

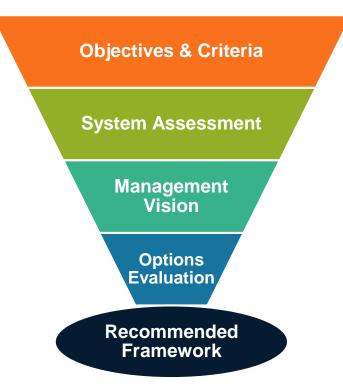
wood.


Flooding and Drainage Improvement Framework (FDIF)

City of Hamilton Public Works Committee August 10th, 2022

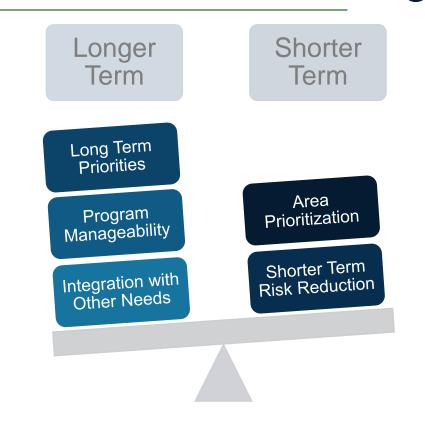
Introduction

1. Background to Study



- Legacy issues and new challenges are straining the capacity of the City's combined sewer system
- City of Hamilton has, since the 1960's +/-, been addressing problems in the CSS
- Recent City Initiatives
 - Increased the primary capacity at the Woodward WWTP
 - Established a program of Real Time Control (RTC)
 - Applied LID practices in new and retrofit developments
 - Extraneous flow management (Separated WW system)
- Despite this, the risk of flooding (basement and surface) and environmental impacts (CSOs) persist
- City has completed local and City-wide studies to investigate solutions

1. Background to Study

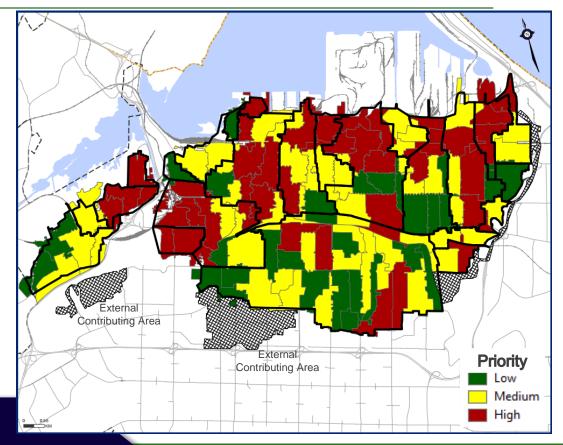

"Framework Study" to

- Validated and updated past recommendations
- Established Performance Objectives and developed a Management Strategy
- Developed a prioritization and implementation schedule
- Established high-level costing of recommendations
- Advanced a set of short, medium, and long-term projects
- Strategy will need to be validated and supported through more detailed technical work and Public/Stakeholder Consultation

2. Strategy, Vision, Objectives

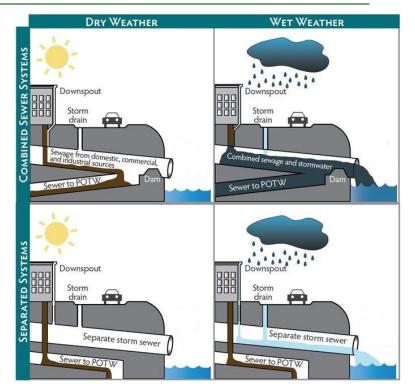
- Short-term management strategy: Mitigate the higher-risk basement and surface flooding areas
- Long-term management strategy: Improve resiliency to flooding, and addressing environmental stewardship and climate change adaptation

3. Assessment Approach and Results


- Leveraged available information
- Use preliminary level of service targets
- Assessed major & minor system to understand potential flood risks
- Prioritized areas based on potential risk
- High-level assessment to:
 - guide strategic direction
 - inform long-term budget needs

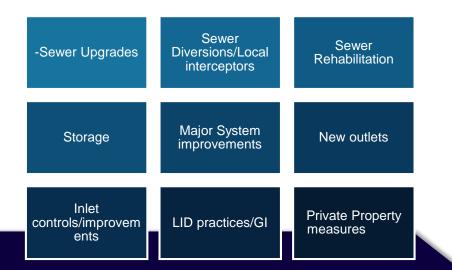
Validation needed prior to implementation

Assessment Factor	Proposed Weighting	Rationale	
Historic Flooding	3.0	Highly important/critical parameter – based on actual observed instances of flooding	
Sewer Depth	0.5	Overall is more of a physical constraint than a prioritization factor	
Sewer Age and Condition	1.5	Considered a slightly higher priority factor to drive infrastructure renewal	
Minor System (Model)	2.0	After historic flooding, likely the most important parameter despite concerns regarding uncertainties in modelling results; provides a means to consistently assess sewer system deficiencies	
Major System (Model)	1.0	Lower confidence in modelling results however provides some indication of potentially deficient areas on a relative basis	
Overland Flow (Topo)	1.5	Considered a better overall indicator of spatial extent of overland flow deficiencies, also integrates surface depressions	
Inlet Capacity	0.5	Lower utility as a prioritization factor given complexity of interpreting results at this scale (i.e. implications of land use, capacity of receiving sewer system)	
Surface Depressions (Topo)	0.5	Somewhat duplicative of the overland flow results, and thereby may over-estimate potential for areas near valleys etcetera	


3. Assessment Approach and Results

- 24 major CSO catchments subdivided into 108 subcatchments
- Individual assessment and ranking for all 108 subcatchments
- High Priority area clusters
 - West Hamilton
 - Wellington CSO
 - North End

4. Management Options


- Long-Term Strategy "Managed Sewer Separation"
 - Default options for future upgrades
 - Aligns Asset Renewal and other capital projects
 - Priority based on risk management
 - Optimize based on local needs
 - +20 years

High Level Concept of Sewer Separation (Passaic Valley Sewerage Commission, North Bergen/Guttenberg CSO Long Term Control Plan)

4. Management Options

- Short Term Strategy Addressing High Risk Areas
 - Local strategies focused on local flooding issues
 - Review if sewer separation can proceed immediately
 - Considering works that can be readily implemented

- Broader System Wide Management Options
 - Not focused on local Subcatchments or CSO Catchments
 - Long-Term system wide solutions
 - Provide additional benefits
 - To be further evaluated in City's Master Plan with additional lenses of Growth

5. Recommendations: Supporting Policies and Studies

Studies and Tools Supporting Shorter-Term Priorities

- Update City *All Pipes* Model
- Flow Monitoring / Benchmarking and Beneficial Impact Program
- Field Investigation Program and Issues Validation
- Ainslie Wood Neighborhood Creek Separation EA

Major Studies to Support Managed Sewer Separation Strategy

- West End Sewer Separation Study and New Outfall EA
- Harbour Sewer Separation Study and New Outfall EA
- Red Hill Creek Sewer Separation Study and New Outfall EA
- Interceptor Feasibility Study and EA

Policies To Support Overall Strategy

- Enhance stormwater management policies for development
- Develop Low Impact Development (LID) practices policy for road reconstruction projects
- General LID practices policy / stormwater user rate
- Wet weather flow policy for separated sewer areas

Further Stakeholder and Public Consultation is needed to confirm/finalize Policy Recommendations and Development of "Managed Sewer Separation" Strategy

5. Study Recommendations: Shorter-Term Priorities

0-3 Years

- Adoption of study recommendations and vision
- Policy review and update
- Stormwater user rate
- Major sewer model update
- 1st "Managed Sewer Separation" EA West End Sewer Separation Study and New Outfall EA
- Ainslie Wood Neighborhood Creek
 Separation EA
- •\$20M in ground works to address Short-Term priority areas

3-5 Years

2nd and 3rd "Managed Sewer Separation" feasibility study and EA
\$87M in ground works to address Short-Term priority areas

5-10 Years

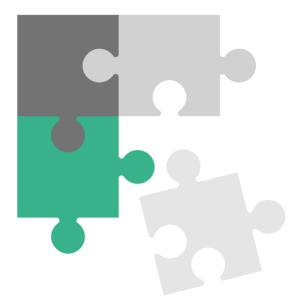
- •Begin implementation of "Managed Sewer Separation"
- Studies to review major long-term solutions (Interceptor Feasibility Study & North Mountain Storm Trunk)
 \$106M in ground works to address Short-Term priority areas

5. Study Recommendations: Program Cost

- Long-term cost to be further evaluated based on future study findings
- Full program cost is dependent on attainable performance objectives/targets

Timeline	Studies	Priority Area Projects	Potential Projects	Managed Sewer Separation	Total (\$)
0-10 yrs	\$5M	\$214M	\$96M	\$52M	\$367M
10-20- yrs		\$93M	\$146M	\$19M	\$258M
20+ yrs		-		\$404M	\$404M
Total	\$5M	\$307M	\$242M	\$475M	\$1,029M

6. Next Steps



 Confirm/initiate priority, short-term capital works

Ongoing – Updates to All-Pipes Model, Stormwater and LID Policies, Stormwater User Rate Study

14

Thank you for your time, we will now be answering any questions you may have.

