

MASTER PLAN STUDY - MAY 2020

WILD WATERWORKS AT CONFEDERATION BEACH PARK HAMILTON, ONTARIO

BY: FORREC LTD. | CBRE | CLOWARD H2O

TABLE OF CONTENTS

LIST OF FIGURES

FIGURE 1: AERIAL PHOTOGRAPH - EXISTING CONDITIONS. (GOOGLE EARTH) 16
FIGURE 2: SKETCH-LANDS OF CONFEDERATION BEACH PARK (SURVEYS) 16
FIGURE 3: SWOT ANALYSIS - ARRIVAL AND FACILITIES 29
FIGURE 4: SWOT ANALYSIS - RIDES AND ATTRACTIONS 33
FIGURE 5: SWOT ANALYSIS - AMENITIES, LAYOUT AND OPERATIONS. 37
FIGURE 6: ARRIVAL PLAZA AND TICKETING AREA COMPARISONS - EXISTING 1983 / CURRENT REQUIRED / UPDATE. 40
FIGURE 7: FOOD AND BEVERAGE FACILITY AREA COMPARISONS EXISTING 1983 / CURRENT REQUIRED / UPDATE. 41
FIGURE 8: MALE/FEMALE CHANGE FACILITIES AREA COMPARISONS -EXISTING 1983 / CURRENT REQUIRED / UPDATE.42
FIGURE 9: RETAIL AREA COMPARISONS - EXISTING 1983 / CURRENT REQUIRED / UPDATE 43
IGURE 10: ADMIN/FOH AREA COMPARISONS - EXISTING 1983 / CURRENT REQUIRED / UPDATE 44
FIGURE 11: LIKE FOR LIKE OPTION 52
FIGURE 12: MODEST IMPROVEMENTS OPTION 55
FIGURE 13: NEW DESIGN OPTION 58
FIGURE 14: LOUNGING AREA COMPARISONS - EXISTING 1983 / CURRENT REQUIRED / UPDATE. 62
FIGURE 15: PARK SIZE REQUIREMENT WITH INCREASED ATTENDANCE - EXISTING 1983 / CURRENT REQUIRED / UPDATE 63
FIGURE 16: PARK SIZE REQUIREMENT WITH INCREASED ATTENDANCE - EXISTING 1983 / CURRENT REOUIRED / FUTURE 64
FIGURE 17: WATER RIDES AND WATER ATTRACTIONS ENTERTAINMENT CAPACITY COMPARISONS EXISTING 1983 / CURRENT REQUIRED / UPDATE 65
FIGURE 18: WHAT IS ENTERTAINMENT UNITS PER HOUR (EUH)? 66
FIGURE 19: CURRENT ENTERTAINMENT CAPACITY ANALYSIS - GUEST DISTRIBUTION 66
FIGURE 20: ENTERTAINMENT CAPACITY DISTRIBUTION 67
FIGURE 21: CURRENT ENTERTAINMENT CAPACITY ANALYSIS - ENTERTAINMENT UNITS PER HOUR. 67
FIGURE 22: EXISTING NUMBER OF WATER RIDES AND WATER ATTRACTIONS BY GUEST TYPE - GUEST SEGMENTATION. 68
FIGURE 23: NUMBER OF RIDES AND ATTRACTIONS BY EXPERIENCE - EXPERIENCE SEGMENTATION 68
FIGURE 24: CURRENT ENTERTAINMENT CAPACITY ANALYSIS ENTERTAINMENT UNITS PER HOUR 69
FIGURE 25: GUEST EXPERIENCE OPTION 2 73
FIGURE 26: GUEST EXPERIENCE OPTION 3 73
IGURE 27: GUEST EXPERIENCE OPTION 74
FIGURE 28: KEY PROGRAMMING METRICS 75
FIGURE 29: GUEST AMENITIES 76
FIGURE 30: REVENUE FACILITIES 77
FIGURE 31. WATER PARK ATTRACTIONS PROGRAM OPTION 3 78
FIGURE 32: GUEST AMENITIES 79
FIGURE 33: REVENUE FACILITIES 80
FIGURE 34: WATER PARK ATTRACTIONS PROGRAM OPTION 4 81
FIGURE 35: BUILDING DESIGN, FUNCTIONAL RELATIONSHIP DIAGRAM 87
FIGURE 36: REPLACE LIKE FOR LIKE PROJECT CAPACITY PLAN 94
FIGURE 37: REPLACE LIKE FOR LIKE MASTER PLAN 95
FIGURE 38: REPLACE LIKE FOR LKKE CIRCULATION 96
FIGURE 39: REPLACE LIKE FOR LIKE PHASING 96
FIGURE 40: MODEST ENHANCEMENTS PROJECT CAPACITY PLAN 99
FIGURE 41: MODEST ENHANCEMENTS MASTER PLAN 101
FIGURE 42: MODEST ENHANCEMENTS CIRCULATION 102
FIGURE 43: MODEST ENHANCEMENTS PHASING. 102
FIGURE 44: NEW DESIGN PROJECT CAPACITY PLAN 105
FIGURE 45: NEW DESIGN MASTER PLAN 107
FIGURE 46: NEW DESIGN CIRCULATION. 108
FIGURE 47: NEW DESIGN PHASING 108
FIGURE 48: WILD WATER WORKS WP R.O.M. ESTIMATE SUMMARY 111
FIGURE 49: WILD WATER WORKS WP R.O.M. ESTIMATE OPTION 2 LIKE FOR LIKE 112
FIGURE 50: WILD WATER WORKS WP R.O.M. ESTIMATE OPTION 3 MODEST IMPROVEMENTS 113
FIGURE 51: WILD WATER WORKS WP R.O.M. ESTIMATE OPTION 4 NEW DESIGN, NEW PROGRAM 114

Romas Keliacius, Senior Project Manager
Healthy and Safe Communities
Recreation
City of Hamilton
Attention: Romas Keliacius
Romas.Keliacius@hamilton.ca

Master Plan Study Wild Waterworks at Confederation Beach Park PROJECT \#18-185

May 4th, 2020
Dear Romas,
FORREC is pleased to submit our FINAL report for the Master Plan Study of Wild Waterworks at Confederation Beach Park.

Our report follows the agreed Scope of Work and provides you with an objective evaluation and analysis of existing conditions, options for programming and redevelopment at four levels.

In addition to the work completed by the FORREC team, Cloward H2O Aquatic Engineers have reviewed existing aquatic facilities and have provided detailed recommendations. Their findings are in the report appendices.

CBRE have provided a Market and Financial Analysis Valuation and Advisory Services for the water park which we have utilized to help inform reinvestment levels for your consideration. Their findings are in the report appendices.

Our report provides you with an evaluation and analysis of the existing parkland, vehicular movements (bus/car parking), required for Wild Waterworks. We have also provided movements (bus/car parking), required for Wild Waterworks. We have also provided
requirements for food and beverage as well as entertainment facilities to improve the water park and dry land recreation extending the seasonal use of the park.

Please feel free to contact me directly to respond to any questions you may have on our report.

Yours truly,

[^0]
1 EXECUTIVE SUMMARY

1
 EXECUTIVE SUMMARY

1.1 OVERVIEW

Wild Waterworks at Confederation Beach Park, is a family, outdoor seasonal water park located on Lake Ontario between the Queen Elizabeth Way and Lake Ontario in the City of Hamilton.
The 4.9hectare (12.1 acre) water park is owned by the City of Hamilton and managed by the Hamilton Conservation Authority. The water park is a recreation and entertainment resource for the public that opened in 1983.
At the time of it's opening 35 years ago, water parks were still relatively new in the market, consequently many of the features that we know and enjoy today, either did not exist, or were just developing. At the time, Wild Waterworks was a new and finnovative facily, well ahead of to Over the years Wid Waterworks has become a much -loved, family Regional water park. Guest park caions have 1083 Unforgnicantly since the park and condition of the rides/attractions and age guest areas, the cutions of today's guest and the below the expectatio market in general.

The issue can be summarized as "The guest gets what they pay for and paid for what they got" In other words, the cost to attend is relatively low and so is the entertainment experience. An important issue is the age of the facility and specifically, the mechanical components and individual water attractions. Each of these components have a limited life expectancy, many have already exceeded that service life. These components require an increasing amount of capital annually to maintain the facility in operating condition until it no longer proves to be economical to operate. A better understanding of lifecycle and replacement costs are required to make better informed decisions and plan fo capital expenditures. This study addresses this issue and provides four (4) options for courses of action. The proposed enhancements to the water park are intended to address this situation and enhance guest experience and increase overall annual attendance.

1.2 MASTER PLAN STUDY

This Master Plan Study investigated the feasibility and economic viability of Wild Waterworks based on varied levels of investment; including no investment and replacing rides/attractions as the current attractions approach their end of life.
A detailed SWOT analysis of existing facilities was carried out for the overall park which guided a carried out for the overall park which guided a
range of potential solutions to resolve known or newly identified issues

Four (4) options were objectively considered for the water park to provide a comprehensive range of solutions for consideration by Committee and Itimately, Council of the City of Hamilton ultimately, Council of the City of Hamilton. This review of options assessed the existing Wild Waterworks Park and provided recommendations or improvements and redevelopment. The viability of the waterpark was considered together with pportunities for improvement and methods of increasing annual attendance at the waterpark

1.3 OVERVIEW OF FINDINGS

Most of the existing facilities and infrastructure are dated and at a point in their life cycle where they require major refurbishment or replacement. Others are in reasonable repair and require only minor modifications.

Many of the weaknesses identified throughout the water park are largely the result of the age of the facility infrastructure and the pressures current attendance place on aging end of life facilities. All building facilities, while generally structurally sound, are significantly undersized to meet the current attendance levels and are poorly distributed throughout the site. This creates circulation congestion issues throughout, particularly at the entrance area, negative guest experience and the loss of potential revenue.
Outdated POS (Point of Sale) systems compound these challenges by reducing the efficiency with which staff can serve guests' needs. The attractions and infrastructure are reaching, at the end of or far past a reasonable lifespan and are having difficulty functioning under the stress of peak attendance days

Most of the threats identified in the analysis relate directly to the insufficient size of existing building or site facilities, rides/attractions and the physical degradation of attractions and their corresponding mechanical systems. These systems, rides/attractions and facilities will continue downward on the degradation cycle as most have far exceeded a reasonable operating life cycle.

Overall, there are many challenges the park faces including a number of infrastructure issues which must be addressed as soon as possible.

1.4 THE WAY FORWARD

The Water Park design and facilities options were planned in a comprehensive way from he standpoint of a guest, while considering pportunities for future expansion. The features are a major component of this destination to reate a unique place aimed at an enhanced and memorable guest experience. As with any park reinvestment, the investment is tied to attendance and phasing to achieve the desired results that can be sustained over both the short and long term. Planning and design work address the issues and opportunities identified in the Analysis task. We proposed a range of solutions to enhance guest experience, improve he mix of rides and attractions to provide new, more interesting challenges to meet a changing demographic and increase potential and ustained park attendance

Wild Waterworks opened in 1983 and achieved its highest annual attendance, with just over 153,000 guests in its first year. Attendance over the past 35 years has averaged and stabilized at approximately 110,000 with peak attendance of 140,000 in 2005 and 2016. In 2018, attendance was approximately 128,000 , which was much better than the stabilized average. Based on past and current revenue, operations costs, the park breaks even operationally at approximately 100,000 guests per year

The analysis reviewed each of the options for the water park, provided estimated attendance levels for each of the four options, programming, area requirements, phasing and resultant budgets.

1.5 OPTIONS CONSIDERED

1) Do Nothing

Do Nothing: Do nothing, consider the probable remaining life cycle of all facilities. Based on the market and feasibility analysis and estimated attendance, the overall size of Wild Waterworks would remain unchanged. Attendance for Option 1: "Do Nothing", would gradually decrease in the next $2-5$ years falling well below 100,000. As infrastructure, rides and attractions continue to age and are taken out of service, it is expected that the park will become increasingly expensive to operate and would eventually be closed.

This Option was not considered financially viable and is not recommended.

2
Replace Like for Like

Replacement of existing Rides, Attractions Replacement of existing Rides, Atras.
and Facilities with same/similar.
Based on the market and feasibility analysis and estimated attendance, the overall size of Wild Waterworks he overall size of Wild Waterworks would remain unchanged. Attendance for Option 2: "Like for Like" will slow crease over the average current ttendance, increasing gradually over he next 2-5 years. The size of the water park will remain unchanged for this optio as the current park area can generally accommodate the attendance with new building facilities and new rides.

This Option was not considered financially viable and is not recommended.

Replacement of some rides, attractions, dryland climber, sheltered recreation area for adverse rain conditions, improved ticketing systems and RFID wristbands. The water park size for Options 3:

"Modest Enhancements" would ne

to be increased to accommodate to be increased to accommodate increased annual (daily) attendance, as well as provide new rides and attraction for guests. Attendance will increase initially and stabilize after year 3 as a stabilized attendance level is achieved. This will require additional park area and an increased service

This Option is considered
 the most financially viable and is recommended.

Improvements to Wild Waterworks Water Park are intended to align with the 2016, City of Hamilton Strategic Plan to support the Vision, Mission, Culture and Priorities of the City of Hamilton.
The recommendations and background contained in the report will ultimately assist City staff to prepare a report to Public Works Committee and Healthy and Safe Communities and ultimately, City of Hamilton Council.

2
 PURPOSE OF STUDY

FORREC Ltd. was retained by the City of Hamilton in October 2018 to prepare a Master Plan Study, Wild Waterworks at Confederation Beach Park Hamilton.
Wild Waterworks is an existing outdoor seasonal family water park, located at 680 Van Wagners family water park, located at 880 Van Bead, between the Queen Elizabeth Way and Lake Ontario in the City of Hamilton. The and Lake Ontario in the City of Hamilton. The
4.9hectare (12.1 acre) water park is a significant anchor within Confederation Beach Park - a 93 hectare (228 acre) public park stretches 4 km along Lake Ontario. It is owned by the City of Hamilton and managed by the Hamilton Conservation Authority. The water park is a regional recreation and entertainment resource for the public that opened in 1983. The Master Plan Study Area is approximately 10 hectares (24.7 acres), which includes the guest drop off and adjacent parking lot to the west of the 4.9ha water park.

The purpose of this Master Plan Study is to:

Review and assess the existing Wild Waterworks Park at Confederation Park in Hamilton and provide recommendations and options for improvements and redevelopment.
Create a place to draw visitors to this destination time and time again, enhance the overall guest experience and to meet current guest demands/expectations.
Provide water park rides and attractions targeted for a primary family demographic, designed to an International standard. This includes family from young children to teens, young adults and older adults while considering wet and dry activities.

Investigate options for extended seasonal utilization.
Prepare and update a Market and Financial Analysis of Options.

Review existing Aquatic systems and consider current condition and remaining service life.

- Undertake improvements that support City and Conservation Authority core values.

2.2 BACKGROUND

Wild Waterworks is an outdoor seasonal water park that opened in 1983.
At the time of it's opening, water parks were still relatively new in the market, consequently man of the features that we know today, either did not exist, or were just developing. (Wet n' Wild in Orlando, is generally considered the first largescale water park in North America which opened in June 1977). Since that time, rides/attractions have evolved significantly, so have the guest expectations.
Further, since 1983, several additions and improvements have been made to the rides and attractions at Wild Waterworks including the Lazy River, which opened in 1994 and the East slide complex (Proslide) which was replaced and reopened in 2008.
The Outdoor water park has an existing area of approximately 49,000 m^{2} (4.9ha), plus adjacent parking and drop off facilities to the west. The total approximate area for review in this study is approximately $100,000 \mathrm{~m}^{2}$ (10 ha).

See Figure 1: Aerial photograph - Existing conditions. (Google Earth).

The current annual attendance for the water park ranges from a low of approximately 87,000 to a high of 145,000 annual visitors. The City of Hamilton intends to revitalize Wild Waterworks water park facilities to enhance the guest experience and increase attendance over a sustained period of time.

- Target future annual attendance was based on the 2018 CBRE Market and Financial Analysis of Options and were mutually agreed to during he study. Increases above current attendance were expected, provided the offering of rides and attractions were updated to meet current expectations. As a starting number, based on the Sierra Planning and Management Consultants Economic Feasibility Study (2016), an Increase of 130% attendance was considered as a minimum guide. Note, the current Sierra study did not identify an upper threshold figure. The updated CBRE report will set target annual attendance.
- Supplemental economic feasibility work was completed by CBRE who are familiar with the local Ontario market and entertainment attractions. The findings of their review are contained in Appendix A-1, Market and Financial Analysis of Wild Waterworks Options.
- The water park currently operates during a peak three to four (3-4) month season. $90-100$ days approximately. A four (4) season facility is only possible with the addition of an indoor water park component. The CBRE feasibility consultant considered if an investment of this scale is warranted and summarized their findings in the final report.
- As part of the study, a range of additional dry land activities were explored to extend he seasonal aspects of the park in both the spring and fall and to increase the offerings during cooler or rainy summer weather.
- Most of the existing facilities are somewhat dated and at a point in their life cycle where they require major refurbishment or replacement. Others are in reasonable repair and require minor modifications only.

FIGURE 1: Aerial photograph - Existing conditions. (Google Earth)

FIGURE 2: Sketch-Lands of Confederation Beach Park (Surveys)

2.3 PROJECT GOALS AND OBJECTIVES

The City of Hamilton provided an outline of their Project Goals and Objectives in their RFP, dated July 20,2018 , these are paraphrased as follows.

GOALS

- To investigate the feasibility of Wild Waterworks based on different levels of investment; including no investment and exchanging like for like attractions as the current attractions approach their as the curre
- To identify opportunities to maximize the economic viability and profitability of the waterpark.
- To provide recommendations for new attractions to replace the existing rides/attractions.
- To provide recommendations for expansion or re-visioning of the waterpark with additional attractions.
- To review general, current operations of the waterpark and provide suggestions for improvements and efficiencies.
- To provide redevelopment options that consider a range of warranted investments.
- To provide an implementation strategy for each option.
- To provide feedback on current remaining life cycle of the park without new investments.
- Consider the entire study area to Identify parking, transportation and operational opportunities outside of current waterpark footprint. (study area).
- To provide options for phasing redevelopment.

OBJECTIVES

1. Determine the viability of waterpark, areas of strength as well as opportunities for improvement
2. To identify methods of increasing annual attendance at the waterpark
3. Identify opportunities for increased year -round guest use for all ages
4. Provide recommendations for identified changes.
5. Consider outcomes of "Do Nothing" to improve the facilities/attractions.
6. Provide recommendations for parking spaces as required for expansion of recreational offerings.

To achieve these Goals and Objectives, FORREC prepared a program to address and consider the Master Planning and design of a facility he Master Planning and design of a faciity meet guest needs, projected increased recommendations to adjust the current way of doing business.
apital investment options for revitalization and pportunities to extend the operational season were considered based on the Market and Financial Analysis of Wild Waterworks Options prepared by CBRE.
Phased implementation options for an economically viable operation were provided, all with adequate passenger parking lots, bus, vehicular and pedestrian circulation.

The Water Park design and facilities were planned in a comprehensive way from the standpoint of guest while considering opportunities for some imited future expansion. The features are some
 omponent of this destination to create a unique place amed and memorable guest experience. As with any reinvestment, the investment is tied to attendance and phasing to achieve the desired results that can sustained The recommendations contained in the report will ultimately form part of a staff report to Public Works and Healthy and Safe Communities and ultimately, City of Hamilton Council for consideration

FORREC Ltd. led the Consulting team in the preparation of the Master Plan Study, review and analysis of existing site, redevelopment options, programming and budgets. They were also responsible for the preparation of the report.
Glenn A. O'Connor,
Principal Author and Project Manager
Ingrid Vaivads, Programming + Design
Nadia Pausch, Diagrams, Figures and Assist with text.
Tony Zhou, Report Graphics
Scott Torrance, Review and Advisor
Photograph credits: Marketing photographs were provided by Hamilton Conservation Authority. These were released for use in public documents and have been used throughout this report. Photographs of facilities or existing infrastructure were taken by FORREC of Cloward H2O.

CBRE was responsible for Market and Financial Analysis of Wild Waterworks Options, included here as Appendix A-1.
Fran Hohol, Principal Author
Rebecca Godfrey, Writer + Research
Hildegard Snelgrove, Research Assistant

Cloward H2O was responsible for Aquatic Engineering Facility Review Report +
Recommendations, included here as Appendix A-2
Allen Clawson, Principal Author
he study team would like to acknowledge City of Hamilton and Hamilton Conservation Authority staff members who guided, challenged us and helped to shape this Master Plan to plan to create a great water park for the people of Hamilton and surrounding communities.

3

BACKCROUND REPORT REVIEW

3 BACKGROUND REPORT REVIEW

The Master Plan Study and Capital Improvement Plan is to be done within the context of the overall Confederation Beach Park Master Plan and it's supporting studies. This Wild Waterworks Study is a supporting study identified in the PW Report (PW11005 (d) dated August 11, 2016) and as such, must work within that context.

3.1 CONFEDERATION PARK
 MASTER PLAN REVIEW \& UPDATE (2010)

Confederation Park Master Plan Review \& Update 2010, prepared by G. O'Connor Consultants Inc. was a comprehensive, park wide report with extensive public consultation. This report considered new development opportunities and activities taking into consideration: the valuable lakefront setting; unifying the overall park elements; integration of the Waterfront Trail and pedestrian links to the Red Hill Valley and City; while completing improvements that support the City and Conservation Authority core values.
The report considered numerous upper tier planning policies, regulations and documents to ensure any park improvements are supported by Provincial, Region and City planning requirements A Central Recreation/Commercial Village was proposed subject to a feasibility and business case validation. The plan retained and restored
valuable littoral wetlands, savanna and dune habitats within the park zone. Recommended emoving underutilized and inappropriately located recreational uses and re-deploying these lands to better meet community needs. The plan also applied new design principles to connect the waterfront trail and focus new development with a commercial central village area and provided improved connections to trails and public transit with surrounding neighbourhoods. Wild Waterworks was viewed as a valuable resource that required further and more detailed study with potential to be expanded and enhanced.
Overall, Confederation Park Master Plan Update through its implementation will demonstrate and showcase this City-Wide Park as example of blending built and natural environments to enhance the quality of life for the public.

3.2 SIERRA PLANNING AND MANAGEMENT CONSULTANTS ECONOMIC FEASIBILITY STUDY (2016)

The Economic Feasibility Study: Confederation Park Master Plan was prepared by Sierra
Planning and Management in 2013 and updated in 2016. The basis of the analysis was a review of 2016. The basis of the analysis was a review of the 2010 Confederation Park Master Plan Review nd Update to consider the potential Commercia evelopment Opportunities and to assess the nancial feasibility of the development proposed in the Master Plan Review and Update.

The study found that while Confederation Beach Park has a significant draw from both its primary and secondary markets, it is "an under-developed asset both in terms of economic potential and level of utilization". Given that both the primary Hamilton, Burlington) and secondary (Brampton, Mississauga, Oakville, Milton, St. Catharine'sNiagara, Kitchener-Waterloo, Guelph) markets re expected to experience significant population are expected to experience signicant populatio位
 rer to stratesically position the Park, capital eal ivestment is required in addition to programming wich distinguishes the Park from nearby draw uch as the Burlington waterfront. The regiona and mas hertial to dive activy and renue in the Park, which meets the goals abjectives of the City of Hamilton and evelopment is required to maintain and broaden egional appeal. Asing assets in a "state of under investment have the potential to negate any gains o visitation and spending from new development and should be considered a priority.
The study identified Wild Waterworks as Confederation Beach "Park's largest attraction and important revenue generating facility" and oted "the future success of [Wild Waterworks] will be integral to the Park's continued operations". Over 20% of visitation in the Park is
specifically to Wild Waterworks, however its aging facility requires capital investment. The study highlighted various revenue generating strategies for the water park, including better marketing of premium add-ons such as cabana rentals, the addition of attractions which extend the operating season, increasing spending by trail users, and lanning activities which cater to a broader demographic.

Both short-, medium-, and long-term focus items were identified within the report and given approximate investment values. Of note for the waterpark are the following:

HORT-TERM FOCUS
The development of a comprehensive master plan for Wild Waterworks $(\$ 150,000)$
Replacement of Little Squirt Work (\$1,500,000)

LONG-TERM FOCUS

Aesthetic upgrades to the entry facade (\$400,000)

However, there were areas of the report that were unclear regarding the warranted investment levels, annual attendance data and spend per person. As a result of discussions with City of Hamilton staff, it was agreed the feasibility components which were not developed would be captured by a more refined report to be prepared by CBRE as part of this master plan study.

3.3 CITY OF HAMILTON PUBLIC WORKS \& HEALTHY AND SAFE COMMUNITIES, CONFEDERATION BEACH PARK MASTER PLAN FEASIBILITY STUDY - PW11005D (2016)

Report PW11005d was prepared by staff of the City of Hamilton's Public Works and Healthy and Safe Communities and submitted to the chair and members of the Public Works Committee for consideration on August 11, 2016.
The report made a series of recommendations that provided short term budgets for additional studies and mid-long-term budgets for Capital reinvestment to be incorporated into the City of Hamilton Capital Budget Process. Further, the report recommended that a program be developed to implement the capital program and life cycle replacements and develop a funding strategy for Confederation Beach Park and Wild Waterworks. These recommendations were based upon both the 2010 Confederation Park Master Plan Review and Update prepared by G. O'Connor Consultants Inc. as well as the 2016 Economic Feasibility Study: Confederation Park Master Plan prepared by Sierra Planning and Management. The report confirms that Confederation Beach Park "warrants a renewed capital investment over the next 10-15 years to properly manage the park and provide adequate waterfront amenities to support the large volume of seasonal visitors". The report also noted several other related staff information reports that were previously submitted over several years, from 2011-2016 that identified a variety of issues at Confederation Beach Park which support reinvestment in both the overall Park and Wild Waterworks.

The report provided criteria for attractions and spaces warranting investment, noting that investment should generate economic return, improve access to nature, promote sustainability, encourage health and wellness, create recreation opportunities, and capitalize on tourism potentia within the broader region
he report recommendation was for an mplementation strategy for the redevelopmen of Confederation Beach Park be received and ither all or a portion of the Master Plan be incorporated into the City of Hamilton's 10-year Capital forecast. It further endorses that Public Works and Healthy and Safe Communities should work with the Hamilton Conservation Authority in the execution of these recommendations.

SITE EVALUATION AND OBSERVATIONS

4.1 STAKEHOLDERS WORKSHOP AND SITE VISITS

AUGUST 9, 2018 - SITE VISIT \&

START-UP MEETING
FORREC senior staff attended a start-up workshop meeting with City of Hamilton staff to discuss the overall study, review scope of work and deliverables and review staff objectives for the study. This workshop was very productive and resulted in the identification of several existing information gaps in available background data or studies. As a result, the scope and deliverables for the Master Plan Study were revised which have been included in this report.
FORREC and their team also reviewed the available City of Hamilton supplied background documentation including Building Condition assessments and the available feasibility, market report by Sierra Management Consultants. Based on this review, it was agreed to retain CBRE to complete a market and financial analysis for Wild Waterworks which was focused and addressed the range of options required by City of Hamilton staff. The CBRE report is included in this report as Appendix 1.
AUGUST $29^{\text {TH }}, 2018$ - SITE VISIT
FORREC senior staff visited the site together with the Aquatic Engineer Cloward H2O and City of Hamilton team members including operations and management staff from Wild Waterworks The purpose of this meeting and site visit was to collect background information related to existing conditions, evaluate existing equipment, facilities, operations, rides and attractions.

We had a detailed site visit to gain a qualitative review and debrief, to investigate the current features, park attributes, and challenges.
During the site visit, FORREC and Cloward staff:

- Reviewed the park and pool layout, in-pool hydraulic conditions, general structures, waterproofing or coating issues and other items as practical to gain a comprehensive understanding of existing conditions
We discussed operational history and past repair work with operations staff.
Photographed and identified components, recording make/model/serial number of key pieces of equipment
Evaluated the condition and operational history of key equipment, controls, and piping.

OCTOBER 25 ${ }^{\text {TH }}, 2018$ - SITE VISIT
FORREC staff visited the site again on October 25th, 2018 and were led on a comprehensive site walk by Wild Waterworks operations staff. The purpose of this site visit was to allow additional team members to collect any remaining background information related to existing conditions, facilities, operations, rides, and attractions
During the site visit, FORREC staff:

- Discussed operational history, trends, and challenges with staff.
- Photographed and documented specific site elements for reference and use in the SWOT analysis.
Confirmed facility counts (i.e. washroom/shower/ locker counts).
- Evaluated the site from the perspective of circulation, arrangement of facilities and attractions, guest comfort, aesthetic quality, and park adjacencies.

Our team compiled the information gathered to build and generate ideas and identify current issues. We reviewed the site from a guest experience standpoint and each ride/attraction to assess the current operational entertainment capacity, potential capacity, attendance and flow through of all rides, circulation, food and beverage areas, washrooms, guest services, and arrival sequence. Parking, vehicular circulation, and the proximity to available expansion property (5 ha) to the West was also considered. The review of future expansion at this phase is only preliminary to review site attributes and features, adjacency for expansion purposes.
The meetings were valuable and allowed a The meetings were valuable and allowed a attended. Stakeholder participation was important to allow a comprehensive range of ideas and observations to be shared between the parties. Site visits led by operational staff were critical stepping stones to gaining a comprehensive understanding of the current site, allowing us to assist in the subsequent planning analysis, programming, and design phases.

4.2.1 SITE EVALUATION - SWOT ANALYSIS

Arrival and Facilities

$\left.\begin{array}{|l|l|}\hline \text { ARRIVAL - PARKING, ENTRY, ACCESS } & \text { OPPORTUNITIES }\end{array}\right]$| Additional land available to enlarge entry zone |
| :--- |
| STRENGTHS
 Mature trees in drop off circle and perimeter car drop off/turn around area |
| Upgrade POS system and turn styles |

FOOD FACILITIES - FOOD \& BEVERAGE - WAVES	
STRENGTHS	OPPORTUNITIES
Current space is modest, handles small groups	Sufficient park area to relocate/enlarge
WEAKNESSES	THREATS
Poorly located, queue causes congestion Understaffed - increases congestion, lowers revenue	N/A

FACILTIES - tube storage	
strengith Tube rentals generate significant revenue	OPPORTUNITIES Sufficient park area to relocate/enlarge
WEAKNESSES nsufficient number of tubes, inadequate space ocation is removed from water attractions current location creates circulation congestion	threats N/A
FACLLTIES - BACK OF HOUSE (BOH)	
strengths N/A	OPPORTUNITIES Sufficient park area to relocate/enlarge
WEAKNESSES Severe lack of storage space Garbage area is not buffered from waterfront trail Staff washroom count is below code, undersized change and locker facilities	threats N/A

Rides and Attractions

RIDES \& ATTRACTIONS - Wave Pool	
STRENGTHS Reasonable size wave pool, good capacity Excellent water clarity and wave quality Centrally located with large beach area Newer wave equipment, good working condition	OPPORTUNITIES Provide lounge chair seating Provide planting islands, shade Site additional cabanas around wave poo Enhance wave pool backdrop
WEAKNESSES Wave pool requires daily makeup in wate Certain equipment end of life cycle Beach return grating below current standards No planting or shade on beach lifeguarding difficulty	THREATS Wave pool surfacing and tiles are degrading (safety concern) Paving around wave pool is rough, hot to touc
RIDES \& Attractions - Lazy RIVER	
STRENGTHS Creative river structure, well-integrated with site Nice planting along river edges River queue functions well operationally provided	OPPORTUNITIES Add water features to open space on river banks Theme queue railing, improve guest experienc
WEAKNESSES Caulked joints are unsightly, mold River is poorly waterproofed Insufficient propulsion traps debris Significant leaf litter, inadequate drain grates lifeguarding difficulty	threats Long lifeguard patrol areas with blind spots Exposed pipe on beach spray nozzles poses safety risk gradation of the surfacing, rough to touc

RIDES \& ATTRACTIONS - LITTLE SQUIRT W	
strenaths Shade sails in good condition Good privacy, separation from busier areas	OPPORTUNITIES Sufficient area to expand/re-design pool Potential cabana location at raised platform over electrical room
weaknesses Entire system performing poorly, end of lifespan Degrading surfaces, sediment in the pool Uncomfortable and insufficient seat walls Inadequate deck drainage Poor play value	threats Paving poses drainage issues and trip hazards Combined water system creates sanitation hazard Height, material, design of pool poses safety risk Safety issue with pools and walls
RIDES \& ATTRACTIONS - Whitewater tube Slides ("EAST" SLIDES)	
STRENGTHS Slide pumps operating well Popular, excellent level of fun/excitement Excellent views over the park Queue line functions reasonably well	OPPORTUNITIES Add theming and signage to slide tower Visibility and marketing from signage toward highway
WEAKNESSES All slide surfaces visibly aging Slide joints leaking High winds and noise on top of slide tower Lack of shade on top of tower and stairs nadequate safety rails along queue walkway Limited ride value and experience	threats N/A
RIDES \& ATTRACTIONS - PROSLIDE BODY \& TUBE SLIDES ("WEST" SLIDES)	
strenaths Slides in good working order Ramp access to tower platform Excellent views over the park Less noisy and windy than west slide complex	OPPORTUNITIES Reintroduce bridge and viewing platform over lower portion of slides
weaknesses Certain equipment causing failures Unsightly closed railing along queue ramp, ack of ventilation creates odours Deck drains not functioning optimally Lack of shade on top of tower and queue Certain ride paths are not exciting Limited ride value and experience	THREATS Loose granular underneath slide tower is safety hazard for inspections, maintenance staff Combined water system creates sanitation hazard

AMENITIES - SEATING	
STRENGTHS	OPPORTUNITIES
Picnic tables at wave pool provide significant seating	Introduce varied seating at wave pool beach
weaknesses	threats
No lounge chair seating on wave pool beach Picnic tables are unsightly, old, splintering Picnic tables congest circulation through beach area Number of lounge chairs is insufficient Lack of privacy and shade on wave pool beach Picnic tables are not flexible seating option	N/A

AMENITIES - GENERAL SHADE	
STRENGTHS Mature trees offer good shade	OPPORTUNITIES Introduce shade structures and planting beds
WEAKNESSES No shade on the wave pool beach	THREATS N/A

AMENITIES - CABANAS	
STRENGTHS In high demand, rented out at excellent rate	OPPORTUNITIES Numerous potential cabana locations
WEAKNESSES Flimsys cheap temporary structures Insufficient number of cabanas THREATS	N/A

AMENITIES - EVENT SPACE	
strengths Large area at pavilions for events	OPPORTUNITIES Sufficient space to improve facilities and access
WEAKNESSES Location of party rooms are awkward and uninviting, close to garbage area	threats N/A
Park layout	
Strengths Wave pool centrally located Mature trees	OPPORTUNITIES Sufficient area to improve circulation Sufficient area for expansion of attractions, facilities
WEAKNESSES Circulation isn't continuous throughout park Squirt Works is isolated No dry or covered play Poor circulation	threats No washrooms or refreshments at squirt works
operations	
strengths Dedicated, skilled and committed staff	opportunities Improved efficiency through upgraded ticketing/POS/wristband system
WEAKNESSES Garbage pickup times interfere with guest enjoyment (strong odours)	threats Combined filtration systems cause operational challenges, impacts guest experience POS system is insufficient for use in water park

Appendix "A" to Reperat HSc 20048

4.2.2 FACILITY ANALYSIS

FIGURE 8: Male/Female Change Facilities Area Comparisons - Existing 1983 / Current Required / Update

FIGURE 9: Retail Area Comparisons - Existing 1983 / Current Required / Update

LEGEND

| \square Existing (1983) | Current Requilred | Modest Improv. | New Design |
| :--- | :--- | :--- | :--- | :--- |
| Attendance: 100,000 | Attendance: 128,481 | Attendance: 145,000 | Attendance: 185,000 |
| Estimated Per Guest | Estimated Per Guest | Estimated Per Guest | Estimated Per Guest |
| Spend: $\$ 0.10$ | Spend: $\$ 0.60$ | Spend: $\$ 0.75$ | Spend: $\$ 0.80$ |
| Retail Area: $5 \mathrm{~m}^{2}$ | Retail Area: $35 \mathrm{~m}^{2}$ | Retail Area: $45 \mathrm{~m}^{2}$ | Retail Area: $60 \mathrm{~m}^{2}$ |

m	10 m	30 m
50 m		

0 m	10 m	30 m	50 m
MAY 2020			

| Existing (1983) | Current Requilred | Modest Improv. | [.IFuture |
| :--- | :--- | :--- | :--- | :--- |
| Attendance: 100,000 | Attendance: 128,481 | Attendance: 145,000 | Attendance: 185,000 |
| FOH Area: $1,200 \mathrm{~m}^{2}$ | FOH Area | FOH Area | FOH Area |
| BOH Area: $600 \mathrm{~m}^{2}$ | Requirements: | Requirements: | Requirements: |
| | $1,500 \mathrm{~m}^{2}$ | $1,750 \mathrm{~m}^{2}$ | $2,000 \mathrm{~m}^{2}$ |
| | BOH Area | BOH Area | BOH Area |
| | Requirements: $800 \mathrm{~m}^{2}$ | Requirements: | Requirements: |
| | | $900 \mathrm{~m}^{2}$ | $1,000 \mathrm{~m}^{2}$ |

4.2.3 SITE EVALUATION - ANALYSIS SUMMARY

A number of trends emerge when considering the SWOT and facility analyses.
The site has a reasonable amount of open space around the periphery of the site that is currently being utilized as passive park area. Mature trees and other vegetation help to enhance the park, frame or screen views and provide a backdrop for rides and attractions. In recent years, the maintenance of the grounds landscaping has improved as staff have made a concerted effort to improve and maintain the landscaping.
The centralized location of the wave pool and corresponding beach area functions as a "base camp" and allows guests to easily orient themselves. The most notable strength is the dedication of the full-time staff to the maintenance and operation of the water park. Several key skilled and dedicated staff have been able to reduce the water park operations costs while refurbishing older infrastructure with minimal operation funds.
Many weaknesses identified are largely a result of the age of the facility's infrastructure and the pressures current attendance rates place on aging, end of life facilities. All building facilities, while structurally sound, are significantly undersized to meet the current attendance and are poorly distributed throughout the site. This creates circulation congestion issues throughout (particularly at the entrance area), negative guest experience, and the loss of potential revenue. Outdated POS systems compound these challenges by reducing the efficiency with which staff can serve guests' needs. The attractions are reaching or are at the end of their lifespan and are having difficulty functioning under the stress of peak days.

Most of the threats identified in the analysis relate directly to the insufficient size of existing facilities or the physical degradation of attractions and their corresponding mechanical systems. A majority of these systems, rides, attractions, and facilities have far exceeded a reasonable operating life cycle.

Other weaknesses relate to the growth of the water park over time and design decisions that were not fully considered when additional attractions or facilities were being built. Amenities such as shade or guest seating have not been properly provided. Revenue-generating amenities such as cabanas and event space are not being capitalized to their full potential. The mix of apitalized to their full potential. The mix of attraction types provided does not include dry play activities or places for guests to congregate uring inclement weather events. The selection freasing demands of guests for meets the rcreasing demands of guests for an improved entertainment experience

On a positive note, the adjacent space to the water park presents an excellent opportunity to remedy many of the layout and programming challenges the park currently faces. There is space to expand/redistribute facilities to meet code/guest requirements, add attractions to increase guest entertainment and integrate increase guest entertainment, and integrate mentes such as shade and seating throughout also create an opportunity to provide additional also create an opportunity to provide

Overall, there are many challenges the park faces, including a number of critical safety issues which must be addressed as soon as possible. The water park has assets which can be leveraged to overcome several obstacles currently hindering its smooth and successful operation.
$0 \mathrm{~m} \quad 10 \mathrm{~m} \quad 30 \mathrm{~m} \longrightarrow 50 \mathrm{~m}$

4.5 ANALYSIS OF FOUR OPTIONS

ild Waterworks opened in 1983 and achieved its highest annual attendance, with just over 153,000 guests in its first year. Attendance over the past 35 years has averaged approximately 110,000 with peak attendance of 140,000 in 2005 and 2016. Attendance has fallen below 100,000 guests in 8 of the past 35 years. In 2018, attendance was approximately 128,000, which was much better than the tabilized average. Based on past and current revenue, operations costs, the park breaks even operationally at approximately 100,00 suests per year. As part of their market and financial analysis, CBRE reviewed the four options equired for this study as well as a fifth, indoor water park option requested by City staff. The indings of their report are contained within the ppendix A-1, Market and Financial Analysis of Wild Waterworks. Their analysis reviewed each of he four options for the water park and provided estimated attendance levels for each of the four ptions. Based on the market and feasibility analysis and estimated attendance, the overall size of Wild Waterworks would remain unchanged
for both Option 1+2. Attendance in Option 1 would radually decrease in the next $2-5$ years falling well below 100,000 . As infrastructure rides and eltractions continue to infrastructure, rides and ervice, it is expected that the park will becon reas in expensive to operate and would ate And for Option 2 will slowly e closed. Atterdance for Option 2 will slowly increase over the average attendance, increasing gradually over the next 2-5 years. The size of the water park will remain unchanged for this option as the current park area can accommodate the anticipated attendance.

The water park size for Options 3+4 would need o be increased to accommodate increased annual (daily) attendance, as well as provide new rides and attractions for guests. For both options, rides and attractions for guests. For both option tence untl a newe steadily over the next $5-8$ years until a new stabilized attendance leve achieved. Both option $3+4$ require additional park area and an increased service level of rides presented in subsequent sections of the report.

To complete the analysis of four options, we have broken our scope into tasks as shown below.

SITE EVALUATION, ANALYSIS AND OBSERVATIONS

- We reviewed all information collected and ecorded to assist in understanding the existing site features, parkland and landscape conditions. This was used to help prepare our comparison and analysis of current capacities and desired capacities. Our team completed a data analysis of both existing and projected attendance.
- Using the market information provided by the City of Hamilton, together with the annual attendance projected by CBRE, we considere individual rides and capacities to determine which rides and attractions are performing well, which are under performing and which are at acceptable levels of performance. We also compared this to the site and area capacities together with the probable service life remaining by estimating how long the ride/ attraction will perform as intended.
- The same steps were taken for all the other facilities including washrooms, change areas, food and beverage, circulation and overall guest experience. This helped guide in a clear and objective way, decisions on replacement of older, under- performing rides attractions, adding new rides/attractions and any other design modifications to enhance guest experience, increase capacity or correc identified operational issues.
- FORREC retained Cloward H2O, Aquatic Engineers from Provo Utah, USA, to examine the current aquatic infrastructure through the eyes of an experienced engineer. This was critical to understand the condition and potential remaining service life of existing equipment. Cloward provided an engineering assessment related to the serviceability, perating condition and anticipated longevity of existing systems related to the circulation, treatment and controls of water quality within the park. Their findings and recommendations addressed how to best approach resolution of the identified issues This report includes, by aquatic attraction, an evaluation of the existing systems (description, condition, functionality, remaining life, risk assessment, photographic documentation, etc.), explanations of identified issues, recommended options for remediation and/or improvements.

The Aquatic Engineering Report is included a Appendix A-2: Aquatic Engineering Facility Review Report + Recommendations

The "Do Nothing" option considers the remaining and expected lifespan of the water park facilities assuming no major upgrades or capital investment is made to the existing facility
Given most of the existing infrastructure is aged and has already exceeded a reasonable and expected life cycle, the degradation of infrastructure, rides, and attractions will continue. As rides and attractions stop working or no longer can be reasonably repaired, they will be incrementally closed or shut down. Once this occurs to a point where guest experiences are adversely impacted, guest attendance is expected to begin declining noticeably from current levels. Once the annual attendance drops below the $\pm 90,000$ visits required for break even revenue targets, operating costs will exceed revenues. At this point in time the City will need to re-examine the financial viability of Wild Waterworks. It is highly possible the City will need to consider the range of options presented in this report to upgrade facilities or consider closing the facility for other City wide purposes.
Current, aging infrastructure will continu to degrade requiring higher expenditures annually to maintain current operating conditions. It is expected an average of 15-20\% annual increase in maintenance costs will occur. This will require an increase in the number of maintenance staff to implement repair work and further require additional and highly specialized repair staff or vendors. We note that many of the facilities have already had a greatly extended life cycle due to the efforts of dedicated and highly skilled staff. While this is a tremendous asset to the water park, it is not reasonable to expect that this trend will occur indefinitely.

While the "Do Nothing option" may sound ke a no capital cost option, it will require an ncreasing level of operating/maintenance capital to continue to keep the park open for the remainder of its life cycle. Once the park reaches the point where the decision is made to close, the park will require demolition, regrading and restoration/ rehabilitation, seeding and preparation for a future use. We have included a cost for this work.

ittle Squirt Work

deally this entire area should be replaced There are too many repairs and alterations to mechanical systems, surfacing, paving, drainage, etc required for the pool to unction properly and safely.

Wave Pool

Another pool coating re-finish will be necessary in the next few years, as once the finish begins to deteriorate total failure is relatively rapid. Wave pool equipment is in excellent working condition with another 10 15 years life expectancy. Overall the wave pool has a life expectancy of 10-15 years.

East Slide

he East slide complex has a life expectancy of $8-12$ years if upgraded with new slide pumps.

Vest Slide

he West slide complex requires moderate amounts of maintenance and repairs in order to continue to function. Fallure is mminent if issues aren't addressed in the near future.

Eazy River

The Eazy River has a few years of service remaining with continued maintenance. Caulking should be replaced, among a few other maintenance items.

2 4.5.2 Replace Like for Like

The "Like for Like" option considers the replacement of rides, attractions, and facilities with similar elements to those currently existing as existing facilities come to the end of their lifespan and begin to fail. For example, an existing body slide would be replaced with a newer body slide of like or similar quality, rather than replacing with an entirely different ride or attraction. To the extent practical, the replacement ride/ attraction will occur within a similar footprint which further limits the type of replacement which can be utilized. This approach nvisions an incremental replacement program of rides and attractions.
All buildings that exist today are undersized to meet the current attendance levels. All front of house, food and beverage, washrooms/showers, lockers, and other staff and guest buildings need to be replaced to meet code requirements and current guest attendance. In this option, it is anticipated that all buildings will be replaced and located to optimize program and resolve many known operational issues.
Further, annual attendance will not ncrease in this option as the existing acilities will be correctly sized to handle urrent attendance rates

Front Entry \& Facilities

Given that many of the issues identified in the SWOT (Strengths, Weakness, Opportunities and Threats) analysis relate to the insufficient size of existing facilities, the entrance buildings will be replaced in all options involving capital investment. This includes increasing the size of ticketing, food and beverage, washrooms, changerooms, ockers, retail, first aid, and administrative facilities to meet current attendance requirements. Plaza space both outside and within the water park will be provided to ease circulation and wayfinding issues in addition to providing appropriate queuing
areas. The redesign of the entrance facilities will also address missing connectivity with the waterfront trail. The increase in size of the entrance facilities will push the arrival sequence west into the existing parking lot. ehicular and bus parking and drop off areas will also move west and be reconfigured based on existing attendance needs. The current overflow parking will be redesigned as part of the permanent parking area for he water park.

ittle Squirt Works

deally this entire area should be replaced. As outlined in the Aquatic Engineering Report (see Appendix A-2), this pool is the most problematic feature in the entire park regarding sanitation and safety and has the most pressing need for replacement. The recommended course of action is to redesign and replace the pool and its features entirely. the pool should be designed to have a dedicated water treatment system, leaving the existing water treatment system to service the east slide complex.

East and West Slide Complexes

Both slide complexes are visibly aging and will eventually require replacement. With the redesign of Little Squirt Works, including a edicated water treatment system, the eas lides have the potential to last another $8-12$ years with new pumps and diligent maintenance (Aquatic Engineering Report, Appendix A-2). Once the East and West Slide omplexes have reached the end of their fespan, they will be replaced with similar body and tube slide complex rides

The west slide complex is in need of mmediate attention to avoid imminent failure. Even with careful maintenance, it is likely that the west slide complex will need to be completely replaced in the next few years. Once this complex fails, it will be replaced with another tube slide complex.

Replace Like for Like (continue)...

Eazy River

The Eazy River, has some years of service life remaining if retained, requires update to improve its construction weaknesses. The lack of propulsion poor waterproofing narrow width, rough surfacing and insufficient drain grates should all be addressed to increase the safety, efficacy, and entertainment value of this attraction. The path of the river is wellintegrated into the site and can be reused with minimal changes or interventions.

> Paving \& Pool Surfacing
> There are numerous concerns with the pool finishes and hardscape paving which should be addressed Both the wave pool and river hould be resurfaced to reduce safty risk The concrete paving should be replaced with a slip and heat-resistant surfacing to reduce injuries, improve park aesthetics, and increase guest enioyment These mprovements should be phased in over time as adjacent rides/attractions are replaced.

LEGEND

\square REM NEW EXPANDED

REPLACE LIKE FOR LIKE ANTICIPATED OUTCOMES

OUTCOMES

- Adequately sized entrance facilities, improved parking and drop off
- Washrooms/showers brought up to code
Provides connection with the waterfront trail
- Increased revenue generation potential
- Improved hygiene and safety standards

Improved entertainment value

NOT ADDRESSED

- No increase in capacity or attendance
- No improvement in facility
distribution throughout park
- No increase in lounging or shade
- No improvement to cabanas or event space
- No dry activities or sheltered areas
- No activities for teens only
- No activities for adults only

While the "Like for Like" option allows building facilities and attractions to be brought to meet current standards and accommodate current attendance, it does not address many key issues and cannot accommodate an increase in attendance

4.5.3 Modest Improvements

The "Modest Improvements" option

 considers both the retention or replacement of major rides and attractions together with the addition of new dry/wet attractions, a sheltered recreation area and improved operational systems. It retains some of the strategies from the "Like for Like" option while also providing additional, new attractions and program to the park. In this option, phased replacement of rides/attractions will occur as they reach end of their respective life cycle. The rides/attractions will be replaced with facilities which are more appropriate for the targeted guest demographic, ages, and types of experiences and thrill levels. Key facilities such as the Wave Pool and Eazy River would be retained and maintained for the remainder of their life cycle and would be replaced in a similar location with layout refinements and additions
Front Entry \& Facilities

Given that many of the issues identified in the SWOT (Strengths, Weakness, Opportunities and Threats) analysis relate to the insufficient size of existing facilities, the entrance buildings will be replaced in all options involving capital investment. This includes increasing the size of ticketing, food and beverage, washrooms, changerooms, lockers, retail, first aid, and administrative facilities to meet current attendance requirements. Plaza space both outsid and within the water park will be provided to ease circulation and wayfinding issues in addition to providing appropriate queuing areas. The redesign of the entrance facilities will also address missing connectivity with the waterfront trail. The increase in size of the entrance facilities will push the arrival sequence west into the existing parking lot Vehicular and bus parking and drop off areas will also move west and be reconfigured based on attendance needs. The curren overflow parking will be redesigned as part of the permanent parking area for the water park.

ittle Squirt Work

his entire area will be redesigned and replaced in its entirety. The pool should be designed to have a dedicated water treatment system, leaving the existing water treatmen system to service the east slide complex
The new area will increase active water play lements (i.e. squirt guns, tipping bucket, etc.) A new washroom and a food and beverage unit will be located adjacent to the kid's pool to improve the distribution of facilities hroughout the park and provide easy acces for parents of young children. Varied types of seating and cabanas around the attraction will be provided.

East and West Slide Complexes

Both slide complexes are visibly aging and will eventually require replacement. With the redesign of Little Squirt Works, including a dedicated water treatment system, the east slides have the potential to last another $8-12$ years with new pumps and diligent maintenance. Once they have reached the end of their lifespan, they will be replaced with newer body slides, tube slides, a thrill ride or other rides to satisfy the program requirements and guest needs.
The west slide complex requires immediate attention to avoid failure. Even with careful maintenance, it is likely that the west slide complex will need to be completely replaced in the next few years. Given the popularity of hese sides, it is recommended that when e complex falls, it be replaced win anoth ube slide complex with an exciting ride path. The selection will depend on providing balanced range of ries and attractions throughout the park.

Modest Improvements (continue).

Easy River

The Eazy River requires updates to improve its construction weakness. The lack of propulsion, poor waterproofing, rough surfacing, and insufficient drain grates should all be addressed to increase the safety, efficacy, and entertainment value of this attraction. The path of the rivers is well-integrated into the site and can be reused with minimal changes or interventions. Once the facility reaches the end of its service life, a new lazy or action river should replace this with some additional features and possibly a greater length.

Paving \& Pool Surfacing

There are numerous concerns with the pool finishes and hardscape paving which should be addressed. Both the wave pool and river hould be resurfaced to reduce safety risks. Th oncrete paving should be replaced with a slip and heat-resistant surfacing to reduce injurie mprove park aesthetics, and increase guest njoyment. These improvements should be phased in over time as adjacent rides/attractions are replaced.

Play Structure

A new play structure will be added adjacent to Squirt Works to provide additional program for younger children. The play structure can be a ombination of either wet or dry play with an pportunity to provide a significant amount of hade and varied levels of play value

Adventure Course

The northeast corner of the site is generally disconnected from the balance of park attractions, currently serving as a pavilion event space and passive park area. A dry play activity that caters to older kids/teens would take advantage of the mature tree canopy and be integrated into the space. An adventure ropes course or tree-top trek type of atraction would cater to this age demographic Circulation will be considered providing a onnection to the whole park.

FIGURE 12: Modest Enhancements Option

Family Raft Ride

The water park is currently lacking a thrilling family ride such as a family raft ride. A four or six-person family style raft ride will be added between the east slide complex and the wave pool, providing additional program and visual mass to the southeast corner of the site.

Teen Activity Pool

The water park is also currently lacking a water activity for older children and teens. A portion of the area inside the river will be infilled with teen activity pool, offering a mix of exciting water play options such as floatable walks, zip water plim alls, and basketball, among

Both a washroom and food and beverage un will be located inside the river loop to improve the distribution of facilities throughout the park and cater to the demographic of the teen activity pool.

Guest Amenities

Additional areas of planting will be integrated throughout the park including the wave pool beach area to provide shade, visual interest, and moderate privacy for guests. Picnic tables will be replaced with loungers and chairs, offering a more comfortable and relaxing guest experience and greater deck area capacity.
Cabanas will be increased in number and upgraded to permanent structures with better distribution throughout the water park.

Theming and signage can improve significantly, creating a clear wayfinding strategy while enhancing the guest experience and branding/ marketing potential of the park.
A new point of sale (POS) system and radio frequency identification (RFID) wristbands will be integrated with facilities and ticketing to improve ticket processing times, encourage revenue generation through cashless payment, and improve the guest experience.

LEGEND

4.5.4 New Design

The "New Design" option considers a new layout and program of the water park including a complete redesign of the existing facility, retaining few, if any of the original components. In this option, the water park will be designed to mee projected future attendance and provide rides and attractions that meet the family demographic and current guest expectations.
The proposed location of rides and attractions and their relationship to one another and to facilities have been explored in an in-depth design process. The new design will accommodate the future projected annual attendance.

Front Entry \& Facilities

The entrance buildings will be designed to accommodate both current and future attendance. This includes increasing the size of ticketing, food and beverage, washrooms, changerooms, lockers, retail, first aid, and administrative facilities. Plaza space both outside and within the water park will be provided to improve circulation and wayfinding, in addition to providing appropriate queuing areas. The redesign of the entrance facilities will also address missing connectivity with the waterfront trail. The increase in size of the entrance facilities will push the arrival sequence west into the existing parking lot. Vehicular and bus parking and drop off areas will also move west and be reconfigured based on attendance needs. The current overflow parking will be redesigned as part of the permanent parking area for the water park.
Additional washroom and food and beverage units will be distributed throughout the site at necessary locations allowing guests to easily access facilities and increasing the potential revenue generation of the park.

Wave Poo

A new wave pool will be designed to accommodate the future annual attendance and create shallow water zones for small children and larger beach areas for relaxing and lounging. Given new wave machine technology, the wave heights may be varied to meet different guest profiles at different times of day from smaller children family friendly to larger more teenager/ adult thrill level.

Children's Activity Poo

A children's play area will be designed with exciting, age-appropriate activities. Active water play elements such as squirt guns and tipping buckets will be integrated into a wet deck or shallow pool. Colourful paving and themed water features will create an immersive environment for children to play and explore. Shaded areas offer respite from the sun and places for parents and children to relax.
Both a washroom and food and beverage unit will be located in the near vicinity to provide easy access for parents of young children. easy access for parents of young children. including lounge chairs and cabanas.

Play Structure

A play structure will be added to provide additional program for younger children. The play structure can be either wet or dry play, and there is the opportunity to shelter a portion of the area depending on the type of structure.

Adventure Cours

The northeast corner of the site will be transformed into a dry play activity that caters to older kids/teens and which takes advantage of the mature tree canopy, such as an adventure ropes course or tree-top trek. Circulation will be considered to connect the attraction to the rest of the park activities.

New Slide Complexes

Both existing slide complexes are visibly aging and will be replaced with newer body slides, tube slides, a thrill ride and other rides to satisfy the program requirements and guest needs. The selection will depend on providing a balanced range of rides and attractions throughout the park.

Family Raft Ride

A four or six-person raft ride will be integrated into the site, adding a thrilling ride for the entire family to enjoy.

Easy River

An Eazy river will be designed to be wellintegrated with the site and other rides/ attractions. Water spray features will be integrated with the river, adding entertainment value. Bubblers, spray guns, overhead waterfalls, and other features offer a wonderful opportunity to make the river a dynamic experience for all age levels.

Other Dry activities and sport

A range of other sports and recreation facilities were considered as part of this new design such as cricket, pickle ball courts, sand volleyball and other dry sports. After reviewing the opportunities, the team determined with City staff these uses are more suitable for the former campground area being developed as City-wide sports zone as envisioned in the Confederation Beach Park Master Plan Review \& Update 2010, prepared by G. O'Connor Consultants Inc..

Teen Activity Pool

A lively and energetic teen activity pool will offer a mix of exciting water play options such as floatable walks, zip lines, climbing walls, basketball, among others. Places for older children and teens to play, interact, and hang ut will be integrated with the area.

Guest Amenities

Planting islands will be designed throughout the park to provide shade, visual interest, and moderate privacy for guests. Dedicated areas for loungers, chairs, and tables will all be provided, offering a comfortable and relaxing uest experience. Cabanas will be themed and well-sited, maximizing their revenue generation capacity. Paving and pool surfacing throughout the park will be slip and heat-resistant, and will be designed to enhance the attractions, eatures, and identity of the park.
Theming and signage will improve significantly, creating a clear wayfinding strategy and enhance the guest experience and branding/ marketing potential of the park.
A new point of sale (POS) system and radio frequency identification (RFID) wristbands will be integrated with facilities and ticketing to e mprove ticket processing times, encourage evenue generation through cashless payment and improve the guest experience.

NEW DESIGN ANTICIPATED OUTCOMES

OUTCOMES

Adequately sized entrance facilities
Washrooms/showers brought up to code
Provides connection with the waterfront trail
Improved vehicular/bus parking, drop off Increased revenue generation potential Improved hygiene and safety standards Improved entertainment value Improved operational efficiency Increased capacity, greater annual attendance

Improved facility distribution throughout park Improved lounging and shade areas

- Improved and increased number of cabanas

Provides dry activities
Improved seasonal activities
Provides teen activities

- Improved activities for adults only
- Optimal location/relationship of each attraction

Increased guest satisfaction

- Improved F+B sales and overall park attendance

5 PLANNING AND PROGRAMMING STUDY

PLANNING AND PROGRAMMING SUMMARY

PLANNING AND PROGRAMMING ATTRACTIONS/RIDES

The planning and design work will address the issues and opportunities identified in the Analysis task. We considered a range of solutions to enhance guest experience, improve the mix of rides and attractions to provide new, more interesting challenges to meet a changing demographic and increase potential park attendance. We prepared summary graphics and figures to clearly illustrate and support our findings.

These will include dry land play and activities during rain days.
FORREC prepared an Overall Vision Plan for the 10ha site, including the Wild Waterworks Water Park, drop off/arrival areas, parking lot and overflow grass area up to the sand volleyball area. It considered and accommodated the range of programs and activities discussed during the analysis phase. This will allow potential fo expansion either initially or in the longer term as deemed applicable by the study.
This task will bring together all the previous discussion and observations to date that creatively address and resolve, to the extent practical, the address and resolve, to the extent practical, the
issues identified and desired programs. Our overall plan will organize and create strong relationships plan will organize and create strong relationships
between various elements or areas, whether rides, attractions, food and beverage or back of house. attractions, food and beverage or back of house We will show, as appropriate, the replacement new more iconic rides to suppleme and increase the capacity while enhancing the guest experience. Improvements to driveway, bus drop off, parking and entrances. The plan addresses the required parking, guest arrival sequence, vehicular circulation, pedestrian circulation, water park, dry play and wet programs.
Potential links to the Ontario and Waterfron Trail, adjacent picnic areas, protection of parkland features.

Existing (1983)	Current Required	IModest Improv.	T- New Design
Guest Design Day Assumption: 1,400	Guest Design Day Assumption: 2,050	Guest Design Day: $3,000$	Guest Design Day: $3,830$
Percentage of Guests Lounging (Passive Activity): 30\%	Percentage of Guests Lounging (Passive Activity): 40\%	Percentage of Guests Lounging (Passive Activity): 40\%	Percentage of Guests Lounging (Passive Activity): 40\%
Number of Lounge Chairs: 160	Number of Guests Lounging: 820	Number of Guests Lounging: 1,190	Number of Guests Lounging: 1,530
Number of Picnic Tables: 284	Area Requirement ($4.3 \mathrm{~m}^{2} / \mathrm{pp}$): $3,525 \mathrm{~m}^{2}$	Area Requirement ($4.3 \mathrm{~m}^{2} / \mathrm{pp}$): $5,120 \mathrm{~m}^{2}$	Area Requirement ($4.3 \mathrm{~m}^{2} / \mathbf{p p}$): $6,580 \mathrm{~m}^{2}$
Lounging Area Available: $2,150 \mathrm{~m}^{2}$			
$0 \mathrm{~m} \quad 10 \mathrm{~m}$			

- Opening (1983)	Current	Modest Improv.	I New Design
Attendance: 100,000	Attendance: 128,481	Attendance: 145,000	Attendance: 185,000
Guest Design Day: 1,400	Guest Design Day: $3,000$	Guest Design Day: 3,000	Guest Design Day: 3,830
In Park Area: 20,500 (2.05 Ha)	In Park Usable Area: 30,000 (3.0 Ha)	In Park Area: 50,000 (53.0 Ha)	In Park Area: 64,000 (6.4 Ha)
Park Area Per Guest: $14.6 \mathrm{~m}^{2} / \mathrm{pp}$	Park Area Per Guest: $10 \mathrm{~m}^{2} / \mathrm{pp}$	Park Area Per Guest: $16.5 \mathrm{~m}^{2} / \mathrm{pp}$	Park Area Per Guest: $16.5 \mathrm{~m}^{2} / \mathrm{pp}$
0 m - 5 m	10 m		

FIGURE 17: Water Rides and Water Attractions Entertainment Capacity Comparisons Existing 1983 / Current Required / Update

Existing (1983)	Current Required	Modest Improv.	\|New Design
Attendance: 100,000 Design Day: 1,400	Current Design Entertainment Analysis	Projected Attendance (Year 3): 140,000	Design Entertainment Requirement
Optimal Entertainment Units Per Hour (EUH):	Attendance (2018): 128,481	Design Day: 3,000 Total Entertainment	Projected Attendance (Year 3): 187,000
3.5	Total Entertainment Units Per Hour Available: 7,340 Entertainment Units Per Hour (EUH): 2.5	Units Per Hour	Design Day: 3,830
Total Entertainment Units Required: 4,900		Required: 9,500 Entertainment Units	Total Entertainment Units Per Hour
		Per Hour (EUH): 3.5	Required: 12,000 Entertainment Units
	Recommended Design Day Capacity: 2,050		Per Hour (EUH): 3.5
	Resultant Entertainment Units Per Hour (EUH): 3.6		

FIGURE 18: What is entertainment units per hour (EUH)?

3 Entertainment Unit Per Hour (EUH)

EUH is the number of activities a guest
participates in one hour.
3 to 4 EUH is recommended.

FIGURE 20: Entertainment Capacity Distribution

FIGURE 21: Current Entertainment Capacity Analysis - Entertainment Units Per Hour

The following section graphically illustrates the ange of Guests experiences currenty offered and the relative sizes of the current entertainment
offered compared to expected entertainment. In most categories, including but not limited to guest serviecs, washrooms/lockers, showers, lounging, rides and attractions, the existing y ater
park is not able to adequately or properly meet park is not able to adequately or properly yee.
the needs of the guest or their expectations. he teve of ideses/attractions avaiabale and the
distribution is is imited within the ark. As illustrated iistribution is limited within the park. As illustrate enhancement to meet current guests demand and will need to increase in sizz and or quality to
meet future increased attendance. Many of the neet future increased attendance. Mony of the as a concern are correct and are the result of
attendance levels being higher than the facilites
are designed to accommodate. This overcrowding adversely impacts the guest experiences. Guest the partions opened in 1983. At the time the park opened, Wid Watervorks was well ahead of its time and offered a great family experience.
Unfortunately given the age and condition of the rides/attractions and guest areas, the current suest experience is well below the expectation
of today's guest and the market in general. The issue can be summarized as "The guest In other words, the cost to attend is relatively low and so is the experience. The proposed situation and enhance gued to address this ncrease overall annual attendance.

Appendix "A" to Rerorort HScranis
FIGURE 25: Guest Experience Option 2

FIGURE 27: Guest Experience Option 4

FIGURE 28: Key Programming Metrics
ATTENDANCE SUMMARY

ANNUAL ATtendance			124,900	145,000	185,000
Design Day			2,585	3,002	3,830
EUH REQUREMENT					
Entertainment Units per Hour per Visitor	PHC	3.50	8,144	9,455	12,063
PARK AREA ${ }^{\text {a }}$ m $\mathrm{m}^{2} \mathrm{~m}^{2} \mathrm{~m}^{2}$					
Water Park Area Requirement		16.50	42,660	49,525	63,187
Parking Area Requirement	m^{2}		37,544	46,444	57,483
Arrivals Plaza (Outside Gate)	m^{2}		900	1,126	1,436
GUEST ACTIVITY DISTRIBUTION					
\% Of Guests in Rides and Attractions			\%	\%	\%
\% Of Guests on Deck Lounging			40\%	40\%	40\%
FOH/BOH REQUIREMENTS			m^{2}	m^{2}	m^{2}
FOH/Administration \& Guest ServicesBack Of House			1,500	1,750	2,000
			800	900	1,000

FIGURE 29: Guest Amenities

GUEST WASHROOM, CHANGEROOM, LOCKERS \& SHOWER FACILITIES	OPTION 3 145,000 ATTENDANCE	
	DD	Fixtures
Peak in Park Design Day	3,002	
No. Female WC	38	
No. Male WC	25	
Park Distribution	3	
Total Facilities 100\%	406	63
Main A 70\%	285	44
Satellite B 15\%	61	9
Satellite C 15\%	61	9
Total Area Required (m²) 100\%	406	63
WATER PARK SHOWER CALCULATION		
No. of Showers Men	30	
No. of Showers Women	30	
Total Area Required (m^{2})	150	
WATER PARK CHANGE ROOM GALCULATION		
No. of Changerooms Men	30	
No. of Changerooms Women	30	
Total Area Required (m^{2})	210	
WATER PARK LOCKERS CALCULATION		
Ratio of Guests Per Locker	0.80	
No. of Lockers	2,401	
Total Area Required for 4 High (m^{2})	720	
FACILITIES TOTAL ($\mathbf{m}^{\mathbf{2}}$)	1,487	

FIGURE 30: Revenue Facilities

FOOD AND BEVERAGE REQUIREMENTS AND CAPACITY		OPTION 3 145,000 ATTENDANCE
Meals		
Hourly Meal Count (3 Hour Period)		720
Sit Down	60\%	432
Quick Service	40\%	288
TOTAL AREA REQUIRED ($\mathbf{m}^{\mathbf{2}}$)		684
RETAIL SPACE REQUIREMENTS (m²)		OPTION 3
Estimated Annual Attendance		145,000
Estimated Spend Per Head for Merchandise		\$0.75
Estimated Annual Sales		\$108,750
Assumed Gross Revenue per (m^{2})		\$3,000
Retail Space (m^{2})		36
Additional Storage and BOH		7

RETAIL SPACE REQUIRED (m^{2})

FIGURE 31: Water Park Attractions Program Option 3

RIDES \& ATTRACTIONS PROGRAM	Unit/ Qty.	Instant Capacity	Practical Hourly Capacity
Water Rides (Body, Tube and Raft Slides)	16	25	2,862
Water Play Attractions	550	1,400	
Dry Play Attractions (Adventure Trail)	50	113	
Pools \& Rivers	1,100	5,728	
Seating Capacity	1,191		
TOTAL ATTRACTION CAPACITY	$\mathbf{1 , 7 2 5}$	$\mathbf{1 0 , 1 0 3}$	

WATER PARK SUMMARY		
Poolside Seating Capacity Total	41%	1,191
Water Rides \& Attractions Total	59%	1,725
GUEST TOTAL		$\mathbf{2 , 9 1 6}$
ENTERTAINMENT UNITS PER HOUR PHC (ACTIVE)	$\mathbf{3 . 4 6}$	

FIGURE 32: Guest Amenities

GUEST WASHROOM, CHANGEROOM, LOCKERS \& SHOWER FACILITIES	OPTION 4 185,000 ATTENDANCE	
	DD	Fixtures
Peak in Park Design Day	3,830	
No. Female WC	48	
No. Male WC	32	
Park Distribution	3	
Total Facilities 100\%	519	80
Main A 70\%	363	56
Satellite B 15\%	78	12
Satellite C 15%	78	12
Total Area Required ($\mathbf{m}^{\mathbf{2}}$) 100\%	519	80
WATER PARK SHOWER CALCULATION		
No. of Showers Men	38	
No. of Showers Women	38	
Total Area Required (m^{2})	191	
WATER PARK CHANGE ROOM CALCULATION		
No. of Changerooms Men	38	
No. of Changerooms Women	38	
Total Area Required (m^{2})	268	
WATER PARK LOCKERS CALCULATION		
Ratio of Guests Per Locker	0.80	
No. of Lockers	3,064	
Total Area Required for 4 High (m^{2})	919	
FACILITIES TOTAL ($\mathbf{m}^{\mathbf{2}}$)	1,897	

FIGURE 33: Revenue Facilities

FOOD AND BEVERAGE REQUIREMENTS AND CAPACITY		OPTION 4 185,000 ATTENDANCE
Meals		
Hourly Meal Count (3 Hour Period)		919
Sit Down	60\%	551
Quick Service	40\%	368
TOTAL AREA REQUIRED (m^{2})		873
RETAIL SPACE REQUIREMENTS (m²)		OPTION 4
Estimated Annual Attendance		185,000
Estimated Spend Per Head for Merchandise		\$0.80
Estimated Annual Sales		\$148,000
Assumed Gross Revenue per (m^{2})		\$3,000
Retail Space (m^{2})		49
Additional Storage and BOH	20\%	10
RETAIL SPACE REQUIRED ($\mathbf{m}^{\mathbf{2}}$)		59

FIGURE 34: Water Park Attractions Program Option 4

RIDES AND ATTRACTIONS PROGRAM	Unit/ Qty.	Instant Capacity	Practical Hourly Capacity
Water Rides (Body, Tube and Raft Slides)	19	27	3,342
Water Play Attractions	800	2,040	
Dry Play Attractions (Adventure Trail)	110	135	
Pools \& Rivers	1,417	7,603	
Seating Capacity	1,528		
TOTAL ATTRACTION CAPACITY	$\mathbf{2 , 3 5 4}$	$\mathbf{1 3 , 1 2 0}$	

WATER PARK SUMMARY		
Poolside Seating	39%	1,528
Water Rides \& Attractions Total	61%	2,354
GUEST TOTAL		$\mathbf{3 , 8 8 1}$
ENTERTAINMENT UNITS PER HOUR PHC (ACTIVE)	$\mathbf{3 . 3 8}$	

6

RIDES AND ATTRACTIONS

84 city of hamilton

7
 BUILDING DESIGN

FIGURE 35: Building Design, Functional Relationship Diagram

MASTER PLAN OPTIONS

OPTIONS -SUMMARY

FORREC retained CBRE to review the Wild Waterworks operation and provide a market feasibility study and financial analysis. This information was used to consider the existing Park and attendance within the market and options for future attendance for the four (4) options. In addition to the Four required Options, CBRE also investigated the potential of an indoor facility to address the desire of the City to create a year -round facility. This was Option Five in their report. Option Five was deemed not to be financially viable and there was no warrant for additional year -round indoor leisure pool facilities
in the lower City of Hamilton. This market area of the lower City is currently over served with indoor pools, so no further research was completed on an indoor facility. Additionally, based on the warranted investment levels for the other options, is expected that the investment for an indoor water park is not warranted.
CBRE met with City of Hamilton staff to gain complete understanding of the scope of work to be undertaken, the expected study outputs, visited the site and reviewed available background reports.

The report contains the following sections:

1 STUDY BACKCROUND

This section contains the background, objectives and scope.

2 HISTORIGAL PERFORMANCE

his section examines the historic attendance, per capital spend, operating revenues, expenses and gross revenue and capital spending.

- Review of historical attendance levels by; day of week; month; origin, admission rate, etc.
Review of historical detailed operating statements (most recent 3 to 5 years)
- Operating hours and staffing schedule
- Historical per cap spends

comparable analysis

This section examines 10 comparable
competitive attractions 9 in Ontario and 1 in New York state. This includes attendance, pricing, facility types and F+B.
A review of competitive/comparable attractions in the Ontario market and elsewhere in Canada was completed. Information gathered included the following:

- Site size
- Facilities offered.
- Published admission rates.
- Dates of operation
- Key user groups.
- Attendance and utilization factors.
- Seasonal utilization rates attained.
- Capital improvements.

For confidentiality reasons, no individual market or financial performance data will be provided, however we will provide general market indicators.

4 MARK=T ASSESSMENT

This section examines the potential market capture areas as well as primary, secondary markets, domestic and International markets and visitor profile.
Profile the size and psycho demographic and travel characteristics of the resident and tourist markets to Hamilton Halton Brant (RTO 3) as target markets for the subject attraction, including:

1. Primary Resident Market - those living within 0-60 minutes of the site
2. Secondary Resident Market - those living within 60-120 minutes of the site
3. Domestic Tourists - Domestic tourists to Hamilton Halton Brant, excluding those captured in the primary and secondary resident markets
4. International Tourists - US and Overseas visitors to RTO 3
Utilizing existing data produced by Statistics Canada through the Travel Survey of Residents of Canada (TSRC) and the International Travel Survey (ITS), they identified the profile of existing overnight and day trip visitor market to RTO 3. They profiled the size and travel party composition of the visitor market by geographic origin (Ontario, Rest of Canada, US and International).

FACILIIY PROGRAMS AND
 ASSUMPTIONS

This section examines the four options and potential programs and budgets tested for investment levels.

6 AIIIENDANGE PROJECHIONS

This section provides an estimate of attendance for the four options over a period of time to reach stabilized attendance levels.
Based on the 3 alternative facility program/ concept options identified by FORREC for the attraction, CBRE estimated the share of the market that the subject attraction should reasonably be expected to capture by market segment for the first five years of operation.
For each of the options, they analyzed each segment in terms of attainable fees and use this segment in terms of attainable fees and use this
analysis in our projection of operating results.
ea each option and the implications of fina and warranted investment levels.
Relying on estimates of order of magnitude project capital costs by component provided by FORREC together with our operating projections for the attraction, CBRE examined the potential return on investment for each concept scenario using traditional debt/equity financing.

The market and financial report will assist you in making decisions with respect to this project and the financial viability of three options.
The CBRE report is included as Appendix: A-1 Market and Financial Analysis of Wild Waterworks Options.

8.2 OPTION 1: DO NOTHING OPTION (\$5M CDN.) ANNUAL ATTENDANCE DROPS TO 90,000 IN 5 YEARS.

The "Do Nothing" option considers the remaining and expected lifespan of the water park facilities assuming no major upgrades or capital investment is made to the existing facility. Given the current age of most of the xisting infrastructure, the degradation cycle f infrastructure rides and attractions w continue because most of the facility has already exceeded a reasonable and expected life cycle.
Current, aging infrastructure will continue to degrade requiring higher expenditures annually to maintain current operating conditions. It is expected an average of $15-20 \%$ annual increase in maintenance costs will occur over current budgets. As this continues, the operations will become financially cost prohibitive.

ITTLE SQUIRT WORKS
Ideally this entire area should be replaced Ideally this entire area should be replaced
as soon as practical due to safety and to function properly. Life expectancy, this should be replaced or removed with 1-2 years maximum.

WAVE POOL

Wave pool equipment is in excellent working condition with another 10-15 years life expectancy. Overall the wave pool has life expectancy of $10-15$ years.

EAST SLIDES

$8-12$ years with new slide pumps.

WEST SLIDE

Requires moderate amounts of maintenance and repairs in order to continue to function.
However, failure is very likely if issues aren't addressed in the near future. Life expectancy, is limited and this should be replaced or removed with 1-2 years maximum

EAZY RIVER

The Eazy River has a few years of service remaining with continued maintenance. Caulking should be replaced, among a few other maintenance items.

Based on the market and financial analysis, the "Do Nothing" option will continue to decline in performance and as rides/ attractions are closed or fail, the attendance will decrease until it drops below 90,000 annual visits within the next $3-5$ years, or sooner depending on facility closures The feasibility study predicts that once attendance decreases below the 100,000 attendance decreases below the 100,000 the park will no longer be financially viable and would likely be closed

This "Do Nothing" option is not considered financially viable and is not recommended.

8.30PTION 2: REPLACE LIKE FOR LIKE (\$24.92M CDN.) ANNUAL ATTENDANCE INCREASES TO 120,000 IN 5 YEARS

The "Replace Like for Like" option considers the replacement of rides or attractions and facilities with similar elements to those currently existing, replaced as existing facilities come to the end of their lifespan and begin to fail. FRONT ENTRY \& FACILITIES
The entrance buildings will be replaced entirely, this includes increasing the size of ticketing, food and beverage, washrooms, changerooms, lockers, retail, first aid, and administrative facilities to meet current attendance requirements. Further, major new infrastructure must respect the current Conservation hazard land setbacks of 46 m . Plaza space both outside and within the water park will be provided to provide appropriate queuing areas, ease circulation and wayfinding issues. The redesign of the entrance facilities will also address missing connectivity with the waterfront trail The increase in size of the entrance facilities will push the arrival sequence westerly into the existing parking lot. Vehicular and bus parking and drop off areas will also move west and be reconfigured based on existing attendance needs. The current overflow parking will be redesigned as part of the permanent parking area for the water park. Existing parking lot and bus drop off remain in this scheme. The Confederation Park Master Plan Update (2010) confirms the water park zone is to remain and include improved facilities.
LITTLE SQUIRT WORKS
Ideally this entire area should be replaced as soon as practical due to safety and to function properly. The recommended course of action is to redesign and replace the pool and it's features entirely. The pool should be designed to have a dedicated water treatment system, leaving the existing water treatment system to service the east slide complex. Life expectancy, this should be replaced or removed with 1-2 years maximum.
EAST AND WEST SLIDE COMPLEXES Both slide complexes are visibly aging and will eventually require replacement. With the redesign of Little Squirt Works, including a dedicated water treatment system, the east slides have the potential to last another 8-12 years with new pumps and diligent maintenance.

Once the East and West Slide complexes have reached the end of their lifespan, they will be replaced with similar body and tube slide complex rides.

The west slide complex requires immediate attention to avoid imminent failure. Even with careful maintenance, it is likely that the west slide complex will need to be completely replaced in the next few years. Once this complex fails, it will be replaced with another similar tube slide complex.
EAZY RIVER
The Eazy River, has some years of service life remaining, if retained, requires updates to improve its construction weaknesses. The lack of propulsion, poor waterproofing, narrow width, rough surfacing, and insufficient drain grates should all be addressed to increase the safety, efficacy, and entertainment value of this attraction. The path of the river is wellintegrated into the site and can be reused with minimal changes or interventions

PAVING \& POOL SURFACING
There are numerous concerns with the pool finishes and hardscape paving which should be addressed. Both the wave pool and river should be resurfaced to reduce safety risks. The concrete paving should be replaced with a slip and heat-resistant surfacing to reduce injuries, improve park aesthetics, and increase guest enjoyment. These improvements should be phased in over time as adjacent rides/ attractions are replaced.
Based on the market and financial analysis, the "Replace Like for Like" attendance Option 2 will slowly increase the average attendance over the next 2-5 years to 120,000 . The size of the water park will remain unchanged for this option as the current park area can accommodate the anticipated attendance. However, based on the feasibility analysis, the like for like option is not financially viable as the modest increase in attendance does not have a return on investment for the required $\$ 24.92 \mathrm{M}$ capital investment.

The "Like for Like Option" is not considered financially viable and is not recommended.

Annual Attendance: 125,000 Arrival Plazaz Area: 0.13 H
Water Para Area: 47 HA Water Para Area: 4.7 H Her
Parking Area: 2.5 HA

Reported Design Day: 3,000 Reported Design Dayy 3,000
Current Design Day Capacity: 2,050
Hourly nnertainment Hourly Entertainment Capacity: 8,200
Entertainment Units Hourly (EUH): 2.4

LEGEND
(8) Service Access
(9) Party Room
(10) Main Food \& Beverage
(11) Children's Waterplay (New Expanded)
(12) Parkland
(13) Food \& Beverage / WC
(11) Tube Slides (2) \& Body Slides (2) (New)
(15) Flex Pavilions (Existing)
(16) Wave Pool (Existing)
(17) Lounging
(18) Tube Slides (2) (New)
(19) Cabanas
(20) Eazy River (Existing)
(21) Emergency First Aid Access
(22) Retail (New Expanded)
(23) HCA Hazardous Land Regulatory Area

8.4 OPTION 3: MODEST ENHANCEMENTS (\$40.14M CDN.) ANNUAL ATTENDANCE INCREASES TO 145,000 IN 7 YEARS

LITTLE SQUIRT WORKS
This entire area will be redesigned and
replaced in its entirety. The pool will replaced in its entirety. The pool will
be designed to have a dedicated water be designed to have a dedicated water
treatment system, teaving the existing water
treatment system to service the east side treatmen
tomplex.
comer
The new area will increase more active wate play el
etc.).
A new washroom and a food and beverage unit will be located adjacent to the kidi's
pool to improve the distribution of facilites pool toi improve the distribution of facilities
throughout the park and provide easy access
for parents of young chidren Varied tyes of or parents of young children. Varien types of
seatins will be rovided and cabanas pround seating will be provided and cal
the attraction will be provided.
EAST AND WEST SLIDE COMPLEXES Both slide complexes are visibly aging and will eventually require replacement. . itht the
redesign of ittel S Squirt Works, including a redesign of Little Squirt Works, including a
deeficated water treatment system, the east sidides have the potentiant to lastent another
$8-12$ years with new $8-12$ years with new pumps and diligent
maintenance. Once the East and West Slide maintenance. Once the East and West Slide
complexes have reached the end of their
lifespan, they will be renaced with simila complexes have reached the end of thel
lifsesan, they will bereplaced with simil
body and tube slide complex wides.
The west silde complex reequres immediate The west slide complex requires inmediate
attention to avoid inminent faiure. Even atertion to avoid inminent taiure. Even
with careful maintenance, it is ikely that the
west slide eomplex will west side complex will need to be completey
replaced in the next few years. Once this complex fails, it will be reppaced with anoth ilar tube sidide complex.
Eazy river
he Eazy River requires updates to improve propulsion, poor waterproofing, roug surfacing, and insufficient drain grates
should all be addressed to increase the safety, efficacy, and entertainment value of his atraction. The path of the river is well-
integrated into this site and can pe revsed.
a teen activity pool, offering a mix of exciting a teen activity pool, offering a mix of exciting water play options such as floatable walks, zip lines, climbing walls, basketball, among other activities.

Both a washroom and food and beverage unit will be located inside the river loop to improve the distribution of facilities throughout the park and cater to the demographic of the teen activity pool.

GUEST AMENITIES
Additional areas of planting will be integrated throughout the park including the wave pool beach area to provide shade, visual interest, and moderate privacy for guests. Picnic tables will be replaced with loungers and chairs, ffering a more comfortable and riang experience and greater deck area capacity.

Cabanas will be increased in number and upgraded to permanent structures with better distribution throughout the water park.
Theming and signage can improve significantly, creating a clear wayfinding strategy and while creating a clear wayfinding strategy and whind marketing potential of the park

A new point of sale (POS) system and radio frequency identification (RFID) wristbands will be integrated with facilities and ticketing to improve ticket processing times, encourage revenue generation through cashless payment, and improve the guest experience.

Based on the market and financial analysis, the "Modest Enhancements" attendance Option 3 will slowly increase the average attendance over the next 7 years to 145,000 until a new stabilized attendance level is achieved. The size of the water park will increase in size to accommodate the anticipated attendance and an increased service level of rides and attractions. Based on the feasibility analysis, the "Modest Enhancements" is recommended as the projected net operating profit levels should be sufficient to service debt levels to $1 / 3$ rd of capital costs. The "Modest Enhancements" is recommended.

FIGURE 40: Modest Enhancements Project Capacity Plan (Option 3)

Annual Attendance: 145,000 Arrival Plaza Area: 0.16 HA Water Park Area: 5.2 HA Parking Area: 3.8 HA Design Day: 3,000

Peak in Park Design Day: 2700
Peak in Park Peak Day: 3,000
Hourly Entertainment Capacity: 9,500
Entertainment Units Hourly (EUH): 3.5

Litle Squirt Works to provide additiona program for younger children. The play cructure can be a combination of either wet significant amount of shade and varied levels of play value.

ADVENTURE COURSE
he northeast corner of the site is generally disconnected from the balance of park ttractions, currently serving as a pavilion event space and passive park area. A dry play activity that caters to older kids/teens would take advantage of the mature tree canopy and be integrated into the space. n adventure ropes course or tree top trek ype of attraction would cater to this age demographic. Circulation will be considered providing a connection to the balance of the park activities.

FAMILY RAFT RIDE/MAT RACERS
The water park is currently lacking a thrilling family ride. A four or six-person family style raft ride will be added between the east slide complex and the wave pool, providing additional program and visual mass to the southeast corner of the site.
TEEN ACTIVITY POOL
The water park is also currently lacking a water activity for older children and teens. A portion of the area inside the river will be infilled with

LEGENO

(1) Car Parking	(8) Service Access	(15) Parkland	(33) Mat Racers (4 Lanes)
(2) Taxi Drop off	(9) Party Room	(16) Existing Flex Pavilions	(24) Existing Eazy River
(3) Bus Parking/Dron Off	(10) Main Food \& Beverage	(17) Family Raft Rides (2)	(25) Retail
(4) Arrival Plaza	(11) Water Experience Pools	(18) Food \& Beverage/WC	(26) Activity Pool
(5) Front Gate Facility	(11) Children's Waterplay	(19) Cabanas	(27) Tube Slides (3)
(6) Entry Plaza	(13) Adventure Trail	(20) Existing Wave Pool	(28) Emergency First Aid Access
(7) BOH	(14) Interactive Waterplay	(21) Main Lounging (22) Body Slides (2)	(9) Pool Sider Body Slides (2) (30) HCA Hazardous Land Resulatory Area

8.5 OPTION 4: NEW DESIGN, NEW PROGRAM (\$61.12M CDN.)

 ANNUAL ATTENDANCE INCREASES TO 185,000 IN 7 YEARS4.5.4 NEW design, new program The "New Design, New Program" option
considers a new layout and program of the considers a new layuut and program of the water park inclucinga a complete redesign of
the existing facility. In this option, the water the exising facility. In this option, the water
park will be designed to meet projected tuture attendance and provide rides and attractions
that meet the family demographic and curne that meet the family
guest expectations.
The proposed location of rides and attractions
and their relationship to one another and to and their relationship to one another and to
faciilites have been explored, the new design Sacilities have been explored, the new design
will accommodatet the future projected annua will accomme
attendance.
FRONT ENTRY \& FACILITIES The entrance builidings will be replaced
entirely, this includes increasing the size of entirely, this includes increasing the size of
ticketing, food and beverage, washrooms, changerooms, lockeverserage, reail, washrist rioms, and
administrative facilities to meet future administrative facilities to meet tuture
attendance requirements. Further, major attendance reauirements. Further, maior
new infrastructure must respect the current Conservation hazard land setbacks of 46 m .
Plaza space both uotside and Plaza space both outside and within the water
park will be provided to provide appropriate pueving areas, ease to circulutiotion androppriate waytind
issues. The redessign of the entrance facilities issues. The redesigig of he enating
will also address missing connectivity with Lir also adaress missing connectivity with
the waterfront trail. The increase in size of
the entrance facilities will the entrance facilities will push the arrival
sequence westerly into the existing parking Sequence westerly into the existing parking lot.
Venicular and bus parking and drop off areas
will also will llso move west and be reconfigured based
on existing attendance needs. The current greext overfituon parking needils. The cedurinent
part of the permanent t parking area for the part of the permanent parking reaeaea forn or he
water park. This green overflow parking area water park. This green overflow parking are
is ont used for any sports, all new sports
are being
 Update (2010), Fig 20 of that report contifims the water park zone to remain. The water park increases in size approximatele by
excluding the parking expansion.
 access faciilities and increaesising the potential
revenue generation of the park. wave pool
A new wave pool will be designed to
accommodate the future annual attenda accommodate the future annual attendance
and create shallow waet rones for small and create shallow water zones for small
children and larger beach areas for relaxing and
lounging Given new wave machin technology lounging. Given new wave machine technolog,
the wave heights may be varied to meet te wave heights may be varied to meet
different guest profiles at different times of day from smaller childrien family frenendilimes to ol arger
more teenager/adut thrill fevel. ore teenager/adult thrill level.
CHILDREN'S ACTIVITY POOL A children's play area will be designed with exciting, age-appopoprate a activites. Active water
play elements such as souirts tuns and tipping buckets will be integrated into a wet deck or
shallow pool. hallow pool
Colourful paving and themed water features will
create an immersive environment for chidreil to play and explorive. Snidoded areas of offer respitite from the sun and
children to relax.
Both a washroom and food and beverage unit Both a washroom and food and beverage unit
will be located in the near vicinity to povide
easy access for parents of young chidren easy access for parents of young chidren
Varied types of seating will be provided, Varied types of seating will be provided,
hcluding lounge chairs and cabanas. play structure
Aplay structure will be added to provide additional program for younger children. The pay structure can be e either wet or dyy play, an
here is ht e opportunity to shelter a pootion of there is the opportunity to sheteter a portion

TEEN ACTIVITY POOL
A lively and energetic teen activity pool will offer a mix of exciting water play options such as floatable walks, zip lines, climbing walls, basketball, among others.
Places for older children and teens to play, interact, and hang out will be integrated with the area.

GUEST AMENITIES

Planting islands will be designed throughout the park to provide shade, visual interest, and some privacy for guests. Dedicated areas for loungers chairs, and tables will all be provided, offering a comfortable and relaxing guest experience. Cabanas will be themed and well-sited, maximizing their revenue generation capacity. Paving and pool surfacing throughout the park will be slip and heat-resistant, and will be designed to enhance the attractions, features, and identity of the park.
Theming and signage will improve significantly, creating a clear wayfinding strategy and enhance the guest experience and branding/marketing potential of the park

A new point of sale (POS) system and radio frequency identification (RFID) wristbands will be integrated with facilities and ticketing to improve ticket processing times, encourage revenue generation through cashless payment, and improve the guest experience.

Based on the market and financial analysis, the "New Design, New Program" attendance Option 4 will slowly increase the average attendance over the next 7 years to 185,000 untii a new stabilized attendance level is achieved. The size of the water park will increase in size to accommodate the anticipated attendance and an increased service level of rides and attractions.
However, based on the feasibility analysis, the "New Design, New Program" is financially not viable as the projected net operating profit levels will not be sufficient to service debt levels for the required $\$ 61.12 \mathrm{M}$ capital investment. The "New Design, New Program" is not considered financially viable and is not recommended.

FIGURE 44: New Design Project Capacity Plan (Option 4)

Annual Attendance: 185,000
Arrival Plaza Area: 0.2 HA
Water Park Area: 6.2 HA Parking Area: 4.2 HA Design Day: 3,830

Peak in Park Design Day: 3,500 Peak in Park Peak Day: 3,830 Hourly Entertainment Capacity: 12,000 Entertainment Units Hourly (EUH): 3.5

The northeast corner of the site will be transformed into a dry play activity that caters to older kids/ teens and which takes advantage of the mature tree canopy, such as an adventure ropes course or treetop trek. Circulation will be considered to connect the attraction to the rest of the park activities.

NEW SLIDE COMPLEXES

Both existing slide complexes are visibly aging and will be replaced with newer body slides, tube slides, a thrill ride and other rides to satisfy the program requirements and guest needs. The selection will depend on providing a balanced range of rides and attractions throughout the park
FAMILY RAFT RIDE/MAT RACERS
A four or six-person raft ride will be integrated into the site, adding a thrilling ride for the entire family to enjoy.

EAZY RIVER
An Eazy River will be designed to be well-integrated with the site and other rides/attractions. Water spray features will be integrated with the river, adding entertainment value. Bubblers, spray guns, overhead waterfalls, and other features offer a wonderful opportunity to make the river a dynamic experience for all age levels.

LEGENO

(1) Car Parking	(7) Main Food \& Beverage
(2) Taxi Drop Off	(8) BOH
(3) Bus Parking/Drop off	(9) Service Access
(4) Arrival Plaza	(10 Party Room
(5) $)$	(11) Crildrent's Waterplay
(6) Entry Plaza Facility	(12) Food \& Beverage $/$ WC

(13) Family Raft Rides (2)
(11) Adventure Trail
(15) Cabanas
(16) Parkland
(1) Water Experience Pools
(18) Lazy River
(19) Tube Slides (4)
(2) Interactive Waterplay
--
(1) Car Parking
(2) Taxi Drop off
(4) Arrival Plaza
(6) Entry Plaza
(7) Main Food \& Beverage
(9) Service Access
(1) Children's Waterplay
(12) Food \& Beverage / WC
(21) Body Slides (2)
(22) Activity Pool
(33) Lounging
(24) Wave Pool
(25) Mat Racers (6 Lanes)
(26) Retail
(27) Emergency First Aid Access
(28) HCA Hazardous Land Regulatory Area
master lan stuor wlo waterworks at coneederation beach park 10
\qquad

- - - Guest Circulation
\Rightarrow Vehicular Circulation - Bus

9 ROUGH ORDER OF MAGNITUDE BUDGETS

ROUGH ORDER OF MAGNITUDE BUDGET (THREE OPTIONS)

Rough order of magnitude budgets are provided for three of the four options which require capital, Options $2,3+4$. The investment budget level is tied to attendance and phasing to achieve the desired results that can sustained over both the short and long term. These investment levels and budgets were tested by CBRE as part of their financial analysis. Based on their attendance projections for the Four Options, FORREC provided preliminary rough budget ranges for testing purposes. These ranges were tested based on the financial model and subsequently refined based on attendance, operating costs, expenses, interest expenses all compared to revenue sources. The resulting

Rough Order of Magnitude Budgets reflect anticipated local costs in the local market based on 2020 costs. Budget estimates include City of Hamilton design contingencies of (10\%), additiona studies, permits, construction contingencies of (12%), project management fees of (15\%). Inflation will need to be added to all estimates at (2%) per year from the 2020 base year to when funds are approved. It should be noted that while these are not final budget numbers for elemental items within the budget, they are indicative of the overall budget warranted for each of the options and dentify the level of warranted investment.

FIGURE 48: Wild Waterworks WP R.O.M. Estimate Summary

	OPTION 2		OPTION 3		OPTION 4	
	LIKE FOR LIKE			ODEST	NEW BUILD	
			ENHA	ENTS		
	Gross	\% Of	Gross	\% Of	Gross	\% Of
BREAKOUT	Budget	Total	Budget	Total	Budget	Total

HARD COSTS						
Architecture Subtotal	\$4,921,500	27\%	\$5,641,500	19\%	\$6,116,500	14\%
Rides/Attractions Subtotal	\$6,960,000	38\%	\$14,460,000	49\%	\$27,480,000	62\%
Site Work Subtotal	\$6,307,000	35\%	\$9,194,625	31\%	\$11,015,875	24\%
HARD COST TOTAL	\$13,507,000	100\%	\$25,989,500	100\%	\$45,486,500	100\%
SOFT COSTS						
Design Contingency Subtotal	\$1,818,850	10\%	\$2,929,613	10\%	\$4,461,238	10\%
Studies, Permits, Construction Contingency Subtotal	\$2,182,620	12\%	\$3,515,535	12\%	\$5,353,485	12\%
City Project Management Fees Subtotal	\$2,728,275	15\%	\$4,394,419	15\%	\$6,691,856	15\%
Soft Cost Total	\$6,729,745	37\%	\$10,839,566	37\%	\$16,506,579	37\%
TOTAL	\$24, 918, 245		\$40,135,691		\$61,118,954	

OPTION 2: REPLACE LIKE FOR LIKE (\$24.92M CDN.)

FIGURE 49: Wild Waterworks WP R.O.M. Estimate Option 2 Like For Like

OPTION 3: MODEST ENHANCEMENTS (\$40.14M CDN.)

FIGURE 50: Wild Waterworks WP R.O.M. Estimate Option 3 Modest Enhancement

$\left.\left.\begin{array}{lrrrr}\hline \text { PROGRAM AREA BREAKDOWN } & \begin{array}{r}\text { Gross } \\ \text { Area (m}\end{array}\end{array}\right) \begin{array}{r}\text { Estimated } \\ \text { Gross Budget }\end{array}\right)$
—12 city

OPTION 4: NEW DESIGN, NEW PROGRAM (\$61.12M CDN.)

FIGURE 51: Wild Waterworks WP R.O.M. Estimate Option 4 New Design, New Program

PROGRAM AREA BREAKDOWN	Gross Area $\left(m^{2}\right)$	Estimated Gross Budget	Cost/m²	$\begin{aligned} & \text { \% Of } \\ & \text { Total } \end{aligned}$
Architecture				
Administration	155	\$387,500	\$2,500	
Guest Services	134	\$335,000	\$2,500	
Entry	189	\$283,500	\$1,500	
First Aid	356	\$72,000	\$2,000	
Ticket/Cash Control	120	\$240,000	\$2,000	
Tube Rental	20	\$40,000	\$2,000	
Storage	45	\$67,500	\$1,500	
Life Guard Facillity	53	\$106,000	\$2,000	
Change/Washrooms	960	\$1,920,000	\$2,000	
Lockers	495	\$990,000	\$2,000	
Restaurant Kitchen	300	\$600,000	\$2,000	
Retail	75	\$150,000	\$2,000	
Cabanas (Lump Sum)		\$175,000		
General Warehouse/Shops and Maintenance	750	\$750,000	\$1,000	
Subtotal	3,332	\$6,116,500		14\%
Rides/Attractions				
Rides \& Play Attractions (Purchased Lump Sum)		\$12,000,000		
Pools (Site Built Lump Sum)		\$5,000,000		
Mechanical Fit Out (Lump Sum)		\$10,480,000		
Subtotal		\$27,480,000		62\%
Site Work				
Walkways, Plaza \& Paving	24,950	\$3,741,000	\$150.00	
Softscape/Landscape	28,155	\$3,519,375	\$125.00	
Refurbish Parking	4,640	\$580,000	\$125.00	
Curbs (Lm)	2.265	\$225,000	\$125.00	
New Parking (Gravel)	38,565	\$1,620,000	\$60.00	
Subtotal		\$11,015,875		24\%
HARD COSTS TOTAL		\$44,612,375		100\%
Design Contingency Soft Costs				
Design Contingency		\$4,461,238		10\%
Studies, Permits, Construction Contingency		\$5,353,485		12\%
City Projects Management Fees		\$6,691,856		15\%
Sub total (design continency, permits, management fees)		\$16,506,579		37\%
HARD \& SOFT COSTS TOTAL		\$61,118,954		

10.1 CONCLUSIONS

The 2020 Master Plan Study, Wild Waterworks at Confederation Beach Park Hamilton, Ontario presents a comprehensive review of Wild

CONCLUSIONS AND RECOMMENDATIONS

Waterworks and proposes a range of options based on a review of existing infrastructure, comprehensive data analysis, market and financial analysis, programming and design. This review of options assessed the existing Wild Waterworks Park and provided recommendations for improvements
and redevelopment. The viability of the waterpark was considered together with opportunities for improvement and methods of increasing annua attendance at the waterpark. The Water Park design and facilities options were planned in a comprehensive way from the standpoint of a guest, while considering opportunities for expansion.

The features are a major component of this destination to create a unique place aimed at an enhanced and memorable guest experience. As with any park reinvestment, the investment is tied attendance and phasing to achieve the desired esults that can sustained over both the short and ong term. Planning and design work address the ssues and opportunities identified in the

Analysis task. We proposed a range of solutions to enhance guest experience, improve the mix of rides and attractions to provide new, more interesting challenges to meet a changing demographic and increase potential and sustained park attendance The following are the recommended first steps towards the implementation and improvements to Wild Waterworks.

10.2 RECOMMENDATIONS

1. That the Report "Master Plan Study Wild Waterworks at Confederation Beach Park prepared by FORREC be adopted and presented to Public Works Committee for consideration
2. That "Option 3, Modest Improvements" be selected as the recommended option
3. That a detailed business case be developed using the available FORREC report, together with the CBRE Market and Financial Analysis of Wild Waterworks.
4. That following selection of a suitable Option by Public Works Committee and Council, a detailed Water Park Concept Plan be prepared by a qualified Water Park consultant
5. That subject to the final business case, Option 3 be constructed in phases, as soon as practical.

APPENDIX

A-1 MARKET AND FINANCIAL ANALYSIS OF WILD WATERWORKS OPTIONS

11

APPENDIX

A-2 AQUATIC ENGINEERING FACILITY REVIEW REPORT + RECOMMENDATIONS

Aquatic Engineering Facility Review

Report \& Recommendations

Cloward H1

Date: 15 October 2018
Prepared by: Allen Clawson, P.E.

Appendix "A" to Report HSC20048

Table of Contents

Introduction and Overview .. 1
Overall Facility \& Basic Infrastructure System Observations .. 2
Wave Pool ... 4
System Description:.. 4
Observations.
Design Evaluation ... 5
Concerns \& Recommendations ... 6
Summary... 7
East Side: Slides \& Kids Pool... 8
System Description.. 8
General Observations.. 8
East Slides .. 8
Kids Pool .. 9
Summary
West Side: Slides \& River11

System Description ... 12
General Observations... 12
River. .12

Concerns \& Recommendations .. 14
Summar
Conclusions and Summary 15
Appendix A: Activated Filtration Media 17
Appendix B: Typical Life Expectancy of Critical Pool Equipment 18
Appendix C: Large Diameter Swing Check Valves 19

Introduction and Overview

Wild Water Works of Hamilton Ontario has engaged Forrec and Cloward $\mathrm{H}_{2} \mathrm{O}$ to provide an assessment report and recommendations for the various pools, slides, water features and their associated mechanical systems currently in operation at the park.
The initial investigative site visit was carried out by Allen Clawson (CH 2 O) and Glenn O'Conno (Forrec) on the $29^{\text {th }}$ of August 2018. Our team worked with Peter Purins and other park operational staff through the day to ensure that each system was accessed, non-visible infrastructure was explained, mechanical equipment was evaluated, and operational issues thoroughly discussed.
This assessment focuses on the operational condition of the existing structures, coatings, finishes, ride components and mechanical systems with the objective of determining the viability of the recommended course of action between: 1) Projecting potential serviceability over a 5 7year term. 2) Prioritizing replacement for risk management and working toward an overall renovation master plan. 3) Complete re-design and re-development of the park.
Scanned copies of the original plans from 1982-83 and the expansion in 1994 were provided as reference along with the "West Slides" (Pro-Slide) added in 1999 and replacement of the "East" slides in 2008. Various other repairs and re-configurations have been made of necessity to correct or replace failed, damaged, or worn equipment (i.e. replacement of wave generation equipment in 2011, new pool surface finishes, ...). However, for the most part the existing structures and systems are operating as designed with only incidental upgrades in the intervening years and they are nearing the end of their expected service life.
tt is evident that any significant renovation of buildings or infrastructure will require complete eplacement of all basic mechanical and electrical systems. Much is not only outdated but nadequate to the current number of guests and staff using the facility

Aquatic Engineering Facility Assessment Review
5 October 2018
Page 2 of 19

Overall Facility \& Basic Infrastructure System Observations

In addition to the specific evaluation of the Pools and Aquatic Systems specifically in the Cloward $\mathrm{H}_{2} \mathrm{O}$ scope, we were asked to provide an opinion regarding several other points relating generally to the condition of the buildings and supporting infrastructure. The following then are our notes and observations though no detailed analysis was carried out.

- Despite age and challenges the overall facility is in remarkably good condition with a few notable exceptions. I attribute this to the staff dedication and commitment to excellence, especially Peter. What he is doing in his efforts to keep up with preventative maintenance, inspections and his attention to detail, processes and planning has extended the life of existing attractions and infrastructure many years.
- Peter's description of his attention to certain details such as timing the start of the wave cycles or kids pool sprays to be active when the doors open was exemplary and representative of the attitude overall of the full-time staff.

- Aging infrastructure will continue to degrade and require higher expenditures annually. The city should expect an average of $15-20 \%$ annual increase in maintenance costs. It is important to note that some large expenditures (such as structural repair on towers or resurfacing of the wave pool) may spread over multiple years. This also means that Peter needs a corresponding increase in staff to implement the repair work
- Entry gate, food service, restrooms, lockers, pavilions, and all FF\&E are definitely showing their age and appear to be operating at or beyond capacity when the park is busy (reported to us that a 1,500 person day is insane and staff have trouble managing)
- City needs to identify their long-term goal - and willingness to re-invest most if not all proceeds back into the park for maintenance and upgrades. Of course, this requires higher ticket prices and larger crowds that cannot currently be justified or accommodated, even if they could attract them.
- Cabanas need to be upgraded to permanent structures, portable maybe (i.e. with forklift), but permanent. Lots of potential locations for Cabanas were evident throughout.

quatic Engineering Facility Assessment Review 15 October 2018
Page 3 of 19
- Most of the pumps are in their last phase of life. Noted multiple failures, repairs, rebuilds, etc. Pump failures wil continue throughout the park and should be replaced with new whenever possible. A comprehensive plan to do so should be formulated and spares purchased for those at the highest levels of risk to minimize downtime when the pumps finally let go. New pumps should be purchased with high efficiency motors and fit with VFDs to enable operations to fine-tune flow to the slides and features without adding artificial head by choking flow with valves. Typically, the energy cost savings from VFDs and high efficiency motors will pay for the upgrade within a few months of operation. Even with a seasonal park it would likely have an ROI of less than 2 years.
- Combined filtration systems should be separated for sanitation purposes
- Secondary Sanitation Systems should be considered on any new, upgraded or renovated systems.

Aquatic Engineering Facility Assessment Review
15 October 2018
Page 4 of 19

Wave Poo

System Description
Approximate Water Surface Area:
Total Pool Volume
Design Treatment Flow Rate:
Design Turnover Time:
Filter:

3,000 m²
5 Million Liters, $5,000 \mathrm{~m}^{3}$ [1.32 M gallons]
$3 x 84.1 \mathrm{~L} / \mathrm{s}, 900 \mathrm{cmh}[4,000 \mathrm{gpm}]$
5.56 hr (330 min)

Vacuum DE filter sumps (3) using Pearlite coating media

Observations

1. It was reported that the wave pool loses approximately 50 mm [2"] of water /day and requires about $15,000 \mathrm{~L}$ [4,000 gal] /day in makeup water. These values do not add up 50 mm of water loss is $10 x$ the reported makeup volume. However, assuming the 50 mm is correct, most of the observed losses must be due to leaks in the pool shell or piping. Based on our experience and calculated estimation, maximum daily evaporation loss for his pool would be expected to be more in the range of 6-8 mm , very close to the reported makeup volume. Thus, further investigation will be necessary to determine the watertightness of the pool and systems.
2. Beach deck is rather barren and needs something to break up the monotony. Everywhere else there are planters, trees and flowers, but the wave pool deck is just a big field of splintery picknick tables and racked concrete
3. Pool was re-surfaced in 2004. Operator reports evidence of deterioration of that finish (including waterline and coping tile) indicating that another re-finish will be necessary soon. Once the finish begins to deteriorate total failure is relatively rapid
4. Resilient decking (Duraroc) finish was added at the beach in 2011 then re-done in 2016. Material seems to be in good condition at the beach and is a nice addition with color, slip resistance, and impact attenuation.
5. Balance tank (Filter tanks) were inspected and recoated in 2011. Coatings have failed and are pealing off the interior of the tanks.
6. Circulation/treatment appeared to be in decent working condition with well cared for equipment. I've rarely seen such organization and cleanliness in a facility of this age.

 $+$

Aquatic Engineering Facility Assessment Review 5 October 2018
Page 5 of 19
7. We were not able to see the condition of the filter disks but presumably, and from all appearances, they are in good shape and have been well maintained/replaced as necessary by operations staff.
8. Original design called for 3 operating filter sumps and 1 spare or future filter for slides. It appears that the spare was fit out and is now in use as a $4^{\text {th }}$ filter on the wave pool increasing the total flow capacity to $1,200 \mathrm{cmh}[5,290 \mathrm{gpm}]$ for a turnover of $4.2 \mathrm{hrs}(250 \mathrm{~min})$. If this is the case, and the pumps can move the design flow, the resulting turnover is much better.
9. Treatment pumps were reportedly replaced in
 2012 but recent failures indicate that the pumps have likely not been operating optimally in the past so continued failures are likely. As is common with vacuum DE style filters, it is fairly clear that the treatment pumps were routinely run under high negative pressure conditions in the past. This condition causes cavitation, degradation of impellers and pump volute and causing vibration that damage bearings and seals. It is likely that the pumps, though they appear to be functional, are operating at a reduced capacity and certainly at reduced life expectancy
10. New wave equipment (installed in 2012) appears to be in excellent working condition and well maintained should have better that 15 years left in it.
11. Beach return grating / skimming is not up to today's standards but appears sufficient to the need. However, due to operations running the water level a bit higher than design intended the gutter is consistently flooded so provides no skimming action. This is the same with the side gutters. Consequently, floating debris must be manually removed. The trade-off however, is accelerated degradation of the pool finish so, in this case operations has made the right choice to raise water level.
12. Electrical service components appear to be in serviceable condition though aged as one would expect in a moist environment.

Design Evaluation

1. Original design called for 3 operating filter sumps and 1 spare or future filter for slides. the design turnover was 5.5 hours which, while technically meeting code requirements is somewhat below standards for a heavily used pool of this type. Our standard for a wave pool would be a 3-4 hour turnover rate design to accommodate a large number of patrons
2. It was not clear from the walk-thru but it appears that the spare filter sump has been fit out since original construction and is now in use as a $4^{\text {n }}$ filter on the wave pool. Assuming equivalent design flow to the other 3 sumps this increases the total flow capacity to 1,200 $\mathrm{cmh}[5,290 \mathrm{gpm}]$ for a turnover of $4.2 \mathrm{hrs}(250 \mathrm{~min})$. If this is the case, and the pumps can

Aquatic Engineering Facility Assessment Review
15 October 2018
Page 6 of 19
move the design flow, the resulting turnover is much more in line with today's standards This should be confirmed with operations staff.
3. Design pipe sizing results in high velocities - higher than $1.5 \mathrm{~m} / \mathrm{s}[5 \mathrm{ft} / \mathrm{s}]$ on suction lines and greater than $3 \mathrm{~m} / \mathrm{s}$ [$10 \mathrm{ft} / \mathrm{s}$] on some pressure lines. This is well beyond the recommended velocities for PVC piping and will result in scouring of the inner walls, thinning and eventual failure of the pipe and fittings. High velocities also create excessive pressure loss (higher than necessary energy consumption) and increased potential for water hammer. Recommended velocities are $<1 \mathrm{~m} / \mathrm{s}$ [$3.3 \mathrm{ft} / \mathrm{s}$] for suction and $<2 \mathrm{~m} / \mathrm{s}$ [6.5 ft / s] for pressure lines.
4. Drain piping is not capable of full treatment flow as designed without excessive head differential. Thus, if the pool is not filled to gutter level the pumps will quickly drain-down the balance tank and may expose the filter disks to air while water is displaced from the balance tank to the pool to create the necessary operating head. This has likely contributed to the short life expectancy of the treatment pumps.

Concerns \& Recommendations
Concern 1: Pool may be leaking as much as $150,000 \mathrm{~L}$ [40,000 gal] /day according to reports that there are 50 mm [2 "] of water loss per day. This is a huge load on the chemical treatmen and heating to bring that volume of makeup water up to steady state with the pool that could be saved if the leaks are found and repaired.

Recommendation 1: Validate the volume of water loss and investigate where leaks may be (pool shell, piping, balance tank, filter sumps, etc.) and repair

Concern 2: Pool surface degradation. This could be a source of the leaking in C 1 and can also be a safety hazard as pieces of the floor become loose potentially creating sharp edges and debris in the pool.
Recommendation 2: Drain the pool and carefully examine the pool surface during the off season. Consult a qualified pool finish contractor to recommend patching or replacing the existing finish. Using a quality material that can be exposed to dry conditions and will stand up to freeze/thaw cycles will minimize future refinishing work. One material to consider would be a relatively new powdercoat material from ecoFINISH (https://www.ecopoolfinish.com/) which is a flame-applied polyethylene coating

Concern 3: Balance tank waterproofing coating has failed
Recommendation 3: Recommend removing the existing coating then prepping and replacing with either a quality cementitious coating similar to Basecrete (http://www.basecreteusa.com/) with either a quality cementitious coating similar to Base
or the same flame applied polyethylene as in R2 above.

Concern 4: Circulation pumps have most likely been damaged through cavitation due to operational conditions in the past and are functioning at reduced capacity/efficiency today. This is resulting in higher operational costs (power) and reduced capacity for water quality.

Recommendation 4: Replace pumps with new at original design capacity. Recommend high efficiency motors and VFD operators to maintain constant flow. Pressure transducers on each pump suction should be implemented to alarm and reduce pump flow when pump suction drops below the NPSHr limit for that pump.
quatic Engineering Facility Assessment Reviow 15 October 2018
Page 7 of 19
Concern 5: As the park becomes more popular the design filter capacity is likely to be exceeded and water quality will suffer as a result. Original design turnover is 5.6 hours which may have been reduced to 4.2 hours by brining on the $4^{\text {th }}$ filter sump (to be verified). The flow rate cannot be increased however due to the pipe size constraints.
Recommendation 5: Short of major demo of the pool shell, adding drains, and replacing piping there is no simple way to increase treatment flow. Care should be taken to ensure that new pumps (R4) are optimized the filter sump and piping capacities. It may be possible to engineer a retrofit drain and return system that would augment the optimized existing treatment by creating a wall drain on each side wall the returning through the wave generator chambers. This would require some detailed engineering to determine feasibility with the existing structures and facilities.

Summary

With the above outlined deficiencies addressed we would expect that the system could operate with only general PM for another 10-15 years. The basic piping is essentially in good order as far as we can determine though a bit undersized and limiting to the additional desired capacity. It should be possible to $R \& R$ existing equipment without changing the basic infrastructure. However, electrical might be a can-of-worms once opened and require new conduit runs, wire pulls, breakers and possibly boxes.

East Side: Slides \& Kids Pool

System Description

Approximate Water Surface Area
Total Pool Volume
Design Treatment Flow Rate
Design Turnover Time:
Filter
,200 m
1 Million Liters, $1,000 \mathrm{~m}^{3}$ [264,000 gallons]
Unknown
Unknown
High Rate Sand

General Observations

1. Kids Pool and East Slides share a common circulation and treatment system. This is problematic from an operation and sanitation point of view but the facility and operators have learned to live with the issues this creates.
2. Actual installed treatment equipment (pumps and filters) was not determined during the site visit nor was the age/condition of the filer media. We anticipated being able to identify this information from the drawings provided to us but have been unable to do so. Water quality on this lightly attended day appeared good but reportedly degrades on a moderately busy day. This may be due to many factors ranging from pump performance, filter media condition, and oxidation/sanitation chemistry control.
3. If similar pipe sizing criteria to what was used in design of the wave pool then pipe velocities are likely excessive leading to reduced efficiencies, potential for pipe/fitting scouring and increased risk of water hammer.
4. It was reported that there is approximately $20,000 \mathrm{~L}[5,200 \mathrm{gal}]$ /day of makeup water used in these combined systems. Though there may be leaks this seems to be a nominal amount and not unexpected with the amount of splash, spray and carryout due to the slide and spray feature operations

East Slides
5. Structural repair of the slide tower was carried out last spring when significant corrosion damage to the upper deck was found.
6. Slides are aging/weathering but in good working order if good maintenance practices are continued.
7. Slide pumps have seen failures and will continue to do so. Equipment is aged and should be replaced proactively to prevent failure during operation. Piping appears to be

quatic Engineering Facility Assessment Review 15 October 2018
Page 9 of 19
undersized with higher than recommended velocities (as has bee noted on the wave pool). This is likely contributing to pump wear
8. Operator noted that pumps are difficult to prime - a further indication of a combination of pump wear (cavitation) and smaller than recommended pipe size causing restricted inle flow. Dampened check valves should be considered for installation on the discharge of each slide pump to help prevent loss of prime and minimize risk of water hammer when an e-stop is thrown, or pump is shut down in normal operation. See Appendix C
9. Deck drains did not appear to be working well maybe just due to accumulation of debris at the end of seasonal operation.
10. It was unclear how the collection tank for the slides was connected to the kid's pool area though the two re treated in common
11. Electrical panels in the slide pump house appeared to not be faring well. May need to be replaced within a short time, perhaps along with new pumps.

Kids Pool
12. Multiple issues with nozzles and control valves. Operation staff has been working to correct hese issues and have restored function to a good portion of the nozzles compared with a few years ago. It should be possible to disassemble and repair or replace the solenoids and get all the systems working.
13. Shade sails over the pool are in fairly good condition having been replaced within the last few years.
14. Pool deck is sand bedded pavers with low points and drainage issues evident all over. This would not be code allowable in most locations in North America.
15. Duraroc on slide platform and around pool perimeter showing signs of deterioration.
16. A large quantity of sand was noted in the in pool from degrading concrete surfaces and washing in from deck due o storms. Loose material such as sand creates potential fo sanitation issues in the pool and should be cleaned out daily if necessary. The source of these (deck and decomposing pool finish) should be corrected.
17. Inadequate deck drainage, deck appears to slope toward pool instead of away in some areas
18. Pump noise was excessive, an indication of wear and imminent failure.
19. Drains, inlets and skimming all appear inadequate to the guest capacity. A number of the return fittings are damaged

Appendix "A" to Report HSC20048

Concern 11: Drains, skimming and returns appear inadequate to ensure proper circulation, treatment and sanitation in the kids pool
Recommendation 12: There is no simple fix for this. Continual repairs can be implemented but resolving the root problem will likely require replacing the pool.

Summary

In consideration of all of the issues raised with this system we believe the best course of action would be to demo the existing kids pool leaving the existing treatment system for just the slides With new slide pumps and continued vigilance in maintaining the slides and their mechanical systems the slides should last another 8-12 years though there will undoubtedly be additional structural issues to address with the slide tower and supports along the way.

A brand new kids pool with a separate treatment and circulation system at current industry standards should be planed and built.

Aquatic Engineering Facility Assessment Review
15 October 2018
Page 12 of 19

West Side: Slides \& River

System Description

Approximate Water Surface Area:
Total Pool Volume
Design Treatment Flow Rate
Design Turnover Time:
Filter
,200 m²
2 Million Liters, 2,000 m ${ }^{3}$ [528,000 gallons]
Unknown
Unknown
High Rate Sand

General Observations

1. Actual installed treatment equipment (pumps and filters) was not determined during the site visit nor was the age/condition of the filer media. We anticipated being able to identify this information from the drawings provided to us but have been unable to do so. Water quality on this lightly attended day appeared good but reportedly degrades on a moderately busy day. This may be due to many factors ranging from pump performance, filter media condition, and oxidation/sanitation chemistry control.

2. If similar pipe sizing criteria to what was used in design of the wave pool then pipe velocities are likely excessive leading to reduced efficiencies, potential for pipe/fitting scouring and increased risk of water hammer. This is very likely a contributing factor in the ack of propulsion and skimming efficiency noted.
3. Recent repair work (last season?) was done on both the river and slides. Slides were painted and the river was caulked. Though there are some issues with these repairs they were largely effective at extending the life and reducing water losses.

West Slides

1. Slide fiberglass and support structures are definitely showing their age. Corrosion on steel members has been noted and attempts have been made to protect and paint. Gel coating on fiberglass is oxidized and at a point where accelerated deterioration is likely.
2. We were not able to get a close look at the interior slide surfaces but the exterior had been recently painted - already pealing off in many places
3. Leaks were evident at several joints. This will accelerate as the fiberglass and support structures continue to age
4. Water hammer condition reported on slide pumps. Should retrofit with dampened check valves on pump outlet. See Appendix C. Otherwise the slide pumps appear to be some of the best operating pumps on the site without many of the difficulties observed elsewhere.

Aquatic Engineering Facility Assessment Review 5 October 2018
Page 13 of 19
5. Slide pump intake in the river flow should be evaluated. These are direct suction grates and the open area appears very small when compared with the flow required and the pumps installed. Design and record drawings of this area are unclear and it is likely that modification has been made since that time. Intake grate velocities should be kept to less than $0.5 \mathrm{~m} / \mathrm{s}$ [$1.5 \mathrm{ft} / \mathrm{s}$] to avoid entrapment danger when the slide pumps are operating.
6. Reported leaks in slide pump intake box at the river

River

7. River propulsion is minimal and very inefficient. Average velocity appears to be around $0.3 \mathrm{~m} / \mathrm{s}$ [$1.0 \mathrm{ft} / \mathrm{s}$]. What propulsion here is appears to be primarily driven by the slide pumping. The propulsion intakes, nozzles and pumps designed for the task appear to be largely ineffective for that purpose though design intent and calculations were not evident on the provided drawings for a thorough evaluation Possibly this detail was left to the discretion of the contractor.
8. Several large eddies exist in the river channel. This condition traps people and debris.
9. A large quantity of leaf litter from all the amazing planting and trees was evident - skimming and drain grates are inadequate to the task and are constantly plugged. Need a much more robust means of removing both floating and sinking debris.
10. Drain grates throughout appear inadequate and possibly pose an entrapment risk. Need to verify piping and drain velocities
11. River structure is creative and fun. However, it was poorly waterproofed. Recent comprehensive caulking work appears to have dramatically reduced water loss through leakage. However, caulking is rarely a permanent solution.
12. Caulking contractor opened up joints that were placed to be decorative and filled with caulk. This potentially weakened the structure (similar to crack control joints) and may cause additional cracking to occur
13. The caulk that was used throughout the river is staining, growing algae and mold.

Aquatic Engineering Facility Assessment Review
5 October 2018
Page 14 of 19
14. Spray nozzles in the play beach zone have been repaired in an unconventional manner. The effect is good with good water spray as intended but the fix exposes pipe and valves that are an attractive nuisance and potential danger for kids
15. Surface degradation of the pool walls and floor is evident throughout.

Concerns \& Recommendations
Concern 13: Slide structures and fiberglass deterioration. Recommendation 13: Structural support of the slide tower and supporting columns should be carefully inspected by a qualified structural engineer and the fiberglass by the slide manufacturer. Their instructions for repair and maintenance should then be carried out.

Concern 14: Slide pump water hammer, if not corrected will eventually result in catastrophic failure
Recommendation 14: Retrofit piping to install a dampened check valve (see Appendix C).

Concern 15: Slide intake drain box and grating appear to be undersized for the slide flow. All river intake grates (propulsion and treatment) appear similarly undersized.

Recommendation 15: Direct suction fittings on a pool should be designed as "unlockable" with low velocities through the cover to eliminate risk of entrapment. Refer to ASME/ANSI A112.19.8

Concern 16: Leak in slide intake box.
Recommendation 16: Open, inspect and repair slide intake box leak. Apply an appropriate elastomeric coating
Concern 17: River propulsion pumping is ineffective. Low velocities are not necessarily a problem, but mixing/sanitation of the water is somewhat dependent on the movement through the channel.

Recommendation 17: This is difficult to solve without re-construction of the propulsion stations however, it may be possible to design new intake systems and wall jets at the existing locations with marginal impact to pool structure

Concern 18: Caulking material used appears to be the wrong sort. Less than 1 year old, the caulk joints are discolored and evidently harboring micro-organisms (mold, algae and bacteria). This is a sanitation and well as an aesthetic issue. If unchecked will lead to failure of the caulk joints.

Recommendation 18: Replace caulking with a quality sealing compound such as Deck-O-Seal by WR Meadows.

Aquatic Engineering Facility Assessment Review 5 October 2018
Page 15 of 19
Concern 19: Spray nozzles in river island area is a potential safety hazard.
Recommendation 19: Nozzles should be recessed within a contained are in accessible to curious guests. Nozzle velocities over $2 \mathrm{~m} / \mathrm{s}$ [6 ft/s] should be avoided unless the stream is completely inaccessible by guests.

Concern 20: Surface degradation of concrete in the river.
Recommendation 16: Erosion and spalling of the concrete river surface finish is evident throughout. As the structure ages this degradation is likely to accelerate, eventually exposing reinforcing steel to the water. A coating could be applied to halt the degradation similar to what is recommended for the wave pool. Using a quality material that can be exposed to dry conditions and will stand up to freeze/thaw cycles will minimize future refinishing work. One material to consider would be a relatively new powdercoat material from ecoFINISH (https://www.ecopoolfinish.com/) which is a flame-applied polyethylene coating.

Summary

Overall and despite the deficiencies noted, the river and it's mechanical systems are in decent condition given the current state of maintenance and labor required. The slides are on the verge of potential failure of one kind or another and in need of attention prior to re-opening next season.

Appendix "A" to Report HSC20048

Page 16 of 19

Conclusions and Summary

For the age and obvious challenges this facility faces the staff is doing a remarkable job at keeping up on critical issues. It is a rare thing indeed to see 30-year old mechanical spaces in as good a condition and organized so well.
That said, there are certainly some very real and pressing priorities that need attention in order to maintain a quality, safe experience for guests in the near (5-7 year) term.

- Evaluate River drains and slide intake box - effect repairs Immediate
- Re-build and protect river spray nozzles
- Inspect and repair east \& west slide structures and fiberglass Immediate Immediate
- Dampened Check Valves on Slide pumps
- Design and construct new Kids Pool to address the multiple issues
- Replace wave pool treatment pumps

1 year

- Repair and re-coat wave pool balance and filter tanks

1 year

- Evaluate feasibility of optimization of wave pool treatment, 3-hour turnover 1 year
- Evaluate sand filters, replace media as necessary

1-2 years

- Replace East Slide pumps

1-2 years

- Resurface Wave Pool

1-2 years

- Replace River Caulking

2-3 years

Aquatic Engineering Facility Assessment Review 15 October 2018
Page 17 of 19

Appendix A: Activated Filtration Media


```
What is AFM }\mp@subsup{}{}{*}\mathrm{ ?
```



```
AFM }\mp@subsup{}{}{2}\mathrm{ benefits at a glance
```



```
    *)
```

Excellent performance of AFM ${ }^{\top}$ in comparison with quartz sand and other glass filter media
man

What makes AFM ${ }^{\ominus}$ so effective?


```
mon*Nw, wowemery.
```



```
2 Actriton prese
```



```
*)
```


Appendix "A" to Report HSC20048

Aquatic Engineering Facility Assessment Review
15 October 2018
Page 18 of 19
Appendix B: Typical Life Expectancy of Critical Pool Equipment
The following are predicated on indoor equipment installation and an effectively implemented preventative maintenance program.
Motors: High-quality, commercial type motors that are well maintained have a typical useful life expectancy of 7-12+ years.
Pumps: High-quality, commercial type pumps that are well maintained area expected to last between 15-20 years.

Sand Filter Tanks: High-quality, commercial type tanks typically last 20-30 years. FRP tanks are not subject to corrosion degradation and when installed indoors have a life expectancy in excess of 30 years.
Sand Filtration Media: This topic is very controversial but almost everyone agrees that most sand type materials should be replaced when backwashing no longer returns the system to normal, "clean filter", lower pressures. Many filter suppliers recommend changing the sand every 5-7 years. Specialty filter media may have much longer life cycles with some never needing to be changed. In an system with frequent or aggressive backwash cycles a 5 -year replacement cycle would not be unusual.

Sand Filter Internal Components: in addition to normal wear, it is common for laterals to be damaged by the media change process. Therefore, filter manufacturers typically recommend that laterals (both upper and lower) be replaced when media is changed or every 5-7 years
Heaters: Very dependent on the type and quality of the Chiller. Many facilities expect 10+ years before considering replacing them. Regular maintenance is extremely important but equally important is recording temperatures and power consumption to give an accurate picture of how the chiller is performing. Costly damage can be avoided by watching for degradation in performance which can lead to irreversible damage. The final decision is usually based on performance cost vs. cost of a new chiller unless there is a major breakdown.

Chemical Control Systems: pH and ORP probes should be replaced every 6-12 months. The rest of the components are robust and should last 20+ years.

Aquatic Engineering Facility Assessment Review 5 October 2018
Page 19 of 19

Appendix C: Large Diameter Swing Check Valves

Current piping and method of control on slide pumps is producing water hammer when the system is shut down. Adding dampened check valves or replacing existing non-dampened check valves will improve the longevity of the installation

Swing Check Options - Assist Assemblies

Swing check valves often have the option to install an external spring or lever \& weight assist assembly. This assembly is mounted external to the valve. When fluid pressure starts to drop, the spring (or lever \& weight) retracts the swing arm and brings the disc back into the seat position effectively reducing the speed of the fluid flowing back towards the check valve, in turn reducing the shock caused by water hammer. The assembly returns the disc to the seat, but does not add to the sealing force Hence, minimum backpressure requirements still apply for swing check valves with spring assists.

Because lever and weight assemblies rely on gravity to provide their assistance on a closed stroke, they tend to work better in vertical installations.

Swing Check Valves

Swing Check Valve - Sample Specification

All swing check valves shall be of solid thermoplastic construction, having no metal that comes in contact with media, (except when lever \& weight or stainless-steel spring option is installed). Valves shall incorporate a single disc design suitable for either horizontal or vertical
installations. Valves shall be of top entry bonnet design for maintenance purposes with O-ring top bonnet seal. PVC shall conform to ASTM D1784 Cell Classification 12454A, PP conforming to ASTM D4101 Cell Classification PP0210B67272 and PVDF conforming to ASTM D3222 Cel Classification Type II. Valves shall be rated to 150 psi sizes $3 / 4^{\prime \prime}$ through $3^{\prime \prime}, 100$ psi sizes $4^{\prime \prime}$ through 6 ", and 70 psi size $8 "$ at $70^{\circ} \mathrm{F}$, as manufactured by Asahi/America, Inc

4
 APPENDIX
 A-3 PROGRAM OPTIONS

ATTENDANCE SUMMARY					
			OPTION 2	OPTION 3	OPTION 4
ANNUAL ATTENDANCE			124,900	145,000	185,000
Peak Month		40\%	49,960	58,000	74,000
Peak Week		23\%	11,491	13,340	17,020
Peak Day		25\%	2,873	3,335	4,255
Design Day		90\%	2,585	3,002	3,830
Peak In Park DD		90\%	2,327	2,701	3,447
Peak In Park PD		90\%	2,585	3,002	3,830
EUH					
Entertainment Units per Hour per Visitor (PHC)		3.50	8,144	9,455	12,063
PARK AREA			m^{2}	m^{2}	m^{2}
Water Park Area Requirement	m²/pp	16.50	42,660	49,525	63,187
Parking Area Requirement	m^{2}		37,574	46,444	57,483
GUEST ACTIVITY DISTRIBUTION					
\% Of Guests In Rides \& Queues			15\%	15\%	15\%
\% Of Guests In Water Play Attractions			15\%	15\%	15\%
\% Of Guests In Pools \& Rivers			30\%	30\%	30\%
\% Of Guests On Deck Lounging			40\%	40\%	40\%
TOTAL			100\%	100\%	100\%
ENTRY PLAZA		m²/pp	m^{2}	m^{2}	m^{2}
Outside Gate		1.50	1,000	1,126	1,436
Inside Gate		3.00	400	675	862
FOH/BOH REQUIREMENTS			m^{2}	m^{2}	m^{2}
FOH/Administration \& Guest Services			1,500	1,750	2,000
Back of House			800	900	1,000

GUEST WASHROOM, CHANGEROOM, LOCKERS \&	OPTION 3
SHOWER FACILITY GUIDELINESWATER PARK WC CALCULATION	$\mathbf{1 4 5 , 0 0 0}$ ATTENDANCE
Peak in Park Design Day	3,002
Ratio of Female Guests Per WC (50\% of guests)	40
No. Female WC	38
No. Female Sinks (1:2 per WC)	19
Ratio of Male Guests Per WC (50\% of guests)	60
No. Male WC Fixtures Required	25
No. Male WC	$\mathbf{8}$
No. Male Urinals	$\mathbf{1 7}$
No. Male Sinks (1:2 per WC)	13
Total Fixtures	$\mathbf{6 3}$
Area Required Per WC ($\mathbf{m}^{\mathbf{2}}$)	$\mathbf{6 . 5}$
Park Distribution	$\mathbf{3}$

| BREAKOUT | | m^{2} | Fixtures |
| :--- | ---: | ---: | ---: | ---: |
| Main A | 70% | 285 | 44 |
| Satellite B | 15% | 61 | 9 |
| Satellite C | 15% | 61 | 9 |
| Total Area Required | $\mathbf{1 0 0} \%$ | $\mathbf{4 0 6}$ | $\mathbf{6 3}$ |

WATER PARK SHOWER CALCULATION	3,002
Peak in Park Design Day	$1: 50$
Ratio of Guests Per Shower	30
No. of Showers Men	30
No. of Showers Women	2.5
Area Required Per Shower $\left(\mathrm{m}^{2}\right)$	$\mathbf{1 5 0}$

$\frac{\text { Area Required Per Shower }}{\text { Total Area Required }\left(\mathbf{m}^{2}\right)}$
Note: One shower and one change room combined in one stall

WATER PARK CHANGE ROOM GALCULATION	
Peak in Park Design Day	3,002
Ratio of Guests Per Changeroom	1:50
No. of Changerooms Required	60
No. of Changerooms Men	30
No. of Changerooms Women	30
Area Required Per Changeroom (m^{2})	3.5
Total Area Required ($\mathbf{m}^{\mathbf{2}}$)	210
WATER PARK LOCKERS CALCULATION	
Peak in Park Design Day	3,002
Percentage of Guests Requiring Lockers	80\%
No. of Lockers Required	2401
Area Required Per Locker (m^{2})	1.2
Total Area Required (m^{2})	2881
Total Area Required (4 High) ($\mathbf{m}^{\mathbf{2}}$)	720
FACILITIES TOTAL (${ }^{\mathbf{2}}$)	1,487

FOOD AND BEVERAGE REQUIREMENTS AND CAPACITY
Meals
Peak in Park DD Attendance
Meal Demand
Hourly Meal Count
Sit Down
Quick Service
FACILITY BREAKDown

RETAIL SPACE REQUIREMENTS	OPTION $\mathbf{3}$
Estimated Spend Per Head for Merchandise	$\mathbf{1 4 5 , 0 0 0}$ ATTENDANCE
Estimated Annual Sales	$\$ 0.75$
Retail Space $\left(\mathrm{m}^{2}\right)$	$\mathbf{\$ 1 0 8 , 7 5 0}$
Additional Storage and BOH $\left(\mathrm{m}^{2}\right) 20 \%$	$\mathbf{3 6}$
RETAIL SPACE REQUIRED $\left(\mathbf{m}^{2}\right)$	$\mathbf{4 4}$

						OPTION 3-145,000	
GUEST PARKING CALCULATIONS PEAK IN PARK DESIGN DAY							3,002
Mode of Transportation	$\%$ of Guests Arriving by Vehicle Type	\# of Guests Arriving by Vehicle Type	Persons per Vehicle	Total \# of Spaces Required	Average \# of Spaces per Hectare	Total Area (m^{2})	Gross Up Area (m^{2})
Private Car	85\%	2,551	3	850	250	34,017	39,120
Bus	15\%	450	45	10	60	1,668	2,084
Taxi Stacking						120	138
Guest Total	100\%	3,002				35,805	41,342
Employee Parking	5.0\%	128	1.5	85	250	3,402	5,103
TOTAL GENERAL - OVERALL TOTAL						39,206	46,444

GUEST WASHROOM, CHANGEROOM, LOCKERS \& SHOWER FACILITY GUIDELINES WATER PARK WC CALCULATION	OPTION 4 185,000 ATTENDANCE	
Peak in Park Design Day		3,830
Ratio of Female Guests Per WC (50\% of guests)		40
No. Female WC		48
No. Female Sinks (1:2 per WC)		24
Ratio of Male Guests Per WC (50\% of guests)		60
No. Male WC Required		32
No. Male WC		11
No. Urinals		21
No. Male Sinks (1:2 per WC)		16
Total Fixtures		80
Area Required Per WC (m^{2})		6.5
Park Distribution		3
BREAKOUT	m^{2}	Fixtures
Main A 70\%	363	56
Satellite B 15\%	78	12
Satellite C 15\%	78	12
Total Area Required 100\%	519	80

WATER PARK SHOWER CALCULATION	
Peak in Park Design Day	3,830
Ratio of Guests Per Shower	$1: 50$
No. of Showers Men	38
No. of Showers Women	38
rea Required Per Shower $\left(\mathrm{m}^{2}\right)$	$\mathbf{2 . 5}$
Total Area Required $\left(\mathbf{m}^{2}\right)$	$\mathbf{1 9 1}$

Note: One shower and one change room combined in one stall

WATER PARK CHANGE ROOM CALCULATION	
Peak in Park Design Day	3,830
Ratio of Guests Per Changeroom	1:50
No. of Changerooms Required	77
No. of Changerooms Men	38
No. of Changerooms Women	38
Area Required Per Changeroom (m^{2})	3.5
TOTAL AREA REQUIRED ($\mathbf{m}^{\mathbf{2}}$)	268
WATER PARK LOCKERS CALCULATION	
Peak in Park Design Day	3,830
Percentage of Guests	80\%
No. of Lockers Required	3064
Area Required Per Locker (m^{2})	1.2
Total Area Required (m^{2})	3676
Total Area Required (4 High) ($\mathbf{m}^{\mathbf{2}}$)	919
FACILITIES TOTAL (${ }^{\text {² }}$)	1,897

Hamilton

[^0]: Glenn A. O'Connor, OALA, FCSLA, ASLA Senior Director Water Parks, FORREC Ltd.
 cc .
 , Matthew Dawson, Senior Director
 Steven C Rhys, Executive Vice President

