural Resources, Halton Region, City of Hamilton, Ministry of Environment, Ontario Geological Survey, Natural Resources Canada, Teranet Enterprises Inc. and other agencies. Copyright 2010.

DRINKING WATER SOURCE PROTECTIO ACT FOR CLEAN WATER

Recharge

Legend

Source Protection Area
Watersheds
Subwatersheds
Upper Tier Municipality
Lower Tier Municipality
— Niagara Escarpment
Highway
S Waterbody
Annual Recharge (mm)
=== < 50
50 - 100
100 - 140
140 - 180
180 - 220
220 - 260
260 - 300
300 - 340
340 - 380
380 - 420
420 - 460
460 - 500
500 - 540
Label is Average Annual Recharge (mm) for the entire Subwatershed.
Halton Region / City of Hamilton / Earthfx PRMS Model (2010).
1: UTM NAD 83 Zone 17
August 27, 2010
v
E Kilometers
1:200,000
Hamilton

Conservation Authority Ontario

A. J. Lakatos Planning Consultant

Land Use Planning and Design www.andrewjlakatos.com

Land Use Planning . Site Planning . Urban Design . Landscape Design

July 31, 2020

City of Hamilton Committee of Adjustment Planning and Economic Development Department 71 Main Street West, 5th Floor Hamilton, ON L8P 4Y5

ATTENTION: Secretary-Treasurer, Committee of Adjustment

RE: 13 Herbert Place, Hamilton, Consent to Sever Application

Please find enclosed a Planning Justification Brief with supporting documents pertaining to the proposed consent to sever application and the following:

- Two (2) copies of the completed Consent to Sever application form with original signatures.
- One (1) cheque in the amount of \$3,234.00 payable to the City of Hamilton.
- One (1) cheque in the amount of \$805.00 payable to the Hamilton Conversation Authority, if applicable.
- Two (2) copies of the Draft Reference Plan.
- Two (2) copies of the Survey Plan.
- One (1) USB with electronic copies of the above referenced documents.

We trust this package is complete. Should you have any questions, please do not hesitate to contact Joe Lakatos at 519-829-6153.

Respectfully submitted,

Joe Jakato

A.J. Lakatos, BLA, MCIP, RPP