

### **COMMUNICATION UPDATE**

| ТО:               | Mayor and Members<br>Board of Health                                            |  |
|-------------------|---------------------------------------------------------------------------------|--|
| DATE:             | February 16, 2024                                                               |  |
| SUBJECT:          | High-Density Passive Air Quality Monitoring in the City of Hamilton (City Wide) |  |
| WARD(S) AFFECTED: | City Wide                                                                       |  |
| SUBMITTED BY:     | Kevin McDonald Director, Healthy Environments Division Public Health Services   |  |
| SIGNATURE:        |                                                                                 |  |

This communication provides the Board of Health with an update regarding the findings of the "High-Density Passive Air Quality Monitoring in the City of Hamilton" study conducted by University of Toronto researchers, which aimed for neighbourhood scale measurements and assessment of differences in air quality across the city.

### **Summary**

University of Toronto Professor Matt Adams and his research team conducted an air quality monitoring project in the City of Hamilton from February 2022 to May 2023. The project collected air samples at the level of neighbourhood by selecting air sampling sites based on geographical and population characteristics.

The findings from this project align with monitored air pollution data from the Hamilton Air Monitoring Network, modelled data obtained from the Hamilton Airshed Modelling System, and with Health Canada's 2023 findings that identified industry, home firewood burning, and transportation as the sources contributing to most of the air pollution associated with premature mortality.

Overall, the project supports the current understanding of Hamilton's airshed by adding to existing air quality information. It also reinforces the need for public education and the development of strategies focusing on industrial, home firewood burning, and transportation sources.

## SUBJECT: High-Density Passive Air Quality Monitoring in the City of Hamilton (City Wide) - Page 2 of 5

### **Background**

Previous research conducted in the City of Hamilton, focusing on air quality and health protection, identified the need for air quality data at the neighbourhood level. This University of Toronto project aimed to provide this kind of air quality data by selecting air pollution sampling sites based on geographical and population characteristics. The University of Toronto researchers conducted a two-year project in 2022 and 2023 to evaluate the local air quality in Hamilton. Sampling was conducted across the entire city, guided by land use and socioeconomic characteristics of the population.

As a partner in this project, Environment Hamilton organized four public sessions during the project. These sessions aimed to inform the community about the study, the resulting data, and the implications for human health. The dates and topics covered in each session included:

- December 15, 2021, Public Session No. 1: Introduction to the project and an opportunity for public input and feedback;
- April 12, 2022, Public Session No. 2: An expert panel discussion about how air quality is regulated in Ontario;
- January 30, 2023, Public Session No. 3: An update on the project's progress; and,
- July 11, 2023, Public Session No. 4: Presentation of project's results and next steps.

A sampling site was located in each ward (15 sample locations). For quality assurance purposes, eight additional sites were selected to collocate with active monitors including those overseen by of the Ministry of Environment, Conservation and Parks. An additional 45 sampling sites were chosen, based on socioeconomic conditions, land use conditions, and areas identified via public feedback.

The six air pollutants measured from February 2022 to May 2023 were benzene ( $C_6H_6$ ), nitrogen dioxide ( $NO_2$ ), oxides of nitrogen ( $NO_X$ ), nitric oxide ( $NO_2$ ), ground-level ozone ( $O_3$ ), and sulphur dioxide ( $SO_2$ ). In addition, the project measured polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene, during two months of the summer at 28 locations in Hamilton and West Burlington. This group of air pollutants were selected because of community and government concerns, as identified by Clean Air Hamilton.<sup>2</sup>

OUR Vision: To be the best place to raise a child and age successfully.

OUR Mission: To provide high quality cost conscious public services that contribute to a healthy, safe and prosperous community, in a sustainable manner.

OUR Culture: Collective Ownership, Steadfast Integrity, Courageous Change, Sensational Service,

Engaged Empowered Employees.

<sup>&</sup>lt;sup>1</sup> Radisic, S., Newbold, K.B. Factors influencing health care and service providers' and their respective "at risk" populations' adoption of the Air Quality Health Index (AQHI): a qualitative study. BMC Health Serv Res 16, 107 (2016). Available from: https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-016-1355-0 <sup>2</sup> Clean Air Hamilton. 2021 Air Quality Progress Report March 2023. Available from: https://pub-hamilton.escribemeetings.com/filestream.ashx?DocumentId=353788

# SUBJECT: High-Density Passive Air Quality Monitoring in the City of Hamilton (City Wide) - Page 3 of 5

Passive sampling techniques were used for each pollutant, providing high-quality data, comparable to Environmental Protection Agency Federal Equivalent Method Instruments for time-integrated sampling. The number of collected air pollution samples included: 370 samples for ground-level ozone (O<sub>3</sub>) and nitrogen dioxide (NO<sub>2</sub>), 356 for oxides of nitrogen (NO<sub>X</sub>) and 368 for sulphur dioxide (SO<sub>2</sub>); all samples were two weeks long. The mean concentration values were 29 parts per billion for ground-level ozone (O<sub>3</sub>), 7 parts per billion for nitrogen dioxide (NO<sub>2</sub>), 13 parts per billion for nitrogen (NO<sub>X</sub>), and 2 parts per billion for sulphur dioxide (SO<sub>2</sub>). The project also reports that benzene was not detected as it was found to not exceed the method detection limits. Although the measured two-week-long mean concentration values of the pollutants are not directly comparable to the Ontario Ambient Air Quality Criteria or the Canadian Ambient Air Quality Standards, it is useful to be aware that the values were below both the Ambient Air Quality Criteria and Canadian Ambient Air Quality Standards.

The project also indicates that the total concentration of Polycyclic Aromatic Hydrocarbons, excluding naphthalene, averaged 18 nanograms per cubic meter (ng/m³) across all sites. Polycyclic Aromatic Hydrocarbons have been mainly associated with lung and skin cancer.<sup>3</sup> While also not directly comparable to the standards, this value was above the 24-hour benzo[a]pyrene Ambient Air Quality Criteria and Canadian of 0.05 nanograms per cubic meter (ng/m<sup>4</sup>) The sites with the highest concentrations of Polycyclic Aromatic Hydrocarbons were typically located in the downtown core with total Polycyclic Aromatic Hydrocarbons concentrations averaging 30 nanograms per cubic meter (ng/m³) and those with the lowest concentrations typically found on the city's suburban areas averaged 12 nanograms per cubic meter (ng/m³). This finding is similar to another study conducted in Toronto that found benzo[a]pyrene levels in the urban area exceeded the 24-hour Ambient Air Quality Criteria 40% of the time and was typically found to be 5 times higher than that in the semi-urban area.<sup>4</sup> Furthermore, a Canada-wide study found concentrations of polycyclic aromatic hydrocarbons (PAHs) were highest near industrial emitters and lowest in the Arctic.<sup>5</sup> Hence, benzo[a]pyrene exceedances are an issue in many cities in Canada and are not unique to Hamilton. Research has shown that in addition to industrial activities, the main sources of

\_

<sup>&</sup>lt;sup>3</sup> CAREX Canada. PAHs Profile. 2024. Available from: https://www.carexcanada.ca/profile/polycyclic\_aromatic\_hydrocarbons/

<sup>&</sup>lt;sup>4</sup> Maryam Moradi, Hayley Hung, James Li, Richard Park, Čecilia Shin, Nick Alexandrou, Mohammed Asif Iqbal, Manpreet Takhar, Arthur Chan, and Jeffrey R. Brook. Environmental Science & Technology 2022 56 (5), 2959-2967. Available from: https://pubs.acs.org/doi/epdf/10.1021/acs.est.1c04299

<sup>&</sup>lt;sup>5</sup> Alexandra Tevlin, Elisabeth Galarneau, Tianchu Zhang, Hayley Hung. Polycyclic aromatic compounds (PACs) in the Canadian environment: Ambient air and deposition, Environmental Pollution, Volume 271, 2021. Available from: https://www.sciencedirect.com/science/article/pii/S0269749120369219

# SUBJECT: High-Density Passive Air Quality Monitoring in the City of Hamilton (City Wide) - Page 4 of 5

polycyclic aromatic hydrocarbons (PAHs) include forest fires, incomplete combustion of fossil fuels, and wood burning.<sup>4</sup>

The project's examination of the air pollution distribution in the City of Hamilton found that ozone concentrations were highest in the rural areas of Hamilton and more likely to be associated with higher socioeconomic status. Nitrogen dioxide, sulphur dioxide and Polycyclic Aromatic Hydrocarbons, including benzo[a]pyrene, were found to be elevated near the industrial core of the city and more likely to be associated with lower socioeconomic status. These findings are consistent with the findings from the Toronto study noted above.<sup>5</sup>

As expected, the project found that nitrogen dioxide was elevated near major roads. In addition, sulphur dioxide was found to be at the highest concentrations near the Hamilton Beach area. These study findings are consistent with data obtained from the Hamilton Airshed Modelling System<sup>6</sup>, identifying transportation and industrial sources as primary emission sources in the City of Hamilton, and with Health Canada's 2023 report that identified industry, home firewood burning, and transportation as the sources contributing to the majority of air pollution associated with premature mortality.<sup>7</sup>

Because, research studies, conducted on a global scale, have identified outdoor air pollution as hazardous to human health<sup>8</sup>, and data collected in the city has identified local, as well as, transboundary sources and contributions to air pollution in Hamilton. Hamilton Public Health Services recognizes the importance of using this information to improve Hamilton's air quality. Accordingly, Hamilton Public Health Services prioritizes continued work with the Ministry of Environment Conservation and Parks via regular communications and committee meeting such as Clean Air Hamilton to "share expertise and information related to" decreasing industrial contributions in the community.<sup>9</sup> In

https://pub-hamilton.escribemeetings.com/filestream.ashx?DocumentId=149955 https://pubhamilton.escribemeetings.com/filestream.ashx?DocumentId=149957

Health Canada. 2023. Health Impacts Of Air Pollution From Transportation, Industry And Residential Sources In Canada, Estimates of premature mortality and morbidity outcomes at nation al, provincial, territorial, and air zone levels. Available from: https://publications.gc.ca/collections/collection\_2023/sc-hc/H144-112-2022-eng.pdf

Global Burden of Diseases Risk Factor Collaborators (2019). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019, The Lancet, 396, 1223-1249, Available online at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30752-2/fulltext

Ontario. Ministry of Health and Long-Term Care. Ontario public health standards: requirements for programs, services, and accountability, 2021. Available from: https://files.ontario.ca/moh-ontario-public-health-standards-en-2021.pdf

<sup>&</sup>lt;sup>6</sup> Hamilton Board of Health. April 16, 2018. Hamilton Airshed Modelling System (HAMS). Available from:

# SUBJECT: High-Density Passive Air Quality Monitoring in the City of Hamilton (City Wide) - Page 5 of 5

addition, Hamilton Public Health Services reviews and comments on the City's Transportation Master Plan to "balance all modes of transportation [and] become a healthier city" <sup>10</sup> and brings awareness to health hazards associated with home firewood burning <sup>11</sup> along with applicable local by-laws. <sup>12</sup>

Overall, this University of Toronto project contributes to the understanding of Hamilton's airshed by adding to existing air quality information in the City along with further reinforcing the need for continuing public education and the development of strategies focusing on air pollution sources such as industrial, transportation, and home firewood burning.

Should you require further information about this Communication Update, please do not hesitate to contact Matthew Lawson, Manager, Health Hazards and Vector Borne Diseases at Ext. 5823 or matthew.lawson@hamilton.ca.

### APPENDICES AND SCHEDULES ATTACHED

Appendix "A" to Board of Health Communication Update: (2024-02-16) High Density Passive Air Quality Monitoring In The City Of Hamilton

Available from: https://www.hamilton.ca/sites/default/files/2022-08/masterplan-transportation-update-2018.pdf

<sup>&</sup>lt;sup>10</sup> City of Hamilton, 2022, Transportation Master Plan.

<sup>&</sup>lt;sup>11</sup> City of Hamilton. Climate Change and Air Quality: Air Quality of Everyday Activities. 2022. Available from: https://www.hamilton.ca/people-programs/public-health/environmental-health-hazards/climate-change-air-quality#air-quality-everyday-activities

<sup>&</sup>lt;sup>12</sup> City of Hamilton. BY-LAW NO. 02-283 To Regulate Open Air Burning. Available from: https://www.hamilton.ca/sites/default/files/2022-01/02-283.pdf

# HIGH DENSITY PASSIVE AIR QUALITY MONITORING IN THE CITY OF HAMILTON

Elysia Fuller-Thomson, MSc & Matthew Adams, Ph.D

### **Executive Summary**

A two-year study was conducted in Hamilton to evaluate the local air quality. Sampling was conducted across the entire city, with a focus on areas of concern from the public, stratified by land use and socioeconomic characteristics of the population.

We measured six air pollutants: benzene ( $C_6H_6$ ), nitrogen dioxide ( $NO_2$ ), oxides of nitrogen ( $NO_X$ ), nitric oxide ( $NO_2$ ) (available as  $NO_X - NO_2$ ), ground-level ozone ( $O_3$ ), and sulphur dioxide ( $SO_2$ ) during each season in Hamilton. We also measured polycyclic aromatic hydrocarbons (PAHs) during the summer, including benzo[a]pyrene. These pollutants were selected due to community and government concerns, as noted in past Clean Air Hamilton Reports. Passive sampling techniques were used for each pollutant, providing high-quality data comparable to EPA Federal Equivalent Method Instruments for time-integrated sampling.

Air pollution sampling sites were chosen to capture the city's geographical and population characteristics variation. For C<sub>6</sub>H<sub>6</sub>, NO<sub>2</sub>, NO<sub>X</sub>, NO, O<sub>3</sub>, and SO<sub>2</sub>, one site was first located within each ward, which was selected to represent average land use conditions (15 sample locations) and eight sites were collocated with active monitors (e.g. MECP air monitors) for quality assurance purposes. An additional 45 sampling sites were chosen based on varying socioeconomic conditions, land use conditions and areas of community concern. PAHs were sampled only once in the summer for two months at 28 locations in Hamilton and West Burlington.

Environment Hamilton organized four public sessions during the project to communicate with the public. These sessions aimed to inform the community about the study, the resulting data, and its implications for human health. The sessions covered the following topics:

- Public Session No. 1: Introduction to the project and an opportunity for public feedback.
- Public Session No. 2: An expert panel discussion on how air quality is regulated in Ontario.
- Public Session No. 3: An update on the project's progress.
- Public Session No. 4: Presentation of project results and the next steps.

The number of collected air pollution samples was high, with 370 samples obtained for O<sub>3</sub> and NO<sub>2</sub>, 356 for NO<sub>X</sub> and 368 for SO<sub>2</sub>; all samples were two weeks long. The mean concentration values were 29 ppb for O<sub>3</sub>, 7 ppb for NO<sub>2</sub>, 13 ppb for NO<sub>X</sub>, and 2 ppb for SO<sub>2</sub>. Benzene samples did not exceed method detection limits.

Ozone air pollution concentrations were highest in the rural areas of Hamilton, contrasting the patterns of other pollutants. Nitrogen dioxide, sulphur dioxide, and PAHs (including benzo[a]pyrene) were elevated near the industrial core and generally reduced in concentration as you move away from it. Sulphur dioxide demonstrated its highest concentrations along the Burlington Beach Strip. Nitrogen dioxide was additionally elevated near major roads in the city.

Comparing air pollution concentrations with measures of marginalization suggested a pattern for NO<sub>2</sub> and less so for PAHs, where only people of low marginalization risk lived in the least polluted areas. All measures of marginalization were present for higher pollution areas.

### Acknowledgements

We need to acknowledge many individuals whos contributions allowed this research to be completed. From the University of Toronto, we would like to acknowledge Jack Cheng, Jenny Siliang Cui, Amanda E. Norton, Kerstyn Lutz, Simran Persaud, Scarlett Rakowska, Priya Patel, Sophie S. Roussy, Sarah Faisal, Charity D. Reyes, Gabrielle N.R. Olmedo, and Yanchuan Shao who all contributed to the research support during the project. At Environment Canada, we would like to acknowledge Jacob Mastin, Jasmin Schuster Ph.D. and Tom Harner Ph.D.; without them, the PAH analysis would not have been possible.

We recognize the financial support for the project from Health Canada. We also recognize the Natural Sciences and Engineering Research Council of Canada and the University of Toronto Centre for Urban Environments for financially supporting the additional PAH sampling.

Lynda Lukasik and Ian Borsuk from Environment Hamilton were critical project team members who ensured community support and integration.

Lastly, the project would have never occurred without the support from Public Health – City of Hamilton, especially the contributions from Shelley Rogers, Sally Radisic Ph.D., Trevor Imhoff, and Matthew Lawson.

# Table of Contents

| Exe | cut  | ive Summary                                   |            |
|-----|------|-----------------------------------------------|------------|
| Ack | nov  | wledgements                                   | 2          |
| Tab | le o | of Contents                                   | 3          |
| 1.  | In   | troduction                                    | 5          |
| 1   | .1   | Background                                    | 5          |
| 1   | .2 ( | Objectives and Scope                          | 5          |
| 2.  | M    | lethodology                                   |            |
| 2   | .1   | Site Selection                                |            |
|     | 2.   | 1.1 Selection of Ward-Level Sites             | 8          |
|     | 2.   | 1.2 Collocation Sites                         | 9          |
|     | 2.   | 1.3 Selection of Ward-Level Sites             | 10         |
| 2   | .2   | Site Selection PAH Sampling                   | 10         |
| 2   | .3   | Equipment/Technology                          | 11         |
| 2   | .4   | Background on Emipircal and Dispersion Models | 13         |
| 2   | .5   | Land-use regression models built/used         | 14         |
|     |      | 2.5.1 a Land Use Regression Description       | 14         |
|     |      | 2.5.1 b Land Use Regression Application       | 15         |
| 2   | .6   | Environment Justice Analysis                  | 16         |
| 3.  | Re   | esults                                        | 18         |
| 3   | .1   | Descriptive Statistics.                       | 18         |
| 3   | .2   | Comparison with Active Samplers               | 22         |
| 3   | .3   | Air Pollution Maps                            | 22         |
| 3   | .4   | Land Use Regression PAHs                      | 24         |
| 3   | .5   | Environmental Justice                         | 25         |
| 4.  | Cł   | hallenges/Limitations                         | 30         |
| 5.  | Po   | otential Implications for Health              | 31         |
| 5   | .1   | Nitrogen Dioxide                              | 31         |
| 5   | .2   | Ozone                                         | 32         |
| 5   | .3   | PAHs                                          | 32         |
| 6.  | Re   | ecommendations/Next Steps                     | 33         |
| 7.  | Co   | onclusions                                    | 33         |
| 8.  | Re   | eferences                                     | 34         |
| Apr | end  | dix A                                         | 3 <i>є</i> |

# Appendix "A" to Board of Health Communication Update (2024-02-16) Page 5 of 84

| A.1 Nitrogen Dioxide Season Maps                                                                     | 36 |
|------------------------------------------------------------------------------------------------------|----|
| A.2 Ozone Seasonal Maps                                                                              | 38 |
| A.3 Sulphur Dioxide Seasonal Maps                                                                    | 40 |
| Appendix B: PAH Concentrations by Sample Location                                                    | 42 |
| Appendix C: Environment Hamilton Comments on Public Engagement                                       | 44 |
| Appendix D: Ozone Passive Sampling Concentration Data                                                | 46 |
| Appendix E: Nitrogen Dioxide Passive Sampling Concentration Data                                     | 55 |
| Appendix F: Nitrogen Oxides Passive Sampling Concentration Data                                      | 64 |
| Appendix G: Sulphur Dioxide Passive Sampling Concentration Data                                      | 73 |
| Appendix H: PAH Sample Site IDs                                                                      | 82 |
| Appendix I: O <sub>3</sub> , NO <sub>2</sub> , NO <sub>X</sub> , and SO <sub>2</sub> Sample Site IDs | 83 |

### 1. Introduction

### 1.1 Background

Hamilton is a mid-sized city in southern Ontario with a population of over half a million people. Historically, its economy has been industrial since it was founded, with a strong presence in the steel industry. Hamilton's land use is diverse, with an industrial core, high-density urban core, and significant suburban area (often separated by the Niagara Escarpment) that transitions to low-density residential and rural properties as one moves away from Lake Ontario. In addition to the varying land uses, Hamilton has many major transportation networks. Multiple freeways pass through the city, including an international airport and an active waterfront port. These mixed land use and transportation networks cause spatially varying air pollution concentrations in Hamilton at a relatively small scale. These spatial variations have been observed with mobile air pollution sampling, but those data are only brief snapshots in time, and longer-term observation is required to understand air pollution patterns.

The globalization of industrial manufacturing in the late twentieth century significantly impacted Hamilton's economy and the prosperity of residents and businesses, particularly concerning long-term unemployment. Several neighbourhoods in the downtown core are near industrial land uses, and these neighbourhoods have, on average, lower incomes, educational levels, and poorer health outcomes. These conditions could result in an inequitable distribution of air pollution exposure contrasted with socioeconomic indicators.

The City of Hamilton has been active in understanding the impact of air pollution and working towards its reduction through Clean Air Hamilton. The City of Hamilton operates two air pointers periodically relocated throughout the City to monitor air quality levels in neighbourhoods. These devices produce excellent technical results but have logistical siting limitations due to their size and their need for an electrical outlet. In practice, this means that downtown neighbourhoods with less open and green space have no or few practical siting options for those air quality monitors. For several years, Hamilton has been looking into smaller, more portable air quality monitoring options to understand better air quality issues in those neighbourhoods closest to industrial and commercial land uses.

### 1.2 Objectives and Scope

The objective of this environmental justice air quality study in Hamilton, Ontario, is to comprehensively assess and develop a knowledge base to address disparities in air quality within the region, focused on ensuring equitable distribution of environmental benefits and burdens, comparing pollution to measures of marginalization.

We are using the Ontario Marginalization Index to calculate the level of community marginalization, where marginalization entails excluding individuals and groups, hindering their full engagement in society. Those marginalized may encounter obstacles in obtaining meaningful employment, suitable housing, education, recreational opportunities, clean water, healthcare services, and other essential social determinants of health. The repercussions of marginalization are profound, affecting both community and individual health (Public Health Ontario, 2021). Air pollution health risk communication tools, such as Canada's Air Quality Health Index (AQHI), use

the term "at-risk" for individuals more likely to experience adverse health outcomes from elevated air pollution concentrations. At-risk populations include seniors, pregnant people, infants and young children, people who work outdoors, people involved in strenuous outdoor exercise, and people with an existing illness or chronic health conditions, such as cancer, diabetes, mental illness and lung or heart conditions (Environment and Climate Change Canada, 2016).

Marginalization measures community-level risk factors, and at-risk populations are individual-level characteristics, both potentially leading to greater adverse health outcomes.

This study aims to achieve the following specific objectives, incorporating site selection based on air pollution characteristics and passive air sampling:

- Targeted Site Selection: Identify and select study sites within Hamilton based on air pollution-specific characteristics, including areas with known or suspected sources of pollution and areas where marginalized communities are disproportionately affected. This targeted approach ensures that the study addresses critical areas with the greatest need for environmental justice improvements.
- 2. Passive Air Sampling: Implement passive air sampling techniques to collect data on air pollutant concentrations at various study sites, allowing for a comprehensive and cost-effective assessment of air quality disparities over time.
- 3. Environmental Equity Analysis: Examine contemporary factors contributing to air quality disparities, including land use, industrial zoning, transportation infrastructure, and policy decisions, emphasizing environmental justice concerns.
- 4. Community Engagement: Engage with local communities, environmental justice organizations, and stakeholders to ensure that their perspectives, concerns, and experiences are integrated into the study and that the findings are communicated effectively to affected populations.
- 5. Data Transparency and Accessibility: Utilize a user-friendly platform for sharing air quality data, findings, and recommendations with the public to promote transparency, public awareness, and community empowerment.
- 6. Environmental Justice Framework: Apply an environmental justice framework throughout the study, emphasizing fairness, equity, and meaningful participation in decision-making processes related to air quality management.
- 7. Collaboration: Collaborate with local governmental agencies, research institutions, environmental organizations, and other stakeholders to leverage expertise and resources for a comprehensive, community-driven approach to air quality improvement.

By incorporating targeted site selection and passive air sampling techniques into the study design, these objectives aim to provide a more precise and data-driven assessment of air quality disparities in Hamilton, thereby contributing to more effective environmental justice initiatives and equitable access to clean air.

### 2. Methodology

### 2.1 Site Selection

The study area covered all fifteen Wards of Hamilton, Ontario, Canada. Air monitoring locations were carefully chosen with a deliberate strategy, ensuring a comprehensive assessment of air quality in Hamilton. The goal was to strike a balance between multiple factors, ensuring that the data collected would be representative and informative for our diverse community.

To achieve this balance, we focused on several key considerations. First and foremost, we wanted to cover all 15 wards of Hamilton, acknowledging that air quality concerns can vary from one ward to another. This approach allowed us to address residents' unique environmental challenges in different parts of the city.

In addition to ward distribution, we were keen to incorporate feedback from the general public, which was gathered during our initial public meeting. Areas that were identified as concerning by the community were given special attention. We believe it is essential to respond to the concerns of our residents and prioritize their well-being.

Furthermore, we strategically placed monitoring sites that captured a variation of expected concentration and hot spots. These locations are particularly critical, as they often exhibit elevated pollutant levels due to various factors, such as industrial activities or heavy traffic. By monitoring these areas, we can gain insights into potential sources of pollution and assess their impact on air quality.

To ensure a comprehensive understanding of the situation, we also considered the socioeconomic characteristics of the population. It has been documented previously that marginalized communities may bear a disproportionate burden of air pollution. Therefore, our monitoring locations were selected to encompass a range of socioeconomic backgrounds, allowing us to assess any air quality disparities.

Additionally, we carried out collocation with active air samplers at some monitoring sites. This step was essential to evaluate the performance of passive samplers and ensure the accuracy of the data collected. We can evaluate data quality by comparing the results from both types of samplers.

In total, 68 pollutant monitoring sites were strategically selected across Hamilton, as shown in Figure 2.1. These locations represent a comprehensive approach to air quality assessment, and we are committed to providing the community with a clear and detailed understanding of the air they breathe. This information will serve as a valuable resource for informed decision-making and improving our city's air quality.

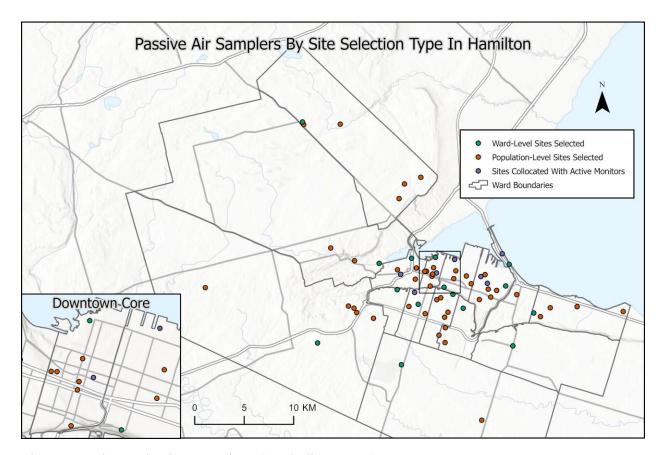



Figure 2.1 Air Monitoring Locations (Excluding PAHs)

### 2.1.1 Selection of Ward-Level Sites

The selection of the 15 ward sites for air monitoring was a thoughtful process to ensure that each ward in Hamilton was accurately represented in our study. To achieve this, we employed Geographic Information Systems (GIS) technology to calculate land use proportions within a 150-meter radius around each streetlight pole in Hamilton. This approach allowed us to make informed decisions when selecting the most suitable monitoring site for each ward.

First and foremost, we determined the land use proportions within the specified buffer around each streetlight pole. This involved assessing the types of land use in the vicinity of the pole, including residential, commercial, industrial, and green spaces, among others. Using GIS, we could precisely quantify the extent of each land use category within the given radius.

The final selection of monitoring sites was based on the location that best represented each ward's mean land use value. In other words, we sought sites where various land use proportions closely mirrored the average distribution within their respective wards. This approach aimed to provide a balanced and accurate reflection of the ward's unique characteristics.

By selecting representative sites for each ward in this manner, we ensured that our air monitoring efforts would best be able to mimic the specific environmental conditions and challenges faced by the residents in the ward. This approach guarantees that the data collected will reflect the diversity

in land use patterns across Hamilton and help us better understand the impact of various land uses on air quality within our city.

### 2.1.2 Collocation Sites

We selected seven specific locations, known as "collocation sites" to assess the performance of the Ogawa passive air samplers when compared to continuous air monitoring systems. These monitoring systems were operated by the Ministry of the Environment, Conservation, and Parks (MECP), the HAMN Air Monitoring Network (HAMN), and the City of Hamilton. It is important to note that the City of Hamilton's Air Pointers were moved in April 2022, where one was taken down, and the other was moved to another site. The collocation sites are presented in Figure 2.2.

The MECP had monitoring stations in Hamilton Downtown, Hamilton West, and Hamilton Mountain. Each location was assigned an identification number: 29000, 29118, and 29214, respectively.

The HAMN air monitoring network also had two specific monitoring stations: one at Niagara St. and Land St. with ID 29567 and another at Beach Blvd. with ID 29102.

This effort aimed to compare the data collected by the Ogawa passive sampler with the data obtained from these established monitoring systems, which allowed us to evaluate the performance and accuracy of the passive sampler with continuous monitoring, providing valuable insights into air quality at these sites.

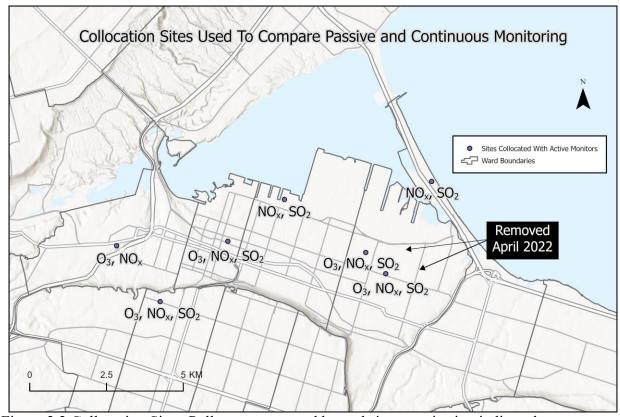



Figure 2.2 Collocation Sites. Pollutants measured by real-time monitroing indicated.

### 2.1.3 Selection of Ward-Level Sites

The selection of the remaining 45 monitoring sites was a complex and data-driven process aimed at capturing the full spectrum of socioeconomic characteristics, relevant land uses, and areas of community interest throughout the City of Hamilton. Our goal was to create a set of sites that would be representative of the entire population and provide a comprehensive view of air quality in the city.

To achieve this, we undertook a multifaceted approach. First, we considered multiple variables for each potential monitoring location: Hamilton's street poles. These variables included significant land use classes derived from past land use regression models in Hamilton, which are land use characteristics associated with varying air pollution concentrations. Additionally, we considered the distance of each potential site from highways, bodies of water, industrial areas, and open land. These factors are known to influence air quality and were thus essential in our decision-making process.

Furthermore, each streetlight pole was linked to its respective dissemination area's population density and four marginalization indices provided by Public Health Ontario. These indices encompassed residential instability, material deprivation, dependency, and ethnic concentration, helping us assess socioeconomic conditions and disparities within the city.

To select the final monitoring sites, we applied the K-means clustering algorithm. This approach grouped all potential streetlight sites into 45 clusters, optimizing the intra-cluster similarity of various variables, including land use and marginalization indices. This process aimed to ensure that the chosen sites would capture the diversity of predictor variables and socioeconomic characteristics across Hamilton.

We looked at the site that was most representative of each cluster (group of similar locations) as a potential choice for where we would set up our monitoring station. To account for areas of community concern, we calculated the distance for points of concern to the potential air monitoring locations. This rigorous process was repeated 5,000 times, and the group of sites with the lowest total distance to the community areas of concern was identified and selected. This method allowed us to choose monitoring sites that would provide the most comprehensive and representative data, taking into account socioeconomic disparities, land use patterns, and community-specific concerns, ensuring that our air quality assessment is thorough and equitable for all residents of Hamilton.

### 2.2 Site Selection PAH Sampling

Based on three criteria, PAH sampling included 28 sites manually located across Hamilton and western Burlington. Firstly, we ensured that at least one site was placed in each ward of Hamilton. Secondly, we spread the sites across the region to capture the full range of variations in PAC concentrations throughout the city. Lastly, the sites were positioned in a radial pattern extending from the industrial core (Figure 2.3). Additionally, we considered specific areas of interest, as indicated by the National Pollutant Release Inventory. This included prioritizing sites upwind and

downwind of the airport, at highway intersections, and near locations known to emit PAHs based on the Canadian National Pollutant Release Inventory (Canada, 2017).

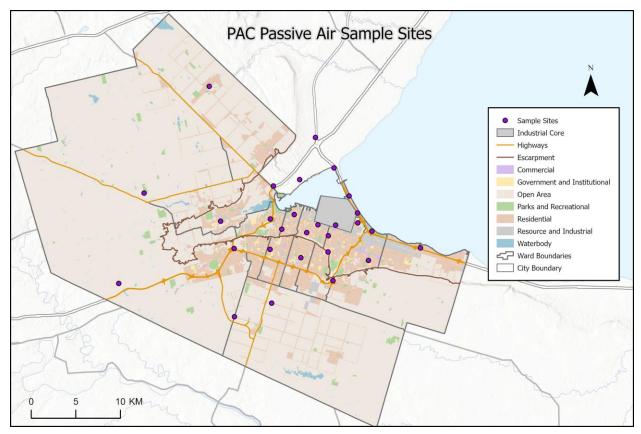



Figure 2.3 PAH passive air sample sites in Hamilton and Western Burlington, Ontario, Canada.

### 2.3 Equipment/Technology

Passive air pollution monitoring was used in this study. Passive air pollution monitoring is a method of assessing air quality without an air pump or using energy. It involves using specialized devices called "passive samplers" placed in the environment to collect data about air pollutants. These samplers do not require power or active mechanisms to function; instead, they rely on the natural flow of air to draw in particles or gases for analysis.

The passive samplers act as silent observers, quietly and continuously collecting air samples. These samples are later analyzed to determine the presence and concentration of various pollutants, such as nitrogen dioxide or sulphur dioxide.

Passive air monitoring is valuable because it offers a cost-effective and long-term way to gather air quality data. It complements active air monitoring methods, which involve continuous monitoring with powered equipment, by providing additional insights into pollutant levels over time. Also, it has a low infrastructure requirement, allowing sampling in dense urban areas. This study used three passive samper systems: Ogawa, SKC Ultra, and Tisch Environmental 200-PAS samplers.

Ogawa passive samplers measured NO<sub>2</sub>, NO<sub>x</sub>, NO, O<sub>3</sub>, and SO<sub>2</sub>. They are diffusion samplers that use a coated filter (pollutant-specific). All detection limits partially depend on sampling length (more extended sampling periods allow for a greater uptake). Ogawa sampling periods are typically one or two weeks. Although saturation can occur with passive samplers, it is not a concern with any expected concentrations in urban ambient air.

Nitrogen dioxide filters are coated in triethanolamine, and NO<sub>2</sub> is absorbed as the nitrite ion (NO<sub>2</sub><sup>-</sup>), quantified by ion chromatography. Nitrogen oxides filters are coated in triethanolamine with the addition of PTIO (2-phenyl-4, 4, 5, 5,-tetramethylimidazoline-1-oxyl 3-oxide), and NO<sub>2</sub> + NO (oxidized to NO<sub>2</sub> - PTIO) are absorbed in the filter as the nitrite ion (NO<sub>2</sub><sup>-</sup>), which was quantified by ion chromatography. Nitric oxide is calculated as the difference between the NO<sub>2</sub> and the NO<sub>2</sub> concentrations measured at each location. Ozone filters are coated with nitrite ions, oxidized in the presence of O<sub>3</sub> to form the nitrate ion on the filter (NO<sub>3</sub><sup>-</sup>), and quantified with ion chromatography. Sulphur dioxide filters are coated in triethanolamine, and SO<sub>2</sub> is absorbed as the sulphate ion (SO<sub>4</sub><sup>2</sup>-) and quantified with ion chromatography.

The Ogawa passive samplers followed specific Ogawa protocols for analysis (Harvard School of Public Health, 2019; Ogawa & Co., USA, 2006). To ensure data reliability, thorough quality assurance and quality control steps were taken, including collecting blank samples in the field and the laboratory.

To measure the concentrations of the substances we were interested in, we employed a Dionex Aquion Ion Chromatography System and then applied a temperature, humidity and time adjustment to convert concentrations of the filter to concentrations in air. As part of our quality assurance efforts, we compared the data from sites where passive samplers were placed with the average measurements recorded by active monitoring stations from installation to removal.

We subtracted the NO<sub>2</sub> from the NO<sub>X</sub> values to calculate the NO levels. These procedures were essential in maintaining the accuracy and trustworthiness of the data obtained through the Ogawa passive samplers.

SKC ULTRA Passive Samplers are diffusion samplers that provide low ppb to ppt detection of VOCs. Charcoal was used as the sorbent to absorb benzene, followed by solvent extraction and quantification with GC-FID (Gas Chromatography with Flame-Ionization Detection. Our samples from the SKC samplers did not demonstrate any peaks above the detection limits in our study, which suggests no extreme values occurred, but it did not allow for further analysis.

Polycyclic aromatic hydrocarbons (PAHs) were collected using Tisch Environmental 200-PAS Outdoor Passive Air Sampler stainless steel double-domed samplers. These samplers are the same as those used in the Global Atmospheric Passive Sampling network and can capture gaseous and particle-bound PAHs (Pozo et al., 2006). Before sampling, pre-cleaned polyurethane foam disks were inserted into the air samples after a standardized cleaning procedure described by Harner et al. (2013). In addition to the primary samples, field blanks were placed at the study site, and duplicate samples were set up at three regional locations.

Harner et al. (2013) outline how the samples were processed. In simpler terms, surrogates were added to the samples, and then the entire sample was subjected to an accelerated solvent extraction using petroleum ether and acetone. This process included fractionation with a silica column for purification, followed by concentration under a stream of nitrogen gas. The samples were then enhanced with deuterated standards and analyzed using gas chromatography-mass spectrometry (GC-MS).

An Agilent 6890 electron impact GC-MS connected to an Agilent 5975 Mass Selective Detector was used to analyze PAHs. The specific PAHs that were measured included six low molecular weight PAHs: acenaphthylene, acenaphthene, phenanthrene, fluorene, anthracene, and retene; 12 high molecular weight PAHs fluoranthene, pyrene, benzo[a]anthracene, chrysene, perylene, benzo[e]pyrene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d]pyrene; and one other polycyclic aromatic compound (PAC): dibenzothiophene.

PAHs and PACs are related but slightly different terms. PAHs are a group of organic compounds comprising multiple carbon atoms arranged in a ring-like structure with alternating carbon and hydrogen atoms. They are often formed during the incomplete combustion of organic materials like wood, coal, or gasoline. PAHs can also be found in things like cigarette smoke and grilled or charred food. Some PAHs are known to harm human health and the environment and are a concern in air quality and pollution studies. PACs is a broader term that includes PAHs and other similar compounds with a similar ring-like structure with alternating carbon and hydrogen atoms. PACs can include PAHs, as well as other related chemicals. Some of these compounds may have properties and effects different from PAHs and can also be found in various environmental sources.

In summary, while PAHs are a specific subset of PACs, PACs encompass a wider range of compounds with similar structures. PAHs and PACs are interested in environmental and health research due to their potential impacts, especially in the context of air and environmental pollution. For simplicity, we will refer to the collection of compounds as PAHs.

The multiple PAH species vary in their toxicity. We combined the PAHs using relative potency factors from Health Canada (2021), which allows for various pollutant concentrations to be combined with the new sum of pollution based on the relative toxicity of benzo[a]pyrene (the most toxic) to produce a single risk-based concentration, called benzo[a]pyrene equivalency (BaP-Eq). The factors included benzo[a]pyrene (RF = 1), benzo[a]anthracene (RF = 0.1), benzo[b]fluoranthene (RF = 0.1), benzo[g,h,i]perylene (RF = 0.01), benzo[k]fluoranthene (RF = 0.1), chrysene (RF = 0.01), dibenzo[a,h]anthracene (RF = 1), indeno[1,2,3-cd]pyrene (RF = 0.1), fluoranthene (RF = 0.001), and phenanthrene (RF = 0.001).

### 2.4 Background on Emipircal and Dispersion Models

Air pollution modelling can be classified into dispersion and empirical models. Dispersion models use a physics-based approach. These models simulate the physical processes of how pollutants disperse and interact with the atmosphere. They consider factors like wind speed, atmospheric stability, and the specific characteristics of emission sources. Dispersion models are particularly

useful for understanding how pollutants spread in the atmosphere and how they impact air quality in different locations.

For instance, a dispersion model can help predict how a factory's smokestack emissions will disperse and affect air quality downwind. Dispersion models are often used for regulatory purposes and scenarios, such as assessing compliance with air quality standards. They can be more resource-intensive to develop and use, requiring extensive input data and expertise in atmospheric science.

Dispersion models encounter several limitations when applied in urban environments. Urban areas are characterized by complex terrain, tall buildings and intricate topography that can disrupt airflow and dispersion patterns, making it challenging for models to account for these complexities accurately. Additionally, cities often have numerous localized emission sources, such as vehicular traffic, industrial facilities, and heating systems, which exhibit dynamic emissions that vary by time and location, posing difficulties for precise modelling. Tall buildings can influence airflow and create microscale variations in air quality, while street canyons in urban layouts can trap and accumulate pollutants, phenomena that dispersion models may not adequately represent. Obtaining high-resolution meteorological data, essential for urban dispersion modelling, can be costly and limited in availability. Furthermore, chemical reactions among pollutants in urban environments require detailed data on chemical properties and reaction rates to be accurately represented. Finally, dispersion models can only incorporate known emission sources into the predictions.

On the other hand, empirical air pollution models are based on observed data and statistical relationships. These models use observed air quality data and associated variables to predict air pollution levels. The process typically involves collecting data from various monitoring stations over time and then using statistical methods to find patterns and correlations. Based on past observations, the resulting model can predict air quality at a specific location.

For example, an empirical model might use historical data on traffic density, industrial emissions, and weather conditions to predict daily levels of a particular pollutant in a city. These models are often simpler to develop and use when compared to dispersion models but may have limitations, especially when dealing with complex or changing environmental conditions.

### 2.5 Land-use regression models built/used

### 2.5.1 a Land Use Regression Description

In this study, we have employed land use regression air pollution modelling to estimate pollution concentrations at unobserved areas, an empirical modelling approach that will model air pollution from all sources as observed in air pollution measurements.

Land use regression modelling is a complex yet powerful tool used to explore and anticipate how various types of land use within an area can impact air quality. It is similar to creating a detailed map that allows us to understand how the different land uses in a city, such as residential neighbourhoods, industrial zones, commercial areas, parks, or highways, affect the air we breathe. Imagine you are in a city with diverse areas—some with homes, some with factories, and others with bustling businesses. Each area may have its unique air quality, influenced by the activities and structures there. Some areas enjoy cleaner air, while others experience higher pollution levels.

To create a land use regression model, you gather data from air quality monitoring stations positioned in different parts of the city. You also collect information about each area, such as the traffic volume on the roads, the presence of nearby industries, and the type of land use, whether residential, recreational, or commercial.

Then, using mathematical and statistical techniques, we build a model that can predict air quality based on these area-specific characteristics for a given city. The model helps us understand the relationships between land use and air quality. For example, it might show that areas with more factories and highways have lower air quality than places with more parks and houses. This information is crucial for urban planners and policymakers, as it guides decisions related to city development, zoning, and pollution control measures. It is a valuable tool in ensuring that we can live in healthier and more sustainable cities.

### 2.5.1 b Land Use Regression Application

After quantifying the concentrations at sample sites, land use regression (LUR) models were employed to predict pollution concentrations for unmonitored locations throughout Hamilton. The LUR approach utilized predictor variables and buffer distances as outlined in the European Study of Cohorts for Air Pollution Effects (Beelen et al., 2013). Buffer distances adhered to established literature precedents (Maddix and Adams, 2020). The land use characteristics applied in this study are presented in Table 2.1.

Land use regression models were developed for O<sub>3</sub>, NO<sub>2</sub> and PAH carcinogenic toxicity. We did not model NO or NO<sub>X</sub> as the NO<sub>2</sub> component is associated with this group's health effects. Sulphur dioxide had too many values below detection limits for confident modelling across space. A specific LUR model was developed for each pollutant, showing acceptable agreement with collocated monitors and measurable spatial variation. The average pollutant concentration was the dependent variable, and numerous potential predictor variables were considered. Each predictor variable underwent initial univariate regression analysis, and the variable with the highest adjusted R<sup>2</sup>, accompanied by a significant slope, was included as the starting model.

Subsequently, the model was refined by stepwise addition of variables ranked by R<sup>2</sup>. Variables were retained in the model if their inclusion increased the adjusted R<sup>2</sup> by 0.01, and the variance inflation factor was less than 4. This iterative process continued until meeting the specified criteria was no longer possible. Variables with a p-value greater than 0.05 were excluded from the final model.

To validate the model, several diagnostics, including Variation Inflation Factors and Moran's I, were applied to ensure model assumptions were met. These checks included confirming limited multicollinearity between predictors (Variation Inflation Factor < 4), identifying and addressing outliers, and verifying that spatial residuals followed a normal distribution. If a Variation Inflation Factor exceeded four, the most collinear variable was removed, and its effect was observed (Beelen et al., 2013). Model performance was assessed with leave-one-out cross-validation (LOO-CV).

Furthermore, all models were assessed for autocorrelation using Moran's I, following the approach outlined by Maddix and Adams (2020).

Table 2.1: Predictor Variables Used in Land Use Regression Modelling

| Predictor Variable                                   | Unit           | Buffer Used                             |  |  |
|------------------------------------------------------|----------------|-----------------------------------------|--|--|
| Highway length within buffer                         | m              | Yes (50, 100, 200, 400, 800 and 1600 m) |  |  |
| Major road length within buffer                      | m              |                                         |  |  |
| Local road length within buffer                      | m              |                                         |  |  |
| Railway length within buffer                         | m              |                                         |  |  |
| Park/recreation land use area within buffer          | m <sup>2</sup> |                                         |  |  |
| Open land use area within buffer                     | m <sup>2</sup> |                                         |  |  |
| Industrial/resource land use area within buffer      | m <sup>2</sup> |                                         |  |  |
| Commercial land use area within buffer               | m <sup>2</sup> |                                         |  |  |
| Government/institutional land use area within buffer | m <sup>2</sup> |                                         |  |  |
| Residential land use area within buffer              | m <sup>2</sup> |                                         |  |  |
| Waterbody land use area within buffer                | m <sup>2</sup> |                                         |  |  |
| Population density                                   | N (number)     |                                         |  |  |
| Latitude                                             | m N            |                                         |  |  |
| Longitude                                            | m W            |                                         |  |  |
| Distance to nearest major roads                      | m              |                                         |  |  |
| Distance to nearest highways                         | m              |                                         |  |  |
| Distance to Lake Ontario                             | m              |                                         |  |  |
| Distance to chimney                                  | m              | No                                      |  |  |
| Distance to the airport                              | m              | 110                                     |  |  |
| Distance to industrial sector core                   | m              |                                         |  |  |
| Elevation                                            | m              |                                         |  |  |
| Slope                                                | Degrees        |                                         |  |  |
| NDVI                                                 | N/A            |                                         |  |  |
| Distance to NO <sub>2</sub> reporting industries     | m              |                                         |  |  |

The land use regression models were then applied to create air pollution maps that included air pollution estimates at unobserved locations. The map was based on a 100 x 100 meter grid. Land use characteristics were calculated for each grid cell, and the land use regression model was applied to estimate the air pollution concentration. All models were based on 2022 data.

### 2.6 Environment Justice Analysis

Environmental justice is the fair and equitable treatment of all individuals and communities, irrespective of their race, ethnicity, socioeconomic status, or background, in the distribution of environmental benefits and burdens. It seeks to ensure everyone has the same rights to a clean and healthy environment, free from discrimination or disproportionate exposure to environmental hazards and pollution. Environmental justice addresses the historical and ongoing disparities in the distribution of environmental risks and strives to rectify these inequities by advocating for equitable policies, public participation in decision-making, and access to environmental information and legal remedies for affected communities.

The Ontario Marginalization Index is a tool used to assess and quantify the social and economic disparities experienced by different communities or regions within the province. It provides a way to measure the degree of marginalization or social disadvantage that specific populations face. The

Ontario Marginalization Index includes various indicators or factors contributing to social and economic disparities. These indicators include income levels, educational attainment, employment opportunities, housing conditions, access to healthcare, and other socioeconomic variables. By analyzing and combining these indicators, the index creates a comprehensive picture of the relative disadvantage or marginalization experienced by different communities.

This index is commonly used in research, policy development, and public health studies to understand better and address social inequalities and disparities within Ontario. It helps policymakers and researchers identify areas or populations requiring targeted interventions and support to reduce marginalization and promote equity and social justice.

The Ontario Marginalization Index was selected for this research because it combines multiple census attributes into four dimensions that limit the correlation between the four dimensions, which are presented in Table 2.2.

Table 2.2: Ontario's Marginalization Indices. Modified from Matheson, Moloney and van Ingen (2023).

| Dimensions                     | Census Characteristics that Contribute to Index                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Household<br>And<br>Dwellings  | <ul> <li>Proportion of the population living alone</li> <li>Proportion of the population not youth</li> <li>Average persons per dwelling (reverse coded)</li> <li>Proportion of housing that are apartment buildings.</li> <li>Proportion unmarried</li> <li>Proportion of housing not owned</li> </ul>                                                                                                         |
| Material<br>Resources          | <ul> <li>Proportion who have moved in the last 5 years</li> <li>Proportion of adults without a high school diploma</li> <li>Proportion of single parents</li> <li>Proportion of relative contribution of government transfers to income of 15+</li> <li>Proportion of 15+ unemployed</li> <li>Proportion of the population that is low-income</li> <li>Proportion of households needing major repair</li> </ul> |
| Age and<br>Labour<br>Force     | <ul> <li>Proportion of the population 65+</li> <li>Dependency ratio (proportion of children and seniors to working-age adults)</li> <li>Proportion 15+ not working</li> </ul>                                                                                                                                                                                                                                   |
| Racialized<br>and<br>Newcomers | <ul> <li>Proportion of the population that is a visible minority</li> <li>Proportion of the population that is a recent immigrant</li> </ul>                                                                                                                                                                                                                                                                    |

To evaluate relationships between environmental justice, the land use regression models were applied to estimate air pollution concentrations within dissemination areas.

We analyzed the potential relationship between marginalization indices, social and economic disparities indicators, and the pollution maps we created for Hamilton: NO<sub>2</sub>, O<sub>3</sub>, and benzo[a]pyrene equivalency.

We used two statistical models for each pollutant. The first was a stepwise ordinary linear model, a statistical technique that helps us investigate the correlation between marginalization and pollution exposure. In this model, we included variables significantly associated with pollution exposure (with a p-value less than 0.05). To ensure the reliability of our analysis, we also checked for variance inflation factors, which indicate whether there is too much correlation among the variables, and examined spatial autocorrelation using Moran's I. Spatial autocorrelation tells us if there is a pattern in how the data is distributed across space. If we detected spatial autocorrelation, it suggested that our model was not accounting for the fact that nearby areas might be more similar in terms of pollution exposure, which could lead to biased estimates.

In such cases, we applied a spatial lag regression model, a statistical method that addresses spatial dependencies, to explore the connection between marginalization and benzo[a]pyrene equivalency.

To tackle spatial autocorrelation, the spatial lag regression model introduced a spatially lagged dependent variable into the model. This variable was created by multiplying a spatial weight matrix (using the queen contiguity criterion) with a spatial autoregressive parameter. The remainder of the model operated like an ordinary least square regression, a common statistical approach. In this framework, y represented the pollution exposure, x was a measure of marginalization,  $\beta$  was a regression coefficient that explained how much one variable affected another, and  $\varepsilon$  denoted the regression residuals, which were the differences between the observed values and the values predicted by the model.

We again examined Moran's I to check for spatial autocorrelation. The model we chose for interpretation was the one that showed no spatial autocorrelation in the residuals, ensuring a more accurate analysis of the data. All analysis was based on 2022 data.

### 3. Results

### 3.1 Descriptive Statistics

The number of samples was high, with 370 samples obtained for O<sub>3</sub> and NO<sub>2</sub>, 356 for NO<sub>X</sub> and 368 for SO<sub>2</sub>. Two samples of O<sub>3</sub> were below detection limits, and 139 samples of SO<sub>2</sub> were below detection limits. The mean concentration values (excluding duplicates) were 29 ppb for O<sub>3</sub>, 7 ppb for NO<sub>2</sub>, 13 ppb for NO<sub>X</sub>, and 2 ppb for SO<sub>2</sub>. Paired duplicate samples, where two samples were collected at the same location, demonstrated root mean square error values of 1.6 of O<sub>3</sub>, 1.7 ppb for NO<sub>2</sub>, 1.5 ppb for NO<sub>X</sub>, and 0.8 ppb for SO<sub>2</sub>.

Long-term mean concentrations are presented in Figures 3.1 (O<sub>3</sub>), 3.2 (NO<sub>2</sub>), and 3.3 (SO<sub>2</sub>). Appendix A presents seasonal mean concentration maps for O<sub>3</sub>, NO<sub>2</sub> and SO<sub>2</sub>.

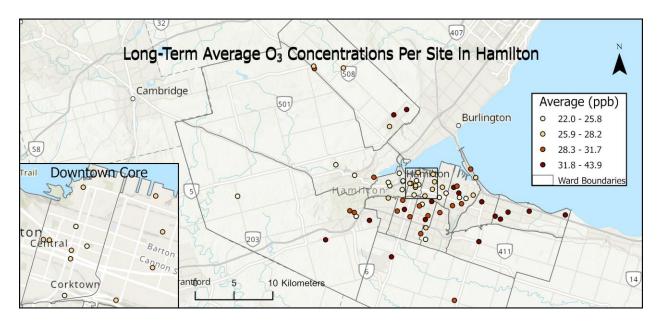



Figure 3.1 Long-term mean ozone concentrations.

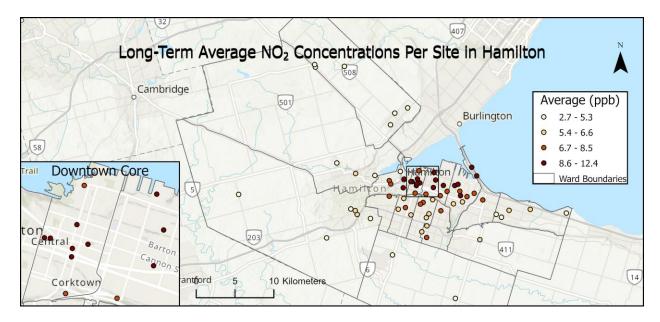



Figure 3.2: Long-term mean nitrogen dioxide concentrations.



Figure 3.3: Long-term sulphur dioxide concentrations.

PAH analysis included two samples that could not be quantified, resulting in 27 sites, including two duplicate sites. One duplicate site sample was lost, and the site was in Ward 7. The average difference between the duplicate samples was 0.1 ng/m³, with a median difference of 0.07 ng/m³. Specifically for benzo[a]pyrene, the average difference between duplicates was 0.03 ng/m³. As a result, we report the duplicate sites as averaged values.

The total concentration of U.S. EPA priority pollutants PAHs, excluding naphthalene, averaged 18 ng/m³ across all sites. The sites with the highest concentrations of PAHs were typically located in the downtown core (refer to Figure 3.4). On the other hand, the lowest concentrations were often found on the city's outskirts and in Burlington.

The composition of PAHs included 61% low-weight PAHs and 39% heavy-weight PAHs. Among all the sites, phenanthrene was the most abundant PAC, ranging from 22% to 55% of the summed concentrations. Notably, downtown Hamilton, encompassing Wards 1-5, exhibited higher total PAH concentrations, averaging 30 ng/m³, whereas all other sites averaged 12 ng/m³ for the sum of priority EPA pollutants. For a more detailed breakdown of concentrations, please refer to Appendix B.

In Appendix C, you will find the comments from Environment Hamilton regarding the pubic engagement sessions.

Appendix D contains the  $O_3$  air pollution sensor data; Appendix E ( $NO_2$ ), Appendix F ( $NO_X$ ), and Appendix G ( $SO_2$ ). A map of sample site IDs is included in Appendix H for PAH samples, and in Appendix I, the sample site IDs for  $O_3$ ,  $NO_2$ ,  $NO_X$  and  $SO_2$ .

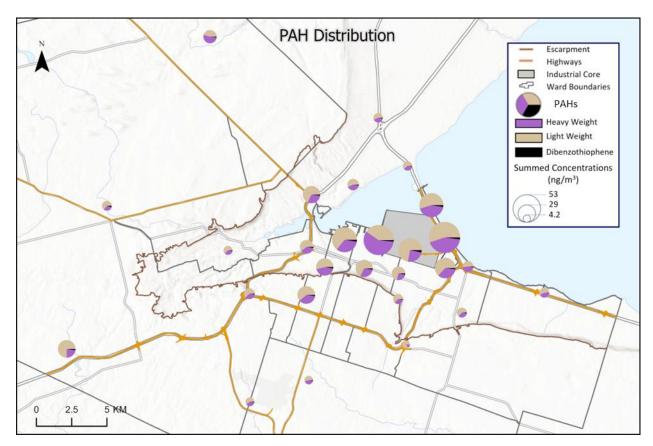



Figure 3.4 PAH distribution across the city of Hamilton. Low-weight versus heavy-weight PAH composition does not change drastically across the city. Peak concentrations are located within the downtown core.

Notably, the three sites located downwind of the industrial area ranked among the top five values, with concentrations of 0.33 ng/m³, 0.30 ng/m³, and 0.18 ng/m³.

For regional comparison, during the same season period (July to September) in 2021, integrated concentrations in Toronto, a neighbouring city, averaged 0.04 ng/m³ at the National Air Pollution Surveillance site and never exceeded 0.05 ng/m³. However, in our study area, 85% of the sites measured concentrations that exceeded the Ontario annual guidelines of 0.01 ng/m³, with 22% exceeding this guideline by ten times. This guideline was established to limit cancer risk to below one in a million excess cases. Benzo[a]pyrene concentrations are presented in Figure 3.5.

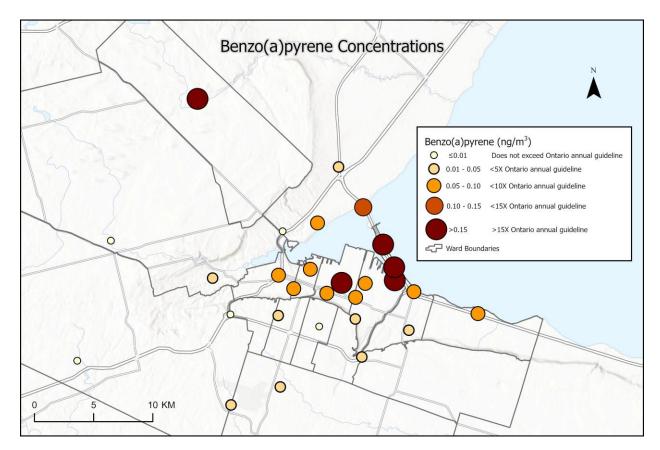



Figure 3.5: Benzo[a]pyrene concentrations (ng/m³) across Hamilton and western Burlington, Canada. In Canada's regulatory framework, Benzo[a]pyrene is a surrogate for all PAHs.

### 3.2 Comparison with Active Samplers

We evaluated the performance of the Ogawa passive samplers by comparing their concentrations with the concentrations from the active air monitors (measurements in real-time) in Hamilton. Taking the average difference in passive sampler concentration minus the active sampler concentration, the average difference was -1 ppb for O<sub>3</sub> (active samplers underestimated by 1 ppb), +1 ppb for NO<sub>2</sub>, and <0.1 ppb for SO<sub>2</sub>. Overall, our samplers had very slight differences of 1 ppb or less, which is a strong agreement for a passive sampling approach.

### 3.3 Air Pollution Maps

The land use regression models' predictors, coefficients, and performance for both O<sub>3</sub> and NO<sub>2</sub> are outlined in Table 3.1. The NO<sub>2</sub> model performed much better at predicting concentrations than the land use regression for O<sub>3</sub>. The maps of modelled pollution are presented in Figure 3.6 (NO<sub>2</sub>) and Figure 3.7 (O<sub>3</sub>). No autocorrelation was present in either model.

Table 3.1: The land use regression models of passively monitored pollutants in Hamilton, ON

| Pollutant            | Model of adjusted annual concentration (ppb) Adjusted |                | LOOCV          |             |       |
|----------------------|-------------------------------------------------------|----------------|----------------|-------------|-------|
|                      |                                                       | $\mathbb{R}^2$ | Mean           | <b>RMSE</b> | MAE   |
|                      |                                                       |                | R <sup>2</sup> | (ppb)       | (ppb) |
| $NO_2$               | 7.142                                                 | .77            | .73            | 1.2         | 0.9   |
| (ppb)                | + 5.630e-05(length of rail within 1600 m buffer)      |                |                |             |       |
|                      | - 1.786e-04(distance from industrial core)            |                |                |             |       |
|                      | + 4.720e-05(government and institutional area         |                |                |             |       |
|                      | within 200 m)                                         |                |                |             |       |
|                      | + 8.187e-04(length of major roads within 200 m)       |                |                |             |       |
| O <sub>3</sub> (ppb) | 2.712                                                 | 0.35           | 0.30           | 3.5         | 2.9   |
|                      | - 4.513e-06(parks and recreational area within        |                |                |             |       |
|                      | 1600 m)                                               |                |                |             |       |
|                      | + 4.006e-05(commercial area within 800 m)             |                |                |             |       |
|                      | + 4.526e-04(distance from a chimney point)            |                |                |             |       |

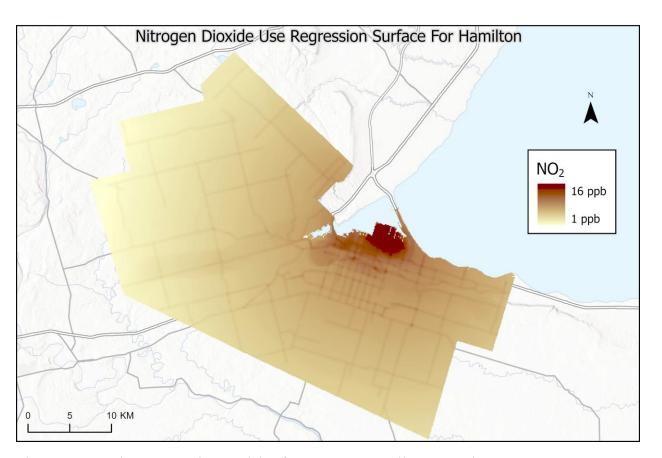



Figure 3.6: Land use regression models of NO<sub>2</sub> across Hamilton, Ontario.

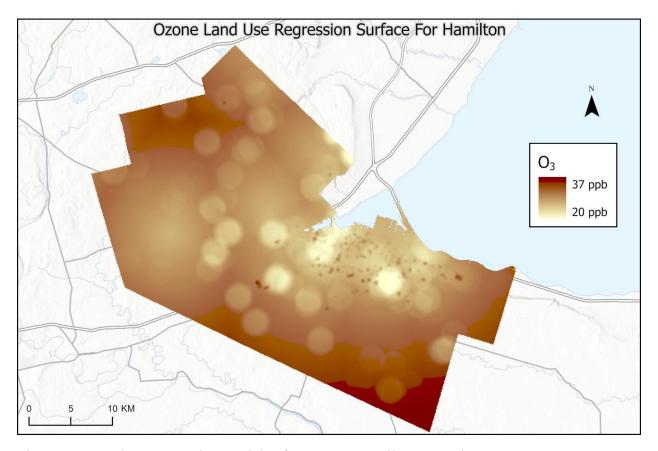



Figure 3.7: Land use regression models of O<sub>3</sub> across Hamilton, Ontario.

### 3.4 Land Use Regression PAHs

Modelling benzo[a]pyrene equivalency performed well. The land use regression model had an  $R^2$  of 0.81 (p < 0.001), Moran's I was insignificant, and the model coefficients are presented in Table 3.2. The air pollution map is presented in Figure 3.8.

Table 3.2: The land use regression models of log(benzo[a]pyrene equivalency carcinogenic toxicity) across Hamilton and western Burlington

| Variable                              | Coefficient            | Variable Significance |
|---------------------------------------|------------------------|-----------------------|
| Coefficient                           | -2.5                   | < 0.001               |
| Open Area within 200 m                | -1.9 X10 <sup>-5</sup> | < 0.001               |
| Waterbody Area within 400 m           | 6.9 X10 <sup>-6</sup>  | < 0.001               |
| Resource and Industrial within 1600 m | 4.6 X10 <sup>-7</sup>  | < 0.001               |
| Distance from Lake Ontario            | 7.6 X10 <sup>-5</sup>  | 0.014                 |
| Commercial Area within 1600 m         | -1.6 X10 <sup>-6</sup> | 0.025                 |

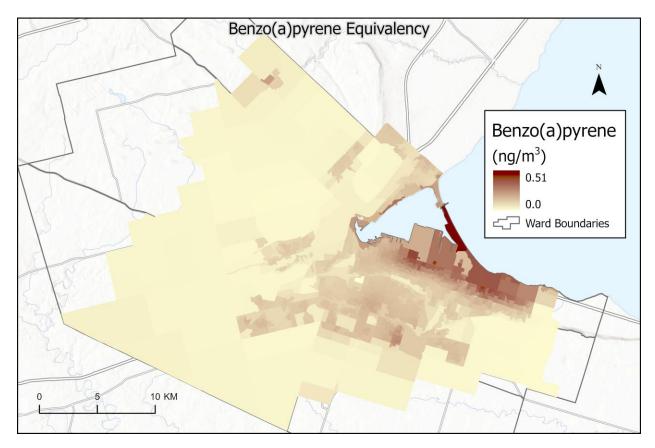



Figure 3.8: Benzo[a]pyrene equivalency as predicted by land use regression modelling for Hamilton and western Burlington, Canada, averaged by census dissemination area.

### 3.5 Environmental Justice

Each pollutant has different sources and demonstrated different spatial patterns; however, NO<sub>2</sub> and benzo[a]pyrene equivalency shared a similar high concentration near the industrial core. Nitrogen dioxide differed by having increased concentrations near the major roads. Ozone displayed distinct inequality and exposure patterns. Sulphur dioxide with many values below detection limits was excluded from this analysis, but it demonstrates concentration patterns similar to benzo[a]pyrene.

In Figures 3.9 (NO<sub>2</sub>), 3.10 (O<sub>3</sub>) and 3.11 (BaP-Eq), we present maps of the four dimensions of marginalization plotted against air pollution.

### NO<sub>2</sub> and Marginalization

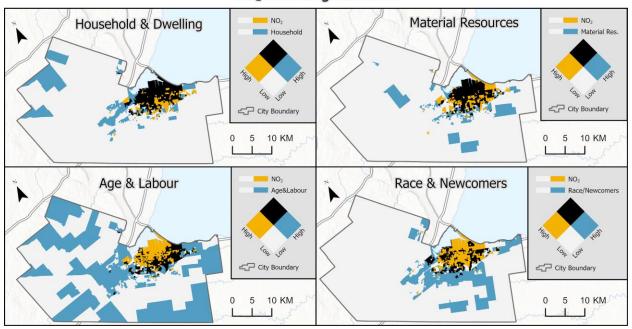



Figure 3.9: Highest and lowest 50th percentiles of NO<sub>2</sub> and marginalization factors in Hamilton and western Burlington, Canada.

### O<sub>3</sub> and Marginalization

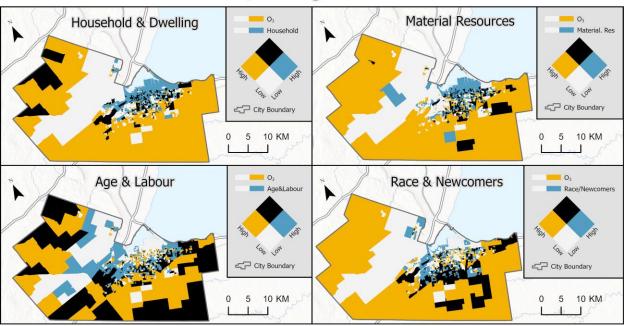



Figure 3.10: Highest and lowest 50th percentiles of  $O_3$  and marginalization factors in Hamilton and western Burlington, Canada.

### BAP-EQ Material Resources BAP-EQ Household & Dwelling Household Material Res City Boundar City Boundary 5 10 KM 10 KM BAP-EQ BAP-EQ Age & Labour Race & Newcomers Age & Labou Race/Newcomers City Boundary City Boundary 10 KM 5 10 KM 5

### Benzo(a)pyrene and Marginalization

Figure 3.11: Highest and lowest 50th percentiles of benzo[a]pyrene equivalency and marginalization factors in Hamilton and western Burlington, Canada.

The linear regression models for all relationships did not meet the statistical model's assumptions, and spatial regression models were required; however, only one spatial model did identify a significant relationship, which was a negative relationship between Material Resources (coefficient -0.35, p < 0.001) and ozone. This relationship suggests that as ozone concentrations increased, the level of marginalization was reduced.

Further analysis suggests a more nuanced relationship between marginalization and air pollution, which is demonstrated in Figures 3.12 (NO<sub>2</sub>), 3.13 (O<sub>3</sub>), and 3.14 (BaP-Eq). Nitrogen dioxide demonstrated a pattern where all marginalization levels were exposed to high concentrations; however, only areas with low marginalization occurred in areas with low air pollution. This phenomenon occurred with NO<sub>2</sub> and all four marginalization measures. Benzo[a]pyrene demonstrated this effect to a lesser degree. Ozone did not demonstrate such an effect.

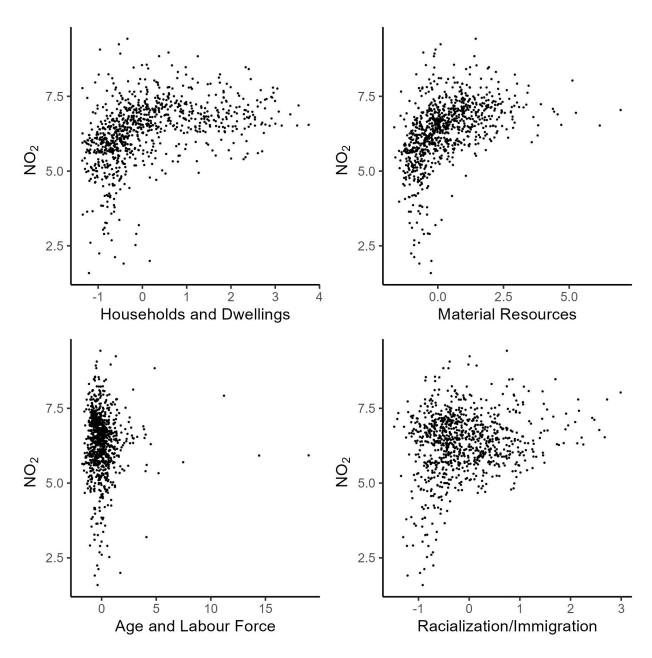



Figure 3.12: Nitrogen dioxide air pollution and the dimensions of the Ontario Marginalization Index.

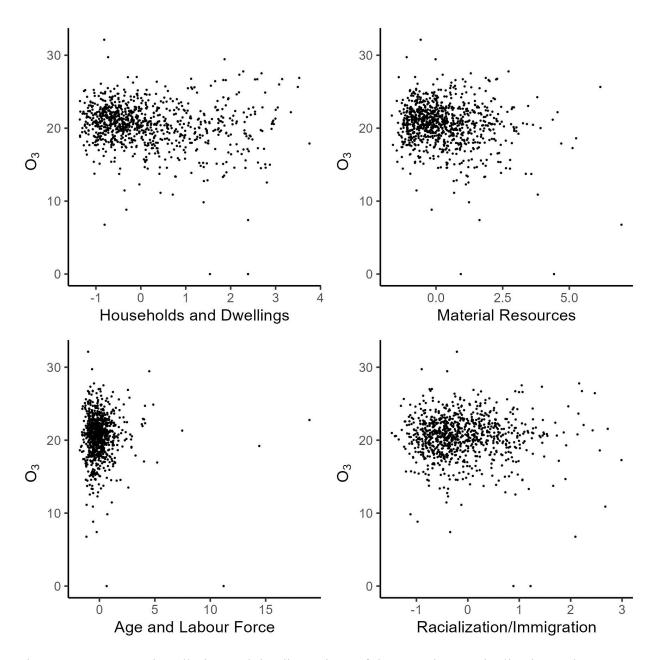



Figure 3.13: Ozone air pollution and the dimensions of the Ontario Marginalization Index.

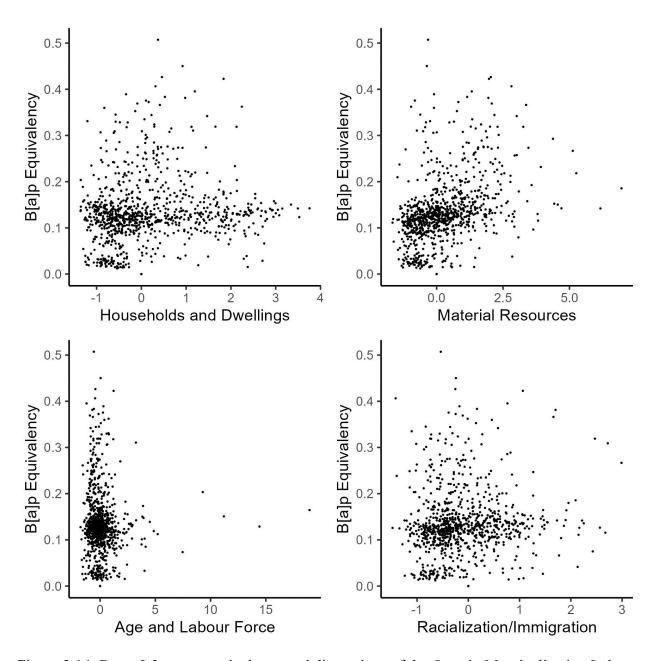



Figure 3.14: Benzo[a]pyrene equivalency and dimesnions of the Ontario Marginalization Index.

### 4. Challenges/Limitations

In the case of SO<sub>2</sub>, ambient concentrations in the city were often below detection limits to develop land use regression models; however, the areas near the industrial core demonstrated high concentrations.

Concerning the PAH concentrations, this study only measured summer concentrations; the concentration estimates are not adjusted for different seasons. Previous research has indicated that slightly higher PAH concentrations occur in winter than in summer, suggesting that these values likely represent a conservative estimate for annual concentrations (Anastasopoulos et al., 2012).

Many samples had PAH concentrations below the method quantification limit, indicating that their levels might be too low to be effectively measured within two months. Extending the sampling duration could potentially provide more accurate estimates of PAH exposure in the future.

Due to the fewer PAH samples collected, only three sites with duplicates were implemented, and samples were successfully measured. Interpreting extreme values becomes complex in such cases. For instance, a downtown sample exhibited significantly higher concentrations, exceeding five times the standard deviation for several PAH measures. Without a duplicate, it is difficult to determine if this is due to measurement uncertainties or a local source anomaly. This challenge persists when dealing with very high benzo[a]pyrene equivalency (0.39 ng/m³) measured in the northwestern area of Hamilton, far from the other high concentrations observed in the industrial core. Understanding the origins of such anomalies is also challenging without duplicate measurements.

Environmental justice studies rely on community-level measures, which may lead to ecological fallacy issues, where individual-level characteristics are based solely on aggregate-level data. In other words, it involves making incorrect inferences about individuals based on group-level data. This fallacy arises when there is a failure to recognize or account for group variability.

## 5. Potential Implications for Health

The objective of this study was not to calculate the health effects of the exposure, which should occur in a future analysis. However, in this section, we draw upon previous health effects studies to provide a sense of Hamilton's variation in health risks.

Nitrogen dioxide was estimated to range from a low value of 1 ppb up to 16 ppb, a range of 15 ppb. We can use this range to estimate the potential increase in health effects between living in the lowest and highest air pollution areas, which would assume all other risk factors for an individual to be equal. When an effect was present as an odds ratio, we converted the value directly to a relative risk under the "rare disease assumption", which is appropriate given the very low overall rates of the following diseases (Orellano et al., 2020).

The variation in risks is expressed as a percentage increase in risk between the lowest and the highest polluted areas within Hamilton; however, it is essential to recognize that the increased risk is not the rate in the population. Unfortunately, we do not have disease rates for this study at baseline conditions, but current rates for many of the outcomes presented are included to establish the overall risk. If the base rate for a disease were 1,000 cases per 100,000 people in the least polluted regions and air pollution in the highest polluted areas increased risk by 10%, then in the highest polluted areas we would expect 1,000 (base rate) + 1,000 \* 10% (increased risk) = 1,100 per 100,000.

### 5.1 Nitrogen Dioxide

**Lung Cancer**: A meta-analysis of lung cancer indicated that for a 10 ppb increase in NO<sub>2</sub>, lung cancer increased by 4% [95% CI: 1%, 8%] (Hamra et al., 2015). Given all other lung cancer risk factors being equal, living in the highest NO<sub>2</sub> area compared to the lowest in Hamilton would increase lung cancer rates by 6%.

Bronchus and lung cancer between 2013 and 2015 in Hamilton occurred at an annual rate of 70.4 cases per 100,000 people, which is less than 0.07% (Government of Canada, 2017).

**Asthma:** A meta-analysis indicated that an increment of 10 ppb increase in NO<sub>2</sub> is associated with a 13.5% (95% CI: 3.1%–25.1%) increase in asthma development of children aged 0-18 years of age (Takenoue et al., 2012). Given all other asthma development risk factors being equal, living in the highest NO<sub>2</sub> areas compared to the lowest in Hamilton would increase the risk of asthma development by 20.1%.

Asthma in 2017 was responsible for 38.60 hospitalizations per 100,000 people in Hamilton (Epidemiology and Evaluation Healthy and Safe Communities City of Hamilton, 2018).

Chronic obstructive pulmonary disease (COPD): A meta-analysis indicated a 5.3 ppb increase in NO<sub>2</sub>, COPD hospitalizations increased by 1.3% (95% CI: 0.5%, 2.1%), COPD Mortality increased by 2.6% (95% CI: 1.7%, 3.5%) and COPD prevalence increased by 17% (95% CI: 4.6%, 30.8%). Assuming an equality of all other risk factors in Hamilton, this may result in an increased risk of 3.7% for COPD hospitalizations, a 7.5% increase in COPD Mortality, and a 55% increase in COPD prevalence.

COPD was responsible for 237.93 hospitalizations per 100,000 people in 2017 in Hamilton. The mortality rate due to COPD in Hamilton was 30.14 per 100,000 people (Epidemiology and Evaluation Healthy and Safe Communities City of Hamilton, 2018).

#### 5.2 Ozone

The identified health effects of O<sub>3</sub> exposure are short-term exposures during peak events, which cannot be calculated from our long-term measurements.

#### 5.3 PAHs

An estimate for excess lifetime cancer risk was calculated using Equation 1 following the method described in (Irvine et al., 2014), where excess cancer risk was calculated for the lowest predicted BaP equivalent value (0.01 ng/m³) and the highest (0.51 ng/m³).

$$Risk = \frac{CA \times ET \times EF \times ED}{AT} \times IUR \tag{1}$$

Where CA is the concentration of BaP equivalent in air (ng/m³); ET is the exposure time (24 hours/day); EF is the exposure frequency (365 days/year); ED is the exposure duration (70 years); AT is the averaging time (613200 hours) and IUR is the inhalation unit risk, which was 0.6 (ng/m³) and obtained from the Ontario Air Standards for benzo[a]pyrene as a surrogate for polycylic aromatic hydrocarbons (Standards Development Branch Ontario Ministry of the Environment, 2011).

The lowest value from our model output is  $0.01 \text{ ng} / \text{m}^3$ , which is a 1 in 1,000,000 cancer risk. The highest concentration from the model is  $0.51 \text{ ng} / \text{m}^3$ , which suggests a 44 in 1,000,000 cancer risk.

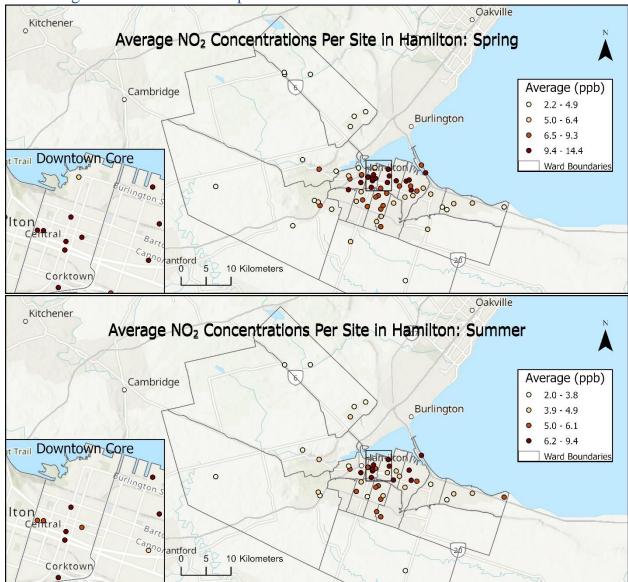
## 6. Recommendations/Next Steps

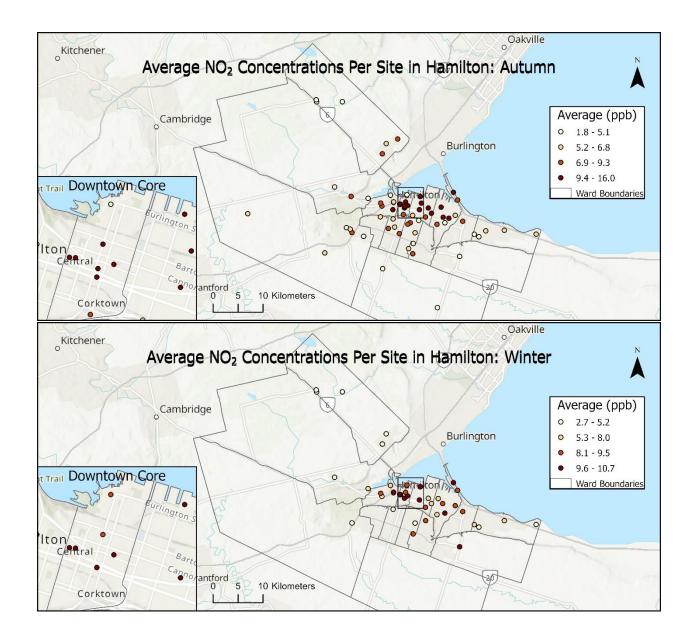
The following recommendations are based on the findings in this report:

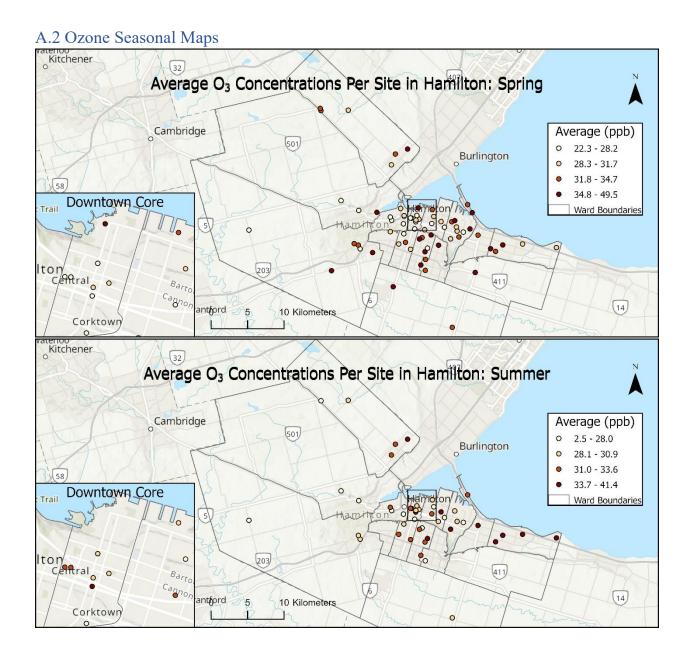
- 1. Long-term ozone concentrations demonstrate higher concentrations in rural communities where real-time measurements do not occur. Real-time air pollution measurements should be conducted during the summer, when short-term ozone peak concentrations are expected, to evaluate if the same concentration gradient occurs during short-term elevated events.
- 2. Comprehensive health effects study. Some health effects estimates were included in this report to provide some context; however, a more comprehensive evaluation should be conducted to examine how Hamilton's specific conditions result in health effects.
- 3. An education program should be implemented in communities, emphasizing communities that face a double burden (high pollution and high marginalization) to understand how tools such as the Air Quality Health Index can be used to reduce personal risk during high air pollution events.

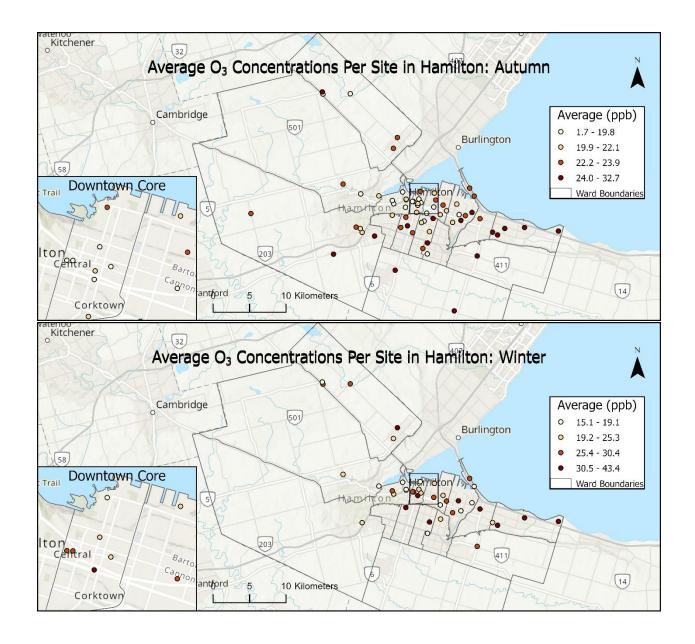
### 7. Conclusions

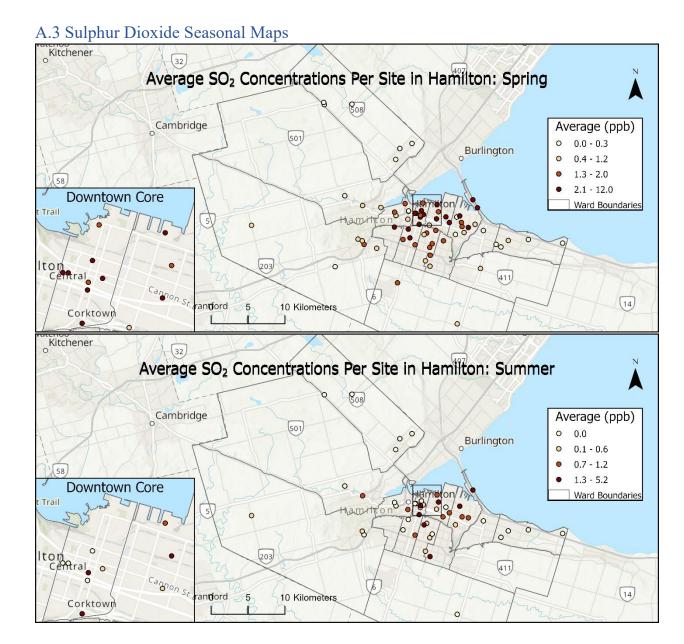
This study conducted a comprehensive assessment of air pollution in Hamilton, Ontario, and several key findings emerged. The project identified an association between higher wealth and higher O<sub>3</sub> exposure, but no significant association was found for the other pollutants. A noticeable pattern of only lower exposure experienced by the least marginalized was qualitatively observed NO<sub>2</sub> and, to a lesser extent PAHs, both pollutants demonstrated higher concentrations near the industrial core. Nitrogen dioxide also demonstrated higher concentrations near the major road in Hamilton. The project has provided an improved understanding of air quality dynamics within the city, both spatially and temporally (seasonal dynamics). The data will be critical for future studies assessing exposure patterns, validating other pollution models, and health research. The project supported public awareness through public meetings and significant media attention. Overall, the project supports Hamilton as a leader in understanding its local airshed.

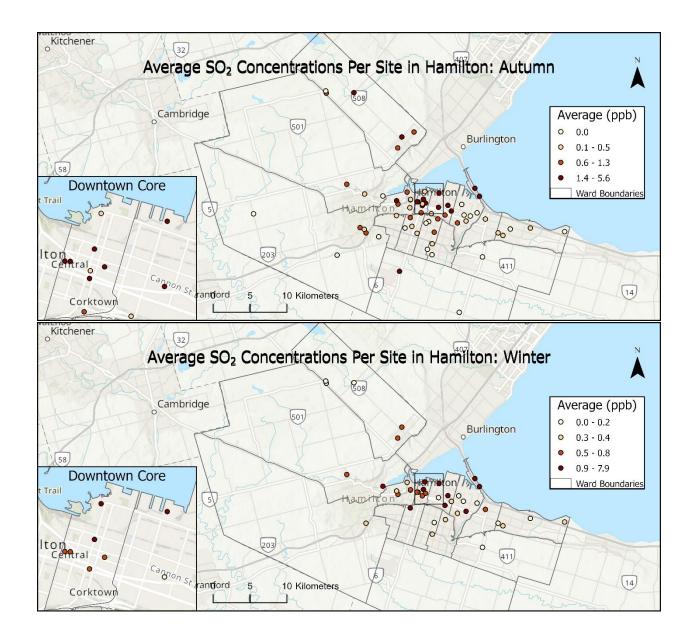

### 8. References


- Anastasopoulos, A.T., Wheeler, A.J., Karman, D., Kulka, R.H., 2012. Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5. Atmospheric Environment 59, 272–283. https://doi.org/10.1016/j.atmosenv.2012.05.004
- Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.Y., Künzli, N., Schikowski, T., Marcon, A., Eriksen, K.T., Raaschou-Nielsen, O., Stephanou, E., Patelarou, E., Lanki, T., Yli-Tuomi, T., Declercq, C., Falq, G., Stempfelet, M., Birk, M., Cyrys, J., von Klot, S., Nádor, G., Varró, M.J., Dedele, A., Gražulevičiene, R., Mölter, A., Lindley, S., Madsen, C., Cesaroni, G., Ranzi, A., Badaloni, C., Hoffmann, B., Nonnemacher, M., Krämer, U., Kuhlbusch, T., Cirach, M., de Nazelle, A., Nieuwenhuijsen, M., Bellander, T., Korek, M., Olsson, D., Strömgren, M., Dons, E., Jerrett, M., Fischer, P., Wang, M., Brunekreef, B., de Hoogh, K., 2013. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The **ESCAPE** project. Atmospheric Environment 10-23.72, https://doi.org/10.1016/j.atmosenv.2013.02.037
- Canada, S., 2017. National Pollutant Release Inventory [WWW Document]. URL https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html (accessed 12.2.23).
- Environment and Climate Change Canada, 2016. Health risks of air pollution [WWW Document]. URL https://www.canada.ca/en/environment-climate-change/services/air-quality-health-index/health-risks.html (accessed 12.2.23).
- Epidemiology and Evaluation Healthy and Safe Communities City of Hamilton, 2018. Health Check: Assessing the local burden of disease in the City of Hamilton.
- Government of Canada, S.C., 2017. Cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas [WWW Document]. URL https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310011201 (accessed 11.6.23).
- Hamra, G.B., Laden, F., Cohen, A.J., Raaschou, -Nielsen Ole, Brauer, M., Loomis, D., 2015. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. Environmental Health Perspectives 123, 1107–1112. https://doi.org/10.1289/ehp.1408882
- Harner, T., Su, K., Genualdi, S., Karpowicz, J., Ahrens, L., Mihele, C., Schuster, J., Charland, J.-P., Narayan, J., 2013. Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmospheric Environment 75, 123–128. https://doi.org/10.1016/j.atmosenv.2013.04.012
- Harvard School of Public Health, 2019. PROTOCOL FOR OZONE MEASUREMENT USING THE OZONE PASSIVE SAMPLER BADGE.
- Health Canada, 2021. FEDERAL CONTAMINATED SITE RISK ASSESSMENT IN CANADA: Toxicological Reference Values (TRVs) VERSION 3.0.
- Irvine, G.M., Blais, J.M., Doyle, J.R., Kimpe, L.E., White, P.A., 2014. Cancer risk to First Nations' people from exposure to polycyclic aromatic hydrocarbons near in-situ bitumen extraction in Cold Lake, Alberta. Environmental Health 13, 7. https://doi.org/10.1186/1476-069X-13-7
- Maddix, M., Adams, M.D., 2020. Effects of spatial sampling density and spatial extent on linear land use regression modelling of NO2 estimates in an automobile-oriented city. Atmospheric Environment 238, 117735. https://doi.org/10.1016/j.atmosenv.2020.117735


- Matheson, F.I., Moloney, G., van Ingen, 2023. 2021 Ontario marginalization index: user guide. Michael's Hospital (Unity Health Toronto), Toronto, ON.
- Ogawa & Co., USA, Inc., 2006. NO, NO2, NOx and SO2 Sampling Protocol Using The Ogawa Sampler [WWW Document].
- Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., Ciapponi, A., 2020. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International 142, 105876. https://doi.org/10.1016/j.envint.2020.105876
- Pozo, K., Harner, T., Wania, F., Muir, D.C.G., Jones, K.C., Barrie, L.A., 2006. Toward a Global Network for Persistent Organic Pollutants in Air: Results from the GAPS Study. Environ. Sci. Technol. 40, 4867–4873. https://doi.org/10.1021/es060447t
- Public Health Ontario, 2021. Frequently Asked Questions: 2021 Ontario Marginalization Index.
- Standards Development Branch Ontario Ministry of the Environment, 2011. ONTARIO AIR STANDARDS FOR BENZO[A]PYRENE AS A SURROGATE FOR POLYCYCLIC AROMATIC HYDROCARBONS.
- Takenoue, Y., Kaneko, T., Miyamae, T., Mori, M., Yokota, S., 2012. Influence of outdoor NO2 exposure on asthma in childhood: Meta-analysis. Pediatrics International 54, 762–769. https://doi.org/10.1111/j.1442-200X.2012.03674.x


## Appendix A














# Appendix B: PAH Concentrations by Sample Location

Concentrations of measured PAHs in Hamilton and Western Burlington in the summer of 2022 in ng/m3. 0.00 indicated below detection limits.

| Concentration  | ns of measured | TAIIS III IIaiii | miton and western | Average  | n the summer of 2022 | z in ng/m . 0.00 ma | icated below | detection mints. |              |            |              |        |        |
|----------------|----------------|------------------|-------------------|----------|----------------------|---------------------|--------------|------------------|--------------|------------|--------------|--------|--------|
| C' ID          | T              | T 1              | Deployment        | Temp.    |                      |                     | F1           | <b>7</b> 9       | <b>D</b>     | 4 4        | TI 0         | n      | D /    |
| Site ID<br>901 | Longitude      | Latitude         | Time (days)       | (°C)     | Acenaphthylene       | Acenaphthene        | Fluorene     | Dibenzothiophene | Phenanthrene | Anthracene | Fluoranthene | Pyrene | Retene |
| 902            | -79.9652       | 43.2608          | 63                | 21.32    | 0.00                 | 0.35                | 0.73         | 0.18             | 2.63         | 0.06       | 1.19         | 0.61   | 0.12   |
| 903            | -79.8809       | 43.2520          | 61                | 21.23    | 0.00                 | 0.82                | 1.68         | 0.63             | 10.03        | 0.30       | 5.31         | 3.07   | 0.25   |
| 904            | -79.8962       | 43.2621          | 61                | 21.13    | 0.00                 | 1.21                | 1.46         | 0.45             | 6.89         | 0.15       | 3.47         | 1.69   | 0.17   |
| 905            | -79.8633       | 43.2666          | 61                | 21.08    | 0.00                 | 4.94                | 4.07         | 1.01             | 15.97        | 0.51       | 7.94         | 4.02   | 0.20   |
| 905            | -79.8309       | 43.2559          | 63                | 21.64    | 0.01                 | 2.76                | 2.67         | 0.87             | 14.21        | 0.86       | 8.67         | 6.04   | 0.38   |
| 900            | -79.8465       | 43.2482          | 63                | 21.64    | 0.00                 | 1.95                | 2.87         | 0.54             | 10.84        | 0.16       | 4.14         | 2.08   | 0.21   |
|                | -79.7559       | 43.2484          | 62                | 21.68    | 0.00                 | 0.50                | 0.80         | 0.23             | 3.99         | 0.09       | 2.27         | 1.43   | 0.21   |
| 908            | -79.7870       | 43.2845          | 62                | 21.69    | 0.14                 | 2.23                | 3.14         | 0.94             | 14.54        | 0.77       | 7.81         | 4.79   | 0.35   |
| 909            | -79.8064       | 43.2553          | 62                | 21.61    | 0.01                 | 4.92                | 4.59         | 1.19             | 16.64        | 0.46       | 5.07         | 2.95   | 0.44   |
| 910            | -79.8167       | 43.2447          | 63                | 21.64    | 0.00                 | 1.71                | 1.53         | 0.48             | 7.92         | 0.11       | 2.38         | 1.22   | 0.20   |
| 911            | -79.7757       | 43.2573          | 63                | 21.64    | 0.10                 | 4.03                | 2.40         | 0.62             | 12.54        | 0.34       | 5.31         | 3.22   | 0.33   |
| 914            | -80.0706       | 43.2901          | 62                | 21.32    | 0.00                 | 0.15                | 0.66         | 0.41             | 4.24         | 0.04       | 1.53         | 0.71   | 0.34   |
| 917            | -80.1070       | 43.1992          | 62                | 20.49    | 0.00                 | 2.15                | 2.04         | 0.60             | 13.98        | 0.24       | 4.49         | 0.94   | 0.94   |
| 918            | -79.8974       | 43.2318          | 62                | 21.32    | 0.00                 | 0.74                | 1.08         | 0.55             | 13.13        | 0.15       | 6.43         | 2.04   | 0.29   |
| 919            | -79.9470       | 43.2330          | 63                | 20.43    | 0.00                 | 1.37                | 0.89         | 0.23             | 4.02         | 0.05       | 2.07         | 1.05   | 0.19   |
| 920            | -79.9481       | 43.1640          | 63                | 20.49    | 0.00                 | 0.23                | 0.59         | 0.14             | 2.77         | 0.05       | 1.26         | 0.69   | 0.24   |
| 922            | -79.7618       | 43.2192          | 62                | 21.67    | 0.00                 | 0.56                | 0.64         | 0.23             | 4.05         | 0.02       | 1.78         | 0.73   | 0.21   |
| 923            | -79.8110       | 43.1993          | 62                | 20.45    | 0.03                 | 0.92                | 1.66         | 0.01             | 0.94         | 0.00       | 0.42         | 0.09   | 0.01   |
| 924            | -79.6897       | 43.2310          | 62                | 21.67    | 0.00                 | 0.99                | 0.67         | 0.14             | 3.00         | 0.04       | 1.85         | 0.93   | 0.12   |
| 926            | -79.7760       | 43.2672          | 62                | 21.69    | 0.34                 | 5.15                | 3.75         | 1.10             | 19.29        | 0.71       | 10.21        | 7.12   | 0.35   |
| 927            | -79.8551       | 43.3017          | 62                | 21.08    | 0.00                 | 0.97                | 0.90         | 0.22             | 4.62         | 0.04       | 3.05         | 1.25   | 0.16   |
| 928            | -79.8075       | 43.3130          | 63                | 21.64    | 0.00                 | 0.67                | 0.70         | 0.17             | 2.72         | 0.03       | 1.35         | 0.62   | 0.10   |
| 929            | -79.8325       | 43.3440          | 64                | 21.68    | 0.00                 | 0.00                | 0.43         | 0.20             | 3.67         | 0.04       | 1.92         | 0.75   | 0.11   |
| 930            | -79.8917       | 43.2957          | 62                | 21.08    | 0.00                 | 3.63                | 2.16         | 0.53             | 10.23        | 0.17       | 5.68         | 1.36   | 0.26   |
| 931            | -79.8962       | 43.1775          | 63                | 20.49    | 0.00                 | 0.13                | 0.49         | 0.13             | 2.23         | 0.04       | 1.24         | 0.65   | 0.23   |
| 932            | -79.8173       | 43.2283          | 62                | 21.66    | 0.00                 | 0.45                | 0.88         | 0.19             | 3.79         | 0.05       | 1.72         | 0.83   | 0.24   |
| 933            | -79.9787       | 43.3971          | 62                | 21.66    | 0.00                 | 0.18                | 0.59         | 0.29             | 6.19         | 0.06       | 4.19         | 1.78   | 0.49   |
|                | mit from fiel  | ld blank, if     | 02                | 21.00    | 3.00                 | 3.10                | 0.57         | 0.25             | 5.17         | 0.00       |              | 1.,0   | 0      |
|                | otherwise fron | n instrument     | Augres 22. 62     | Average: | 0.06                 | 0.40                | 0.03         | 0.02             | 0.06         | 0.01       | 0.03         | 0.02   | 0.01   |
| detection lim  | 11             |                  | Average: 62       | 21.26    | 0.06                 | 0.40                | 0.03         | 0.02             | 0.06         | 0.01       | 0.03         | 0.02   | 0.01   |

| Row   | Longitude       | Latitude    | Benzo(a)<br>anthracene | Chrysene | Benzo(b)<br>fluoranthene | Benzo(k)<br>fluoranthene | Benzo(e)<br>pyrene | Benzo[a]<br>pyrene | Perylene | Indeno(1,2,3-<br>c,d)pyrene | Dibenzo(a,h)<br>anthracene | Benzo(g,h,i)<br>perylene | Benzo[a]pyrene<br>Equivalency |
|-------|-----------------|-------------|------------------------|----------|--------------------------|--------------------------|--------------------|--------------------|----------|-----------------------------|----------------------------|--------------------------|-------------------------------|
| 901   | -79.9652        | 43.2608     | 0.04                   | 0.08     | 0.06                     | 0.02                     | 0.04               | 0.04               | 0.00     | 0.02                        | 0.00                       | 0.04                     | 0.06                          |
| 902   | -79.8809        | 43.2520     | 0.32                   | 0.49     | 0.37                     | 0.13                     | 0.19               | 0.09               | 0.02     | 0.09                        | 0.00                       | 0.15                     | 0.20                          |
| 903   | -79.8962        | 43.2621     | 0.10                   | 0.19     | 0.15                     | 0.05                     | 0.08               | 0.06               | 0.01     | 0.04                        | 0.00                       | 0.09                     | 0.11                          |
| 904   | -79.8633        | 43.2666     | 0.27                   | 0.42     | 0.23                     | 0.07                     | 0.10               | 0.06               | 0.01     | 0.04                        | 0.00                       | 0.07                     | 0.15                          |
| 905   | -79.8309        | 43.2559     | 2.02                   | 1.92     | 2.36                     | 0.99                     | 1.22               | 1.88               | 1.80     | 0.86                        | 0.37                       | 1.14                     | 2.93                          |
| 906   | -79.8465        | 43.2482     | 0.13                   | 0.23     | 0.18                     | 0.07                     | 0.09               | 0.08               | 0.01     | 0.05                        | 0.00                       | 0.08                     | 0.14                          |
| 907   | -79.7559        | 43.2484     | 0.11                   | 0.20     | 0.20                     | 0.06                     | 0.13               | 0.08               | 0.02     | 0.07                        | 0.02                       | 0.17                     | 0.16                          |
| 908   | -79.7870        | 43.2845     | 0.73                   | 0.99     | 0.68                     | 0.23                     | 0.34               | 0.18               | 0.09     | 0.14                        | 0.05                       | 0.21                     | 0.44                          |
| 909   | -79.8064        | 43.2553     | 0.19                   | 0.26     | 0.21                     | 0.07                     | 0.12               | 0.09               | 0.02     | 0.06                        | 0.00                       | 0.10                     | 0.17                          |
| 910   | -79.8167        | 43.2447     | 0.07                   | 0.16     | 0.11                     | 0.04                     | 0.06               | 0.06               | 0.01     | 0.03                        | 0.00                       | 0.06                     | 0.10                          |
| 911   | -79.7757        | 43.2573     | 0.34                   | 0.46     | 0.39                     | 0.13                     | 0.22               | 0.19               | 0.15     | 0.11                        | 0.00                       | 0.18                     | 0.31                          |
| 914   | -80.0706        | 43.2901     | 0.02                   | 0.05     | 0.04                     | 0.01                     | 0.02               | 0.00               | 0.00     | 0.01                        | 0.00                       | 0.03                     | 0.01                          |
| 917   | -80.1070        | 43.1992     | 0.02                   | 0.05     | 0.03                     | 0.01                     | 0.02               | 0.00               | 0.01     | 0.01                        | 0.00                       | 0.01                     | 0.03                          |
| 918   | -79.8974        | 43.2318     | 0.08                   | 0.18     | 0.10                     | 0.03                     | 0.05               | 0.04               | 0.01     | 0.02                        | 0.00                       | 0.04                     | 0.09                          |
| 919   | -79.9470        | 43.2330     | 0.07                   | 0.12     | 0.10                     | 0.03                     | 0.06               | 0.00               | 0.03     | 0.02                        | 0.00                       | 0.07                     | 0.03                          |
| 920   | -79.9481        | 43.1640     | 0.05                   | 0.08     | 0.05                     | 0.02                     | 0.03               | 0.02               | 0.00     | 0.01                        | 0.00                       | 0.03                     | 0.03                          |
| 922   | -79.7618        | 43.2192     | 0.04                   | 0.09     | 0.06                     | 0.02                     | 0.03               | 0.03               | 0.01     | 0.02                        | 0.00                       | 0.03                     | 0.05                          |
| 923   | -79.8110        | 43.1993     | 0.02                   | 0.02     | 0.03                     | 0.01                     | 0.02               | 0.02               | 0.00     | 0.01                        | 0.00                       | 0.02                     | 0.03                          |
| 924   | -79.6897        | 43.2310     | 0.07                   | 0.11     | 0.10                     | 0.03                     | 0.05               | 0.05               | 0.02     | 0.03                        | 0.00                       | 0.05                     | 0.08                          |
| 926   | -79.7760        | 43.2672     | 0.96                   | 1.26     | 0.98                     | 0.36                     | 0.56               | 0.32               | 0.27     | 0.25                        | 0.00                       | 0.42                     | 0.63                          |
| 927   | -79.8551        | 43.3017     | 0.04                   | 0.10     | 0.08                     | 0.03                     | 0.04               | 0.05               | 0.03     | 0.02                        | 0.00                       | 0.04                     | 0.08                          |
| 928   | -79.8075        | 43.3130     | 0.05                   | 0.08     | 0.08                     | 0.03                     | 0.05               | 0.11               | 0.01     | 0.03                        | 0.00                       | 0.05                     | 0.13                          |
| 929   | -79.8325        | 43.3440     | 0.02                   | 0.05     | 0.04                     | 0.01                     | 0.02               | 0.02               | 0.00     | 0.01                        | 0.00                       | 0.03                     | 0.04                          |
| 930   | -79.8917        | 43.2957     | 0.03                   | 0.08     | 0.05                     | 0.00                     | 0.00               | 0.00               | 0.03     | 0.01                        | 0.00                       | 0.03                     | 0.03                          |
| 931   | -79.8962        | 43.1775     | 0.05                   | 0.08     | 0.06                     | 0.02                     | 0.03               | 0.03               | 0.00     | 0.01                        | 0.00                       | 0.03                     | 0.05                          |
| 932   | -79.8173        | 43.2283     | 0.05                   | 0.09     | 0.06                     | 0.02                     | 0.04               | 0.04               | 0.02     | 0.02                        | 0.00                       | 0.03                     | 0.06                          |
| 933   | -79.9787        | 43.3971     | 0.19                   | 0.32     | 0.36                     | 0.13                     | 0.20               | 0.30               | 0.24     | 0.13                        | 0.00                       | 0.19                     | 0.39                          |
| blank | Detection limit | , otherwise | 0.05                   | 0.01     | 0.01                     | 0.02                     | 0.02               | 0.05               | 0.01     | 0.02                        | 0.04                       | 0.003                    |                               |

## Appendix C: Environment Hamilton Comments on Public Engagement

Through the project we hosted four public information sessions, which were held virtually on December 15th 2021, April 12th 2022, January 30th 2023, and July 11th 2023. These sessions were hosted via Zoom and saw a range of attendees at each session.

Each session was reasonably well attended, with 95 registrations and 36 attendees at our third webinar which was a presentation of preliminary data. For the final webinar there was significant media interest leading up to the meeting - we saw 254 registrations and peaked around 120 or so attendees. Through the project we also had a static sign up page that residents could use to stay up to date with the project - 158 residents registered for this. Information was also shared regularly with Environment Hamilton's general membership, and information was distributed via social media and through media reports.

Throughout the project we received a variety of questions and received feedback from the public. The status of Hamilton's air quality prior to this project was already of public interest, so early on in the project questions and feedback were focused on how the project would be set up, methodology, and where the monitors would be located. Through the project there was further feedback and questions about what would be done with the data when the project was complete residents had interest in any detailed information about air quality in their own localized neighbourhoods within the City certainly, but the most consistent theme of query has been what the results of the study (political and/or regulatory) will be.

From the final community webinar, the media attention it received, and feedback we have received as well as observed on social media platforms there have been some prevalent themes of query. The top concern or line of questioning from residents is related to the strong trend we saw at the beginning, which were questions of local air quality and what potential health impacts of poor air quality could be on individuals and the population - and the potential difference in impacts between different pollutants in the air (for example, asking if sulfur dioxide is more dangerous than benzo(a)pyrene). The second most prevalent theme was to do with political or regulatory responses to the information they were learning - and within this theme two easily identifiable camps exist. The first being residents asking what the city, provincial government, federal government will or can do to improve the air quality in the City of Hamilton. This camp would best describe the majority of residents who attended the webinars, engaged with the project directly, or have an existing relationship with Environment Hamilton already. The second camp was less engaged and more cynical - we did receive some direct feedback that lamented the perception that some or all of the levels of government do not care about the issue, or are incapable of doing something about it. The majority of these sentiments were observed on social media platforms where media coverage of the platform was shared or information was directly shared by Environment Hamilton to the public. While this second more cynical response was not as common, it was observed enough to be noteworthy.

It is worth stressing that the majority of residents who engaged with the project directly were very interested in not just learning about the results of the project - but specifically what can be done to improve the air quality that does not result in the shutting down or loss of local industry.

There was strong interest from some attendees in how local industry can be held accountable for the pollution they generate - but queries about the closure of industry were rare. It is likely this is a result of ongoing outreach efforts (including our second webinar) by Environment Hamilton and the MECP about regulatory frameworks and enforcement - and the general knowledge that other districts in the world with similar industries do not face the same air quality challenges that the City of Hamilton does.

Of note, concerns about air quality impacts on individuals' health did generate discussion both within our final webinar as well as on social media platforms about the relative safety of continuing to live in the City of Hamilton, or particular neighbourhoods in the City. Members of the project explicitly stated at times that they lived in the City themselves and had no intention of moving - and successes in improving air quality locally in the past were indicated as evidence that further improvements can be made in the future. In the experience of Environment Hamilton these concerns are not new in Hamilton, but around the time of our final webinar we did see an increase in concerns about this in response to the various media stories that were written about the project.

# Appendix D: Ozone Passive Sampling Concentration Data

NA values in the concentration field represent values below the detection limit.

| Site ID | Longitude              | Latitude             | Concentration (ppb) | Start Time                                 | <b>End Time</b>                            |
|---------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 0       | -79.97277              | 43.22930             | 31                  | 2022-03-28 12:05:00                        | 2022-04-11 10:32:00                        |
| 0       | -79.97277              | 43.22930             | 31                  | 2022-03-28 12:09:00                        | 2022-04-11 10:31:00                        |
| 0       | -79.97277              | 43.22930             | 23                  | 2022-09-01 11:18:00                        | 2022-09-15 11:01:00                        |
| 0       | -79.97277              | 43.22930             | 22                  | 2022-09-01 11:21:00                        | 2022-09-15 11:02:00                        |
| 0       | -79.97277              | 43.22930             | 33                  | 2023-04-07 16:13:00                        | 2023-04-21 11:08:00                        |
| 0       | -79.97277              | 43.22930             | 33                  | 2023-04-07 16:10:00                        | 2023-04-21 11:05:00                        |
| 1       | -79.96449              | 43.27027             | 30                  | 2022-03-01 09:56:00                        | 2022-03-15 09:50:00                        |
| 1       | -79.96449              | 43.27027             | 24                  | 2022-08-11 10:42:00                        | 2022-08-25 10:15:00                        |
| 1       | -79.96449              | 43.27027             | 19                  | 2022-11-14 09:43:00                        | 2022-11-28 09:57:00                        |
| 1       | -79.96449              | 43.27027             | 26                  | 2023-03-02 12:01:00                        | 2023-03-15 11:22:00                        |
| 2       | -79.93388              | 43.26768             | 36                  | 2022-03-28 11:16:00                        | 2022-04-11 10:10:00                        |
| 2       | -79.93388              | 43.26768             | 22                  | 2022-09-01 10:56:00                        | 2022-09-15 10:41:00                        |
| 2       | -79.93388              | 43.26768             | 18                  | 2022-12-06 10:10:00                        | 2022-12-20 10:43:00                        |
| 2       | -79.93388              | 43.26768             | 43                  | 2023-04-06 11:47:00                        | 2023-04-20 10:49:00                        |
| 3       | -79.90811              | 43.32617             | 32                  | 2022-07-21 10:40:00                        | 2022-08-04 11:17:00                        |
| 3       | -79.90811              | 43.32617             | 24                  | 2022-10-12 09:52:00                        | 2022-10-26 09:42:00                        |
| 3       | -79.90811              | 43.32617             | 24                  | 2023-01-20 10:54:00                        | 2023-02-10 09:50:00                        |
| 3       | -79.90811              | 43.32617             | 29                  | 2023-05-16 11:41:00                        | 2023-05-30 16:21:00                        |
| 4       | -79.86379              | 43.27244             | 32                  | 2022-03-28 13:45:00                        | 2022-04-11 11:56:00                        |
| 4       | -79.86379              | 43.27244             | 24                  | 2022-09-02 11:58:16                        | 2022-09-16 14:15:00                        |
| 4       | -79.86379              | 43.27244             | 17                  | 2022-12-06 11:52:00                        | 2022-12-19 12:44:00                        |
| 4       | -79.86379              | 43.27244             | 38                  | 2023-04-06 15:05:00                        | 2023-04-20 12:40:00                        |
| 5       | -79.91126              | 43.26163             | 33                  | 2022-02-07 12:08:00                        | 2022-02-21 10:58:00                        |
| 5       | -79.91126              | 43.26163             | 33                  | 2022-07-21 12:35:27                        | 2022-08-04 13:42:00                        |
| 5       | -79.91126              | 43.26163             | 16                  | 2022-10-13 13:08:15                        | 2022-10-27 08:48:00                        |
| 5       | -79.91126              | 43.26163             | 20                  | 2023-01-20 13:11:06                        | 2023-02-10 11:42:00                        |
| 5       | -79.91126              | 43.26163             | 25                  | 2023-05-17 16:26:00                        | 2023-05-31 16:00:00                        |
| 6       | -79.90107              | 43.33951             | 51                  | 2022-02-07 09:42:00                        | 2022-02-21 09:47:00                        |
| 6       | -79.90107              | 43.33951             | 33                  | 2022-07-21 10:23:00                        | 2022-08-04 11:06:00                        |
| 6       | -79.90107              | 43.33951             | 23                  | 2022-10-12 09:39:00                        | 2022-10-26 09:30:00                        |
| 6       | -79.90107              | 43.33951             | 31                  | 2023-01-20 10:34:00                        | 2023-02-10 09:33:00                        |
| 6       | -79.90107              | 43.33951             | 33                  | 2023-05-16 11:07:00                        | 2023-05-30 16:00:00                        |
| 7       | -79.88915              | 43.25292             | 28                  | 2022-03-02 08:49:00                        | 2022-03-16 10:50:00                        |
| 7       | -79.88915              | 43.25292             | 24                  | 2022-08-12 14:06:41                        | 2022-08-26 11:54:00                        |
| 7       | -79.88915<br>-79.88915 | 43.25292             | 18                  | 2022-11-15 09:40:00<br>2023-03-02 16:37:00 | 2022-11-29 11:12:00<br>2023-03-15 13:55:00 |
| 7       |                        | 43.25292             | 27                  |                                            |                                            |
| 8       | -79.89347              | 43.27198             | 30                  | 2022-03-28 10:56:00                        | 2022-04-11 09:33:00                        |
| 8       | -79.89347              | 43.27198<br>43.27198 | 19                  | 2022-09-01 10:30:00<br>2022-12-06 11:08:00 | 2022-09-15 10:19:00<br>2022-12-20 10:10:00 |
| 8       | -79.89347              |                      | 16                  |                                            |                                            |
| 8       | -79.89347              | 43.27198             | 33                  | 2023-04-06 12:28:00                        | 2023-04-20 11:18:00                        |

| Site ID | Longitude             | Latitude | <b>Concentration (ppb)</b> | Start Time          | <b>End Time</b>     |
|---------|-----------------------|----------|----------------------------|---------------------|---------------------|
| 9       | -79.84130             | 43.25292 | 32                         | 2022-02-08 10:33:00 | 2022-02-21 16:17:00 |
| 9       | -79.84130             | 43.25292 | 34                         | 2022-07-22 13:12:00 | 2022-08-05 13:58:00 |
| 9       | -79.84130             | 43.25292 | 18                         | 2022-10-13 10:49:01 | 2022-10-27 13:11:49 |
| 9       | -79.84130             | 43.25292 | 24                         | 2023-01-21 13:08:25 | 2023-02-11 13:54:00 |
| 9       | -79.84130             | 43.25292 | 25                         | 2023-05-17 13:23:00 | 2023-05-31 13:11:00 |
| 10      | -79.81977             | 43.24809 | 36                         | 2022-02-08 12:21:00 | 2022-02-21 15:59:00 |
| 10      | -79.81977             | 43.24809 | 2                          | 2022-07-21 16:58:01 | 2022-08-05 14:26:00 |
| 10      | -79.81977             | 43.24809 | 20                         | 2022-10-12 15:07:00 | 2022-10-27 12:49:00 |
| 10      | -79.81977             | 43.24809 | 23                         | 2023-01-21 12:30:00 | 2023-02-11 13:19:00 |
| 10      | -79.81977             | 43.24809 | 28                         | 2023-05-17 11:55:00 | 2023-05-31 11:50:00 |
| 11      | -79.87039             | 43.24652 | 31                         | 2022-03-02 10:20:00 | 2022-03-16 10:38:00 |
| 11      | -79.87039             | 43.24652 | 25                         | 2022-08-12 12:15:00 | 2022-08-26 11:37:00 |
| 11      | -79.87039             | 43.24652 | 28                         | 2022-08-12 12:13:13 | 2022-08-26 11:39:00 |
| 11      | -79.87039             | 43.24652 | 22                         | 2022-11-15 09:59:00 | 2022-11-29 11:26:00 |
| 11      | -79.87039             | 43.24652 | 21                         | 2022-11-15 10:01:00 | 2022-11-29 11:27:00 |
| 11      | -79.87039             | 43.24652 | 25                         | 2023-03-02 17:59:00 | 2023-03-15 14:57:00 |
| 11      | -79.87039             | 43.24652 | 26                         | 2023-03-02 18:03:00 | 2023-03-15 15:03:00 |
| 12      | -79.86280             | 43.25830 | 32                         | 2022-02-08 09:44:00 | 2022-02-21 17:10:00 |
| 12      | -79.86280             | 43.25830 | 31                         | 2022-03-02 09:27:00 | 2022-03-16 09:58:00 |
| 12      | -79.86280             | 43.25830 | 29                         | 2022-03-28 14:00:00 | 2022-04-11 11:46:00 |
| 12      | -79.86280             | 43.25830 | 33                         | 2022-07-22 12:57:00 | 2022-08-05 13:25:00 |
| 12      | -79.86280             | 43.25830 | 27                         | 2022-08-12 13:12:00 | 2022-08-26 11:59:00 |
| 12      | -79.86280             | 43.25830 | 23                         | 2022-09-02 10:11:31 | 2022-09-16 15:29:00 |
| 12      | -79.86280             | 43.25830 | 15                         | 2022-10-13 11:02:39 | 2022-10-27 13:36:10 |
| 12      | -79.86280             | 43.25830 | 20                         | 2022-11-15 11:39:00 | 2022-11-29 12:55:00 |
| 12      | -79.86280             | 43.25830 | 14                         | 2022-12-06 12:05:00 | 2022-12-19 11:37:00 |
| 12      | -79.86280             | 43.25830 | 25                         | 2023-01-21 15:55:00 | 2023-02-10 13:25:00 |
| 12      | -79.86280             | 43.25830 | 26                         | 2023-03-02 17:32:00 | 2023-03-15 14:40:00 |
| 12      | -79.86280             | 43.25830 | 35                         | 2023-04-06 14:12:00 | 2023-04-20 12:23:00 |
| 12      | -79.86280             | 43.25830 | 25                         | 2023-05-17 14:09:00 | 2023-05-31 13:54:00 |
| 13      | -79.88769             | 43.26304 | 28                         | 2022-03-28 13:25:00 | 2022-04-11 11:33:00 |
| 13      | -79.88769             | 43.26304 | 20                         | 2022-09-01 10:13:00 | 2022-09-15 10:10:00 |
| 13      | -79.88769             | 43.26304 | 15                         | 2022-12-06 11:22:00 | 2022-12-19 11:50:00 |
| 13      | -79.88769             | 43.26304 | 31                         | 2023-04-06 13:21:00 | 2023-04-20 12:03:00 |
| 14      | -79.87515             | 43.25988 | 33                         | 2022-02-08 08:48:00 | 2022-02-21 17:21:00 |
| 14      | -79.87515             | 43.25988 | 33                         | 2022-07-22 12:28:13 | 2022-08-05 13:04:00 |
| 14      | -79.87515             | 43.25988 | 17                         | 2022-10-13 11:52:59 | 2022-10-27 14:20:59 |
| 14      | -79.87515             | 43.25988 | 24                         | 2023-01-20 14:01:18 | 2023-02-10 12:58:00 |
| 14      | -79.87515             | 43.25988 | 23                         | 2023-05-17 15:18:00 | 2023-05-31 15:07:00 |
| 15      | -79.85348             | 43.24520 | 32                         | 2022-03-28 14:19:00 | 2022-04-11 12:27:00 |
| 15      | -79.85348             | 43.24520 | 19                         | 2022-09-02 10:34:03 | 2022-09-16 15:12:00 |
| 15      | -79.85348<br>70.76333 | 43.24520 | 31                         | 2023-04-06 15:56:00 | 2023-04-20 13:13:00 |
| 16      | -79.76332             | 43.23767 | 38                         | 2022-02-07 16:05:00 | 2022-02-21 14:36:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 16      | -79.76332 | 43.23767 | 39                         | 2022-07-21 14:32:00 | 2022-08-04 15:50:00 |
| 16      | -79.76332 | 43.23767 | 23                         | 2022-10-12 14:22:00 | 2022-10-27 11:29:00 |
| 16      | -79.76332 | 43.23767 | 32                         | 2023-01-21 09:57:00 | 2023-02-11 10:13:00 |
| 16      | -79.76332 | 43.23767 | 32                         | 2023-05-16 16:09:00 | 2023-05-30 20:32:00 |
| 17      | -79.77257 | 43.26563 | 31                         | 2022-03-28 16:48:00 | 2022-04-11 14:11:00 |
| 17      | -79.77257 | 43.26563 | 22                         | 2022-09-01 16:17:00 | 2022-09-15 15:06:00 |
| 17      | -79.77257 | 43.26563 | 18                         | 2022-12-06 13:23:00 | 2022-12-19 09:32:00 |
| 17      | -79.77257 | 43.26563 | 41                         | 2023-04-07 09:56:00 | 2023-04-20 14:17:00 |
| 18      | -79.90889 | 43.25761 | 30                         | 2022-02-07 12:36:43 | 2022-02-21 11:09:00 |
| 18      | -79.90889 | 43.25761 | 28                         | 2022-03-01 10:23:00 | 2022-03-15 10:07:00 |
| 18      | -79.90889 | 43.25761 | 29                         | 2022-03-28 10:42:00 | 2022-04-11 10:01:00 |
| 18      | -79.90889 | 43.25761 | 29                         | 2022-07-21 12:15:39 | 2022-08-04 13:49:00 |
| 18      | -79.90889 | 43.25761 | 23                         | 2022-08-11 11:32:17 | 2022-08-25 10:32:00 |
| 18      | -79.90889 | 43.25761 | 19                         | 2022-09-01 10:43:00 | 2022-09-15 10:30:00 |
| 18      | -79.90889 | 43.25761 | 16                         | 2022-10-13 13:15:09 | 2022-10-27 09:02:03 |
| 18      | -79.90889 | 43.25761 | 20                         | 2022-11-15 09:27:00 | 2022-11-29 10:59:00 |
| 18      | -79.90889 | 43.25761 | 15                         | 2022-12-06 10:30:00 | 2022-12-20 10:26:00 |
| 18      | -79.90889 | 43.25761 | 22                         | 2023-01-20 13:29:00 | 2023-02-10 11:55:00 |
| 18      | -79.90889 | 43.25761 | 26                         | 2023-03-02 16:01:00 | 2023-03-15 13:02:00 |
| 18      | -79.90889 | 43.25761 | 33                         | 2023-04-06 12:09:00 | 2023-04-20 11:05:00 |
| 18      | -79.90889 | 43.25761 | 22                         | 2023-05-17 16:12:00 | 2023-05-31 15:46:00 |
| 19      | -79.78008 | 43.27556 | 37                         | 2022-03-01 16:21:34 | 2022-03-15 14:10:00 |
| 19      | -79.78008 | 43.27556 | 32                         | 2022-03-28 16:38:00 | 2022-04-11 14:20:00 |
| 19      | -79.78008 | 43.27556 | 34                         | 2022-07-21 15:59:58 | 2022-08-04 16:46:00 |
| 19      | -79.78008 | 43.27556 | 31                         | 2022-08-11 16:12:24 | 2022-08-25 14:45:00 |
| 19      | -79.78008 | 43.27556 | 25                         | 2022-09-01 16:25:00 | 2022-09-15 15:13:00 |
| 19      | -79.78008 | 43.27556 | 22                         | 2022-10-13 10:07:58 | 2022-10-27 11:43:03 |
| 19      | -79.78008 | 43.27556 | 21                         | 2022-11-14 15:53:00 | 2022-11-28 15:13:00 |
| 19      | -79.78008 | 43.27556 | 23                         | 2022-12-05 09:36:00 | 2022-12-19 09:23:00 |
| 19      | -79.78008 | 43.27556 | 28                         | 2023-01-21 09:36:00 | 2023-02-10 14:14:00 |
| 19      | -79.78008 | 43.27556 | 34                         | 2023-03-03 09:24:00 | 2023-03-16 09:55:00 |
| 19      | -79.78008 | 43.27556 | 37                         | 2023-04-07 09:35:00 | 2023-04-20 14:07:00 |
| 19      | -79.78008 | 43.27556 | 32                         | 2023-05-17 09:45:00 | 2023-05-31 10:09:00 |
| 20      | -79.80758 | 43.25468 | 37                         | 2022-03-02 11:37:00 | 2022-03-16 11:44:00 |
| 20      | -79.80758 | 43.25468 | 32                         | 2022-03-28 14:50:00 | 2022-04-11 13:21:00 |
| 21      | -79.83783 | 43.26147 | 30                         | 2022-03-02 10:55:00 | 2022-03-16 11:24:00 |
| 21      | -79.83783 | 43.26147 | 27                         | 2022-08-12 13:38:00 | 2022-08-26 10:33:00 |
| 21      | -79.83783 | 43.26147 | 22                         | 2022-11-15 11:24:00 | 2022-11-29 12:25:00 |
| 21      | -79.83783 | 43.26147 | 30                         | 2023-03-03 12:28:00 | 2023-03-16 12:01:00 |
| 22      | -79.82556 | 43.25508 | 31                         | 2022-03-02 11:20:00 | 2022-03-16 11:34:00 |
| 22      | -79.82556 | 43.25508 | 36                         | 2022-07-22 13:58:00 | 2022-08-05 14:15:00 |
| 22      | -79.82556 | 43.25508 | 22                         | 2022-10-12 15:29:00 | 2022-10-27 12:59:05 |
| 22      | -79.82556 | 43.25508 | 23                         | 2022-10-12 15:24:00 | 2022-10-27 12:57:05 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 22      | -79.82556 | 43.25508 | 25                         | 2023-01-21 12:50:47 | 2023-02-11 13:39:00 |
| 22      | -79.82556 | 43.25508 | 30                         | 2023-05-17 12:13:00 | 2023-05-31 12:54:00 |
| 23      | -79.83996 | 43.27012 | 31                         | 2022-02-08 10:12:00 | 2022-02-21 16:31:00 |
| 23      | -79.83996 | 43.27012 | 35                         | 2022-03-02 10:44:00 | 2022-03-16 11:15:00 |
| 23      | -79.83996 | 43.27012 | 28                         | 2022-03-28 14:36:00 | 2022-04-11 12:11:00 |
| 23      | -79.83996 | 43.27012 | 31                         | 2022-07-22 13:27:00 | 2022-08-05 13:49:00 |
| 23      | -79.83996 | 43.27012 | 28                         | 2022-08-12 13:28:00 | 2022-08-26 10:42:00 |
| 23      | -79.83996 | 43.27012 | 22                         | 2022-09-02 11:46:41 | 2022-09-16 14:24:00 |
| 23      | -79.83996 | 43.27012 | 19                         | 2022-10-13 10:27:00 | 2022-10-27 13:24:00 |
| 23      | -79.83996 | 43.27012 | 19                         | 2022-11-15 11:07:21 | 2022-11-29 12:25:00 |
| 23      | -79.83996 | 43.27012 | 16                         | 2022-12-05 11:56:00 | 2022-12-19 12:56:00 |
| 23      | -79.83996 | 43.27012 | 22                         | 2023-01-21 13:49:41 | 2023-02-10 13:52:00 |
| 23      | -79.83996 | 43.27012 | 32                         | 2023-03-03 12:47:00 | 2023-03-16 12:19:00 |
| 23      | -79.83996 | 43.27012 | 33                         | 2023-04-06 15:22:00 | 2023-04-20 12:54:00 |
| 23      | -79.83996 | 43.27012 | 31                         | 2023-05-17 13:42:00 | 2023-05-31 13:28:00 |
| 24      | -79.80987 | 43.23355 | 35                         | 2022-02-08 11:05:00 | 2022-02-21 15:37:00 |
| 24      | -79.80987 | 43.23355 | 35                         | 2022-02-08 11:07:00 | 2022-02-21 15:39:00 |
| 24      | -79.80987 | 43.23355 | 37                         | 2022-07-21 16:33:39 | 2022-08-04 17:07:00 |
| 24      | -79.80987 | 43.23355 | 36                         | 2022-07-21 16:29:50 | 2022-08-04 17:05:00 |
| 24      | -79.80987 | 43.23355 | 22                         | 2022-10-12 14:41:00 | 2022-10-27 12:32:00 |
| 24      | -79.80987 | 43.23355 | 26                         | 2023-01-21 11:56:24 | 2023-02-11 11:58:00 |
| 24      | -79.80987 | 43.23355 | 25                         | 2023-01-21 11:51:00 | 2023-02-11 11:52:00 |
| 24      | -79.80987 | 43.23355 | 34                         | 2023-05-17 11:33:00 | 2023-05-31 11:25:00 |
| 24      | -79.80987 | 43.23355 | 29                         | 2023-05-17 11:28:00 | 2023-05-31 11:23:00 |
| 25      | -79.79859 | 43.24293 | 28                         | 2022-03-02 15:12:48 | 2022-03-16 12:10:00 |
| 25      | -79.79859 | 43.24293 | 31                         | 2022-08-12 11:13:15 | 2022-08-26 10:06:00 |
| 25      | -79.79859 | 43.24293 | 20                         | 2022-11-14 15:16:00 | 2022-11-28 14:35:00 |
| 25      | -79.79859 | 43.24293 | 19                         | 2022-11-14 15:17:00 | 2022-11-28 14:36:00 |
| 25      | -79.79859 | 43.24293 | 30                         | 2023-03-03 10:54:00 | 2023-03-16 11:17:00 |
| 26      | -79.79966 | 43.24815 | 34                         | 2022-02-08 11:33:00 | 2022-02-21 15:26:00 |
| 26      | -79.79966 | 43.24815 | 34                         | 2022-03-02 11:50:00 | 2022-03-16 12:02:00 |
| 26      | -79.79966 | 43.24815 | 30                         | 2022-03-28 15:02:00 | 2022-04-11 13:29:00 |
| 27      | -79.80232 | 43.25612 | 35                         | 2022-03-02 14:50:56 | 2022-03-16 11:52:00 |
| 27      | -79.80232 | 43.25612 | 30                         | 2022-08-12 11:27:00 | 2022-08-26 09:55:00 |
| 27      | -79.80232 | 43.25612 | 21                         | 2022-11-14 15:38:00 | 2022-11-28 14:52:00 |
| 27      | -79.80232 | 43.25612 | 34                         | 2023-03-03 12:05:00 | 2023-03-16 11:37:00 |
| 28      | -79.91160 | 43.24346 | 29                         | 2022-03-29 10:00:00 | 2022-04-12 10:22:00 |
| 28      | -79.91160 | 43.24346 | 20                         | 2022-09-01 13:43:00 | 2022-09-15 12:18:00 |
| 28      | -79.91160 | 43.24346 | 34                         | 2023-04-07 15:09:00 | 2023-04-21 10:27:00 |
| 29      | -79.85793 | 43.23566 | 36                         | 2022-03-01 12:00:00 | 2022-03-15 12:01:00 |
| 29      | -79.85793 | 43.23566 | 27                         | 2022-08-11 12:48:00 | 2022-08-25 11:38:00 |
| 29      | -79.85793 | 43.23566 | 3                          | 2022-11-14 12:07:00 | 2022-11-28 12:07:00 |
| 29      | -79.85793 | 43.23566 | 30                         | 2023-03-03 13:20:00 | 2023-03-16 13:35:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 30      | -79.86243 | 43.23386 | 41                         | 2022-03-01 11:47:03 | 2022-03-15 11:06:00 |
| 30      | -79.86243 | 43.23386 | 33                         | 2022-08-11 12:38:05 | 2022-08-25 11:31:00 |
| 30      | -79.86243 | 43.23386 | 22                         | 2022-11-14 11:53:00 | 2022-11-28 23:57:00 |
| 30      | -79.86243 | 43.23386 | 29                         | 2023-03-05 13:16:00 | 2023-03-16 13:52:00 |
| 31      | -79.78822 | 43.24164 | 6                          | 2022-03-01 15:58:00 | 2022-03-15 13:54:00 |
| 31      | -79.78822 | 43.24164 | 31                         | 2022-03-01 16:00:18 | 2022-03-15 13:56:00 |
| 31      | -79.78822 | 43.24164 | 27                         | 2022-08-11 15:48:00 | 2022-08-25 14:26:00 |
| 31      | -79.78822 | 43.24164 | 29                         | 2022-08-11 15:50:00 | 2022-08-25 14:28:00 |
| 31      | -79.78822 | 43.24164 | 23                         | 2022-11-14 15:00:00 | 2022-11-28 14:26:00 |
| 31      | -79.78822 | 43.24164 | 31                         | 2023-03-03 10:26:00 | 2023-03-16 10:51:00 |
| 31      | -79.78822 | 43.24164 | 32                         | 2023-03-03 10:29:00 | 2023-03-16 10:59:00 |
| 32      | -79.79567 | 43.23573 | 31                         | 2022-03-28 15:32:00 | 2022-04-11 13:44:00 |
| 32      | -79.79567 | 43.23573 | 33                         | 2022-03-28 15:23:00 | 2022-04-11 13:40:00 |
| 32      | -79.79567 | 43.23573 | 27                         | 2022-09-02 11:11:07 | 2022-09-16 14:44:00 |
| 32      | -79.79567 | 43.23573 | 25                         | 2022-09-02 11:14:04 | 2022-09-16 14:45:00 |
| 32      | -79.79567 | 43.23573 | 16                         | 2022-12-05 11:25:00 | 2022-12-19 10:04:00 |
| 32      | -79.79567 | 43.23573 | 37                         | 2023-04-06 17:23:00 | 2023-04-20 13:37:00 |
| 32      | -79.79567 | 43.23573 | 38                         | 2023-04-06 17:19:00 | 2023-04-20 13:36:00 |
| 33      | -79.87714 | 43.25998 | 33                         | 2022-02-08 09:02:00 | 2022-02-21 17:35:00 |
| 33      | -79.87714 | 43.25998 | 33                         | 2022-07-22 12:14:00 | 2022-08-05 12:51:00 |
| 33      | -79.87714 | 43.25998 | 19                         | 2022-10-13 12:50:58 | 2022-10-27 14:11:00 |
| 33      | -79.87714 | 43.25998 | 22                         | 2023-01-20 13:48:00 | 2023-02-10 12:12:00 |
| 33      | -79.87714 | 43.25998 | 24                         | 2023-05-17 15:35:00 | 2023-05-31 15:22:00 |
| 34      | -79.77688 | 43.24551 | 31                         | 2022-03-28 16:21:00 | 2022-04-11 13:59:00 |
| 34      | -79.77688 | 43.24551 | 25                         | 2022-09-02 11:28:25 | 2022-09-16 15:56:00 |
| 34      | -79.77688 | 43.24551 | 18                         | 2022-12-05 12:23:00 | 2022-12-19 09:50:00 |
| 34      | -79.77688 | 43.24551 | 18                         | 2022-12-05 12:26:00 | 2022-12-19 09:51:00 |
| 34      | -79.77688 | 43.24551 | 47                         | 2023-04-06 17:53:00 | 2023-04-20 13:54:00 |
| 35      | -79.85331 | 43.19501 | 41                         | 2022-03-01 14:15:00 | 2022-03-15 12:48:00 |
| 35      | -79.85331 | 43.19501 | 27                         | 2022-08-11 14:23:00 | 2022-08-25 13:09:00 |
| 35      | -79.85331 | 43.19501 | 2                          | 2022-11-14 13:39:00 | 2022-11-28 12:39:00 |
| 35      | -79.85331 | 43.19501 | 28                         | 2023-03-05 14:08:00 | 2023-03-16 15:52:00 |
| 36      | -79.85331 | 43.21803 | 47                         | 2022-03-01 12:43:00 | 2022-03-15 12:26:00 |
| 36      | -79.85331 | 43.21803 | 32                         | 2022-08-11 13:58:57 | 2022-08-25 12:52:00 |
| 36      | -79.85331 | 43.21803 | 33                         | 2023-03-03 14:00:00 | 2023-03-16 14:15:00 |
| 37      | -79.83018 | 43.22586 | 22                         | 2022-12-06 14:11:00 | 2022-12-20 14:15:00 |
| 37      | -79.83018 | 43.22586 | 41                         | 2023-04-07 13:33:00 | 2023-04-20 16:41:00 |
| 38      | -79.85261 | 43.20847 | 30                         | 2022-03-29 11:46:00 | 2022-04-12 11:33:00 |
| 38      | -79.85261 | 43.20847 | 24                         | 2022-09-01 14:55:00 | 2022-09-15 13:57:00 |
| 38      | -79.85261 | 43.20847 | 17                         | 2022-12-06 13:54:00 | 2022-12-20 14:28:00 |
| 38      | -79.85261 | 43.20847 | 35                         | 2023-04-07 13:03:00 | 2023-04-20 15:32:00 |
| 39      | -79.84907 | 43.22251 | 44                         | 2022-02-07 14:15:00 | 2022-02-21 12:18:00 |
| 39      | -79.84907 | 43.22251 | 34                         | 2022-07-21 14:08:00 | 2022-08-04 14:31:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 39      | -79.84907 | 43.22251 | 22                         | 2022-10-12 12:08:24 | 2022-10-27 09:51:00 |
| 39      | -79.84907 | 43.22251 | 22                         | 2022-10-12 12:09:00 | 2022-10-27 09:53:44 |
| 39      | -79.84907 | 43.22251 | 28                         | 2023-01-21 14:16:07 | 2023-02-11 14:19:00 |
| 39      | -79.84907 | 43.22251 | 25                         | 2023-05-16 15:35:00 | 2023-05-30 20:08:00 |
| 40      | -79.84268 | 43.23868 | 31                         | 2022-03-29 11:02:00 | 2022-04-12 11:03:00 |
| 40      | -79.84268 | 43.23868 | 25                         | 2022-09-01 14:26:00 | 2022-09-15 13:34:00 |
| 40      | -79.84268 | 43.23868 | 40                         | 2023-04-07 13:50:00 | 2023-04-20 17:00:00 |
| 41      | -79.88866 | 43.24066 | 44                         | 2022-02-07 13:52:00 | 2022-02-21 12:02:00 |
| 41      | -79.88866 | 43.24066 | 47                         | 2022-03-01 11:32:00 | 2022-03-15 10:57:00 |
| 41      | -79.88866 | 43.24066 | 34                         | 2022-03-29 10:14:00 | 2022-04-12 10:33:00 |
| 41      | -79.88866 | 43.24066 | 31                         | 2022-07-21 13:48:52 | 2022-08-04 14:19:00 |
| 41      | -79.88866 | 43.24066 | 28                         | 2022-08-11 12:23:16 | 2022-08-25 11:23:00 |
| 41      | -79.88866 | 43.24066 | 23                         | 2022-09-01 13:53:00 | 2022-09-15 12:29:00 |
| 41      | -79.88866 | 43.24066 | 23                         | 2022-10-12 11:49:00 | 2022-10-27 09:39:13 |
| 41      | -79.88866 | 43.24066 | 25                         | 2022-11-14 11:39:59 | 2022-11-28 11:45:00 |
| 41      | -79.88866 | 43.24066 | 28                         | 2023-01-21 14:34:27 | 2023-02-11 14:45:00 |
| 41      | -79.88866 | 43.24066 | 31                         | 2023-03-05 10:56:00 | 2023-03-16 14:38:00 |
| 41      | -79.88866 | 43.24066 | NA                         | 2023-04-07 15:25:00 | 2023-04-21 10:14:00 |
| 41      | -79.88866 | 43.24066 | 28                         | 2023-05-16 15:09:00 | 2023-05-30 19:50:00 |
| 42      | -79.87756 | 43.22143 | 34                         | 2022-03-01 12:19:00 | 2022-03-15 12:13:00 |
| 42      | -79.87756 | 43.22143 | 33                         | 2022-08-11 13:02:00 | 2022-08-25 11:50:00 |
| 42      | -79.87756 | 43.22143 | 23                         | 2022-11-15 10:23:00 | 2022-11-29 11:43:00 |
| 42      | -79.87756 | 43.22143 | 29                         | 2023-03-05 12:08:00 | 2023-03-16 15:15:00 |
| 43      | -79.86076 | 43.20169 | 41                         | 2022-03-01 13:06:00 | 2022-03-15 12:38:00 |
| 43      | -79.86076 | 43.20169 | 32                         | 2022-08-11 14:12:06 | 2022-08-25 13:01:00 |
| 43      | -79.86076 | 43.20169 | 23                         | 2022-11-14 13:24:00 | 2022-11-28 12:28:00 |
| 43      | -79.86076 | 43.20169 | 31                         | 2023-03-05 13:42:00 | 2023-03-16 15:36:00 |
| 44      | -80.15050 | 43.24760 | 47                         | 2022-03-01 09:19:00 | 2022-03-15 09:18:00 |
| 44      | -80.15050 | 43.24760 | 28                         | 2022-08-11 10:14:00 | 2022-08-25 10:14:00 |
| 44      | -80.15050 | 43.24760 | 24                         | 2022-11-14 10:47:00 | 2022-11-28 10:24:00 |
| 44      | -80.15050 | 43.24760 | NA                         | 2023-03-02 13:26:00 | 2023-03-15 11:55:00 |
| 45      | -79.99404 | 43.28260 | 34                         | 2022-02-07 11:25:00 | 2022-02-21 08:50:00 |
| 45      | -79.99404 | 43.28260 | 26                         | 2022-07-21 11:50:00 | 2022-08-04 12:08:00 |
| 45      | -79.99404 | 43.28260 | 23                         | 2022-10-12 10:58:00 | 2022-10-26 10:42:00 |
| 45      | -79.99404 | 43.28260 | 12                         | 2023-01-20 12:10:00 | 2023-02-10 11:16:00 |
| 45      | -79.99404 | 43.28260 | 28                         | 2023-05-16 13:53:00 | 2023-05-30 17:49:00 |
| 46      | -80.02639 | 43.39417 | 35                         | 2022-02-07 10:37:54 | 2022-02-21 10:27:00 |
| 46      | -80.02639 | 43.39417 | 27                         | 2022-07-21 11:24:20 | 2022-08-04 11:47:00 |
| 46      | -80.02639 | 43.39417 | 22                         | 2022-10-12 10:31:00 | 2022-10-26 10:17:00 |
| 46      | -80.02639 | 43.39417 | 26                         | 2023-01-20 11:41:00 | 2023-02-10 10:39:00 |
| 46      | -80.02639 | 43.39417 | 32                         | 2023-05-16 12:40:00 | 2023-05-30 17:20:00 |
| 47      | -79.89756 | 43.22818 | 35                         | 2022-03-01 11:12:00 | 2022-03-15 10:43:00 |
| 47      | -79.89756 | 43.22818 | 32                         | 2022-08-11 12:13:01 | 2022-08-25 11:04:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 47      | -79.89756 | 43.22818 | 23                         | 2022-11-14 11:24:00 | 2022-11-28 11:22:00 |
| 47      | -79.89756 | 43.22818 | 28                         | 2023-03-05 11:41:00 | 2023-03-16 14:54:00 |
| 48      | -79.90779 | 43.17532 | 46                         | 2022-03-29 12:11:00 | 2022-04-12 12:01:00 |
| 48      | -79.90779 | 43.17532 | 33                         | 2022-09-01 12:04:00 | 2022-09-15 11:47:00 |
| 48      | -79.90779 | 43.17532 | 53                         | 2023-04-07 12:02:00 | 2023-04-20 16:14:00 |
| 49      | -79.98018 | 43.39443 | 34                         | 2022-02-07 10:11:00 | 2022-02-21 10:06:00 |
| 49      | -79.98018 | 43.39443 | 29                         | 2022-07-21 11:05:00 | 2022-08-04 11:34:00 |
| 49      | -79.98018 | 43.39443 | 20                         | 2022-10-12 10:15:00 | 2022-10-26 10:01:00 |
| 49      | -79.98018 | 43.39443 | 24                         | 2023-01-20 11:19:08 | 2023-02-10 10:18:00 |
| 49      | -79.98018 | 43.39443 | 28                         | 2023-05-16 12:14:00 | 2023-05-30 16:56:00 |
| 50      | -80.02733 | 43.39694 | 34                         | 2022-03-28 10:06:00 | 2022-04-11 08:56:00 |
| 50      | -80.02733 | 43.39694 | 26                         | 2022-09-01 09:44:00 | 2022-09-15 09:44:00 |
| 50      | -80.02733 | 43.39694 | 18                         | 2022-12-06 09:31:00 | 2022-12-20 09:38:00 |
| 50      | -80.02733 | 43.39694 | 35                         | 2023-04-06 11:00:00 | 2023-04-20 10:12:00 |
| 51      | -80.01173 | 43.19608 | 40                         | 2022-03-28 12:34:00 | 2022-04-11 10:56:00 |
| 51      | -80.01173 | 43.19608 | 25                         | 2022-09-01 11:42:00 | 2022-09-15 11:23:00 |
| 51      | -80.01173 | 43.19608 | 39                         | 2023-04-07 16:55:00 | 2023-04-21 11:32:00 |
| 52      | -79.88608 | 43.23003 | 32                         | 2022-03-29 10:33:00 | 2022-04-12 10:43:00 |
| 52      | -79.88608 | 43.23003 | 30                         | 2022-09-01 14:04:00 | 2022-09-15 12:38:00 |
| 52      | -79.88608 | 43.23003 | 35                         | 2023-04-07 14:34:00 | 2023-04-21 10:00:00 |
| 53      | -79.74238 | 43.22062 | 51                         | 2022-03-29 13:13:00 | 2022-04-12 12:51:00 |
| 53      | -79.74238 | 43.22062 | 27                         | 2022-09-01 15:53:00 | 2022-09-15 14:50:00 |
| 53      | -79.74238 | 43.22062 | 21                         | 2022-12-05 10:22:00 | 2022-12-19 10:20:00 |
| 53      | -79.74238 | 43.22062 | 39                         | 2023-04-07 10:35:00 | 2023-04-20 14:36:00 |
| 54      | -79.76893 | 43.19156 | 37                         | 2022-03-29 12:44:00 | 2022-04-12 12:28:00 |
| 54      | -79.76893 | 43.19156 | 35                         | 2022-03-29 12:46:00 | 2022-04-12 12:31:00 |
| 54      | -79.76893 | 43.19156 | 27                         | 2022-09-01 15:25:00 | 2022-09-15 14:20:00 |
| 54      | -79.76893 | 43.19156 | 25                         | 2022-09-01 15:27:00 | 2022-09-15 14:22:00 |
| 54      | -79.76893 | 43.19156 | 27                         | 2022-12-05 11:08:00 | 2022-12-19 10:37:00 |
| 54      | -79.76893 | 43.19156 | 25                         | 2022-12-05 11:00:00 | 2022-12-19 10:39:00 |
| 54      | -79.76893 | 43.19156 | 43                         | 2023-04-07 11:02:00 | 2023-04-20 15:05:00 |
| 54      | -79.76893 | 43.19156 | 44                         | 2023-04-07 11:05:00 | 2023-04-20 15:02:00 |
| 55      | -79.86829 | 43.25531 | 33                         | 2022-02-08 08:23:00 | 2022-02-21 17:56:00 |
| 55      | -79.86829 | 43.25531 | 34                         | 2022-07-22 12:47:00 | 2022-08-05 13:14:00 |
| 55      | -79.86829 | 43.25531 | 19                         | 2022-10-13 11:32:14 | 2022-10-27 14:03:00 |
| 55      | -79.86829 | 43.25531 | 25                         | 2023-05-17 14:30:00 | 2023-05-31 14:20:00 |
| 56      | -79.96290 | 43.22282 | 31                         | 2022-07-21 13:27:00 | 2022-08-04 14:01:00 |
| 56      | -79.96290 | 43.22282 | 20                         | 2022-10-12 11:28:41 | 2022-10-27 09:20:00 |
| 56      | -79.96290 | 43.22282 | 25                         | 2023-01-21 15:17:00 | 2023-02-11 15:12:00 |
| 56      | -79.96290 | 43.22282 | 26                         | 2023-01-21 15:13:00 | 2023-02-11 15:10:00 |
| 56      | -79.96290 | 43.22282 | 24                         | 2023-05-16 14:40:00 | 2023-05-30 18:33:00 |
| 56      | -79.96290 | 43.22282 | 25                         | 2023-05-16 14:33:00 | 2023-05-30 18:29:00 |
| 57      | -79.80905 | 43.12410 | 36                         | 2022-03-01 14:49:00 | 2022-03-15 13:12:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 57      | -79.80905 | 43.12410 | 31                         | 2022-08-11 14:49:08 | 2022-08-25 13:36:00 |
| 57      | -79.80905 | 43.12410 | 25                         | 2022-11-14 14:06:00 | 2022-11-28 13:35:00 |
| 57      | -79.80905 | 43.12410 | 33                         | 2023-03-05 15:38:00 | 2023-03-16 16:21:00 |
| 58      | -79.96591 | 43.22730 | 39                         | 2022-03-01 10:23:00 | 2022-03-15 10:23:00 |
| 58      | -79.96591 | 43.22730 | 36                         | 2022-03-01 10:46:00 | 2022-03-15 10:25:00 |
| 58      | -79.96591 | 43.22730 | 30                         | 2022-08-11 11:53:35 | 2022-08-25 10:46:00 |
| 58      | -79.96591 | 43.22730 | 29                         | 2022-08-11 11:57:00 | 2022-08-25 10:47:00 |
| 58      | -79.96591 | 43.22730 | 22                         | 2022-11-14 10:10:58 | 2022-11-28 10:57:00 |
| 58      | -79.96591 | 43.22730 | 21                         | 2022-11-14 10:06:00 | 2022-11-28 10:58:00 |
| 58      | -79.96591 | 43.22730 | 28                         | 2023-03-02 15:08:00 | 2023-03-15 12:35:00 |
| 58      | -79.96591 | 43.22730 | 30                         | 2023-03-02 15:02:00 | 2023-03-15 12:32:00 |
| 59      | -79.63123 | 43.22078 | 61                         | 2022-02-07 15:14:00 | 2022-02-21 13:50:00 |
| 59      | -79.63123 | 43.22078 | 35                         | 2022-07-21 15:37:00 | 2022-08-04 16:09:00 |
| 59      | -79.63123 | 43.22078 | 24                         | 2022-10-12 13:57:00 | 2022-10-27 10:49:00 |
| 59      | -79.63123 | 43.22078 | 26                         | 2023-01-21 10:42:07 | 2023-02-11 10:54:00 |
| 59      | -79.63123 | 43.22078 | 29                         | 2023-05-17 10:36:00 | 2023-05-31 10:57:00 |
| 60      | -79.94183 | 43.21791 | 38                         | 2022-03-28 12:59:00 | 2022-04-11 11:14:00 |
| 60      | -79.94183 | 43.21791 | 25                         | 2022-09-01 12:24:00 | 2022-09-15 12:04:00 |
| 60      | -79.94183 | 43.21791 | 49                         | 2023-04-07 15:48:00 | 2023-04-21 10:47:00 |
| 61      | -79.72187 | 43.22515 | 39                         | 2022-03-01 15:26:00 | 2022-03-15 13:37:00 |
| 61      | -79.72187 | 43.22515 | 34                         | 2022-08-11 15:20:08 | 2022-08-25 14:08:00 |
| 61      | -79.72187 | 43.22515 | 25                         | 2022-11-14 14:36:00 | 2022-11-28 14:05:00 |
| 61      | -79.72187 | 43.22515 | 33                         | 2023-03-03 09:55:00 | 2023-03-16 10:22:00 |
| 62      | -79.68842 | 43.22587 | 45                         | 2022-02-07 15:36:00 | 2022-02-21 14:08:00 |
| 62      | -79.68842 | 43.22587 | 39                         | 2022-07-21 15:10:39 | 2022-08-04 16:22:00 |
| 62      | -79.68842 | 43.22587 | 42                         | 2022-07-21 15:14:44 | 2022-08-04 16:24:00 |
| 62      | -79.68842 | 43.22587 | 25                         | 2022-10-12 13:40:00 | 2022-10-27 11:08:09 |
| 62      | -79.68842 | 43.22587 | 26                         | 2023-01-21 10:22:00 | 2023-02-11 10:32:00 |
| 62      | -79.68842 | 43.22587 | 26                         | 2023-01-21 10:22:47 | 2023-02-11 10:32:00 |
| 62      | -79.68842 | 43.22587 | 30                         | 2023-05-17 10:13:00 | 2023-05-31 10:33:00 |
| 63      | -79.73423 | 43.21724 | 43                         | 2022-02-07 14:48:00 | 2022-02-21 12:46:00 |
| 63      | -79.73423 | 43.21724 | 41                         | 2022-07-21 14:51:17 | 2022-08-04 14:54:00 |
| 63      | -79.73423 | 43.21724 | 26                         | 2022-10-12 13:24:00 | 2022-10-27 10:28:04 |
| 63      | -79.73423 | 43.21724 | 28                         | 2023-01-21 11:11:29 | 2023-02-11 11:24:00 |
| 63      | -79.73423 | 43.21724 | 32                         | 2023-05-16 16:30:00 | 2023-05-30 20:57:00 |
| 64      | -79.86795 | 43.25734 | 30                         | 2022-03-02 09:58:00 | 2022-03-16 10:12:00 |
| 64      | -79.86795 | 43.25734 | 31                         | 2022-08-12 12:55:00 | 2022-08-26 11:15:00 |
| 64      | -79.86795 | 43.25734 | 20                         | 2022-11-15 11:51:00 | 2022-11-29 13:10:00 |
| 64      | -79.86795 | 43.25734 | 30                         | 2023-03-02 17:10:00 | 2023-03-15 14:24:00 |
| 65      | -79.86636 | 43.26305 | 27                         | 2022-02-08 09:24:00 | 2022-02-21 16:46:00 |
| 65      | -79.86636 | 43.26305 | 28                         | 2022-02-08 09:27:00 | 2022-02-21 16:50:00 |
| 65      | -79.86636 | 43.26305 | 29                         | 2022-07-22 14:29:00 | 2022-08-05 13:34:00 |
| 65      | -79.86636 | 43.26305 | 29                         | 2022-07-22 14:35:00 | 2022-08-05 13:36:00 |

| Site ID | Longitude | Latitude | Concentration (ppb) | Start Time          | <b>End Time</b>     |
|---------|-----------|----------|---------------------|---------------------|---------------------|
| 65      | -79.86636 | 43.26305 | 16                  | 2022-10-13 11:14:00 | 2022-10-27 13:45:00 |
| 65      | -79.86636 | 43.26305 | 16                  | 2022-10-13 11:16:24 | 2022-10-27 13:46:59 |
| 65      | -79.86636 | 43.26305 | 13                  | 2023-01-21 16:15:27 | 2023-02-11 15:48:00 |
| 65      | -79.86636 | 43.26305 | 19                  | 2023-01-21 16:11:00 | 2023-02-11 15:51:00 |
| 65      | -79.86636 | 43.26305 | 23                  | 2023-05-17 14:57:00 | 2023-05-31 14:48:00 |
| 65      | -79.86636 | 43.26305 | 22                  | 2023-05-17 14:51:00 | 2023-05-31 14:50:00 |
| 66      | -79.88054 | 43.34545 | 35                  | 2022-03-01 08:34:00 | 2022-03-15 08:39:00 |
| 66      | -79.88054 | 43.34545 | 34                  | 2022-08-11 09:35:00 | 2022-08-25 09:17:00 |
| 66      | -79.88054 | 43.34545 | 36                  | 2023-03-02 11:03:00 | 2023-03-15 10:49:00 |
| 69      | -79.83052 | 43.24328 | 32                  | 2022-07-21 17:15:00 | 2022-08-05 14:08:00 |
| 69      | -79.83052 | 43.24328 | 27                  | 2022-08-12 11:53:03 | 2022-08-26 10:20:00 |
| 69      | -79.83052 | 43.24328 | 23                  | 2022-09-02 10:53:03 | 2022-09-16 15:02:00 |
| 69      | -79.83052 | 43.24328 | 20                  | 2022-10-12 14:55:00 | 2022-10-27 12:42:00 |
| 69      | -79.83052 | 43.24328 | 21                  | 2022-11-15 10:48:00 | 2022-11-29 12:09:00 |
| 69      | -79.83052 | 43.24328 | 14                  | 2022-12-05 11:43:00 | 2022-12-19 11:07:00 |
| 69      | -79.83052 | 43.24328 | 24                  | 2023-01-21 12:12:23 | 2023-02-11 13:05:00 |

# Appendix E: Nitrogen Dioxide Passive Sampling Concentration Data

NA values in the concentration field represent values below the detection limit.

| Site ID | Longitud<br>e          | Latitude             | Concentration (ppb) | <b>Start Time</b>                          | End Time                                   |
|---------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 0       | -79.97277              | 43.22930             | 7                   | 2022-03-28 12:04:00                        | 2022-04-11 10:32:00                        |
| 0       | -79.97277              | 43.22930             | 4                   | 2022-03-28 12:08:00                        | 2022-04-11 10:34:00                        |
| 0       | -79.97277              | 43.22930             | 4                   | 2022-09-01 11:18:00                        | 2022-09-15 11:00:00                        |
| 0       | -79.97277              | 43.22930             | 3                   | 2022-09-01 11:21:00                        | 2022-09-15 11:02:00                        |
| 0       | -79.97277              | 43.22930             | 5                   | 2023-04-07 16:12:00                        | 2023-04-21 11:07:00                        |
| 0       | -79.97277              | 43.22930             | 4                   | 2023-04-07 16:09:00                        | 2023-04-21 11:05:00                        |
| 1       | -79.96449              | 43.27027             | 7                   | 2022-03-01 09:56:00                        | 2022-03-15 09:50:00                        |
| 1       | -79.96449              | 43.27027             | 4                   | 2022-08-11 10:42:00                        | 2022-08-25 10:14:00                        |
| 1       | -79.96449              | 43.27027             | 8                   | 2022-11-14 09:43:00                        | 2022-11-28 09:57:00                        |
| 1       | -79.96449              | 43.27027             | 8                   | 2023-03-02 12:00:00                        | 2023-03-15 11:21:00                        |
| 2       | -79.93388              | 43.26768             | 5                   | 2022-03-28 11:15:00                        | 2022-04-11 10:10:00                        |
| 2       | -79.93388              | 43.26768             | 3                   | 2022-09-01 10:55:00                        | 2022-09-15 10:41:00                        |
| 2       | -79.93388              | 43.26768             | 7                   | 2022-12-06 10:08:00                        | 2022-12-20 10:43:00                        |
| 2       | -79.93388              | 43.26768             | 3                   | 2023-04-06 11:47:00                        | 2023-04-20 10:47:00                        |
| 3       | -79.90811              | 43.32617             | 5                   | 2022-02-07 09:22:00                        | 2022-02-21 09:29:00                        |
| 3       | -79.90811              | 43.32617             | 4                   | 2022-07-21 10:40:00                        | 2022-08-04 11:17:00                        |
| 3       | -79.90811              | 43.32617             | 8                   | 2022-10-12 09:52:00                        | 2022-10-26 09:42:00                        |
| 3       | -79.90811              | 43.32617             | 5                   | 2023-01-20 10:53:00                        | 2023-02-10 09:49:00                        |
| 3       | -79.90811              | 43.32617             | 5                   | 2023-05-16 11:41:00                        | 2023-05-30 16:20:00                        |
| 4       | -79.86379              | 43.27244             | 7                   | 2022-03-28 13:45:00                        | 2022-04-11 11:56:00                        |
| 4       | -79.86379              | 43.27244             | 5                   | 2022-09-02 11:56:16                        | 2022-09-16 14:15:00                        |
| 4       | -79.86379              | 43.27244             | 9                   | 2022-12-06 11:52:00                        | 2022-12-19 12:44:00                        |
| 4       | -79.86379              | 43.27244             | 5                   | 2023-04-06 15:04:00                        | 2023-04-20 12:39:00                        |
| 5       | -79.91126              | 43.26163             | 8                   | 2022-02-07 12:07:00                        | 2022-02-21 10:57:00                        |
| 5       | -79.91126              | 43.26163             | 3                   | 2022-07-21 12:35:00                        | 2022-08-04 13:42:00                        |
| 5       | -79.91126              | 43.26163             | 9                   | 2022-10-13 13:08:01                        | 2022-10-27 08:48:00                        |
| 5       | -79.91126              | 43.26163             | 8                   | 2023-01-20 13:10:00                        | 2023-02-10 11:42:00                        |
| 5       | -79.91126              | 43.26163             | 6                   | 2023-05-17 16:25:00                        | 2023-05-31 16:00:00                        |
| 6       | -79.90107              | 43.33951             | 5                   | 2022-02-07 09:42:00                        | 2022-02-21 09:45:00                        |
| 6       | -79.90107              | 43.33951             | 3                   | 2022-07-21 10:23:00                        | 2022-08-04 11:06:00                        |
| 6       | -79.90107              | 43.33951             | 5                   | 2022-10-12 09:39:00                        | 2022-10-26 09:30:00                        |
| 6       | -79.90107              | 43.33951             | 5                   | 2023-01-20 10:34:00<br>2023-05-16 11:03:00 | 2023-02-10 09:32:00<br>2023-05-30 15:59:00 |
| 6       | -79.90107              | 43.33951             | 3                   | 2022-03-02 08:47:00                        |                                            |
| 7       | -79.88915<br>-79.88915 | 43.25292<br>43.25292 | 12                  | 2022-08-12 14:06:00                        | 2022-03-16 10:49:00<br>2022-08-26 11:53:00 |
| 7       | -79.88915              | 43.25292             | 13                  | 2022-08-12 14.00.00                        | 2022-08-20 11:33:00                        |
| 7       | -79.88915              | 43.25292             | 12                  | 2023-03-02 16:36:00                        | 2023-03-15 13:55:00                        |
| 8       | -79.89347              | 43.27198             | 5                   | 2022-03-28 10:55:00                        | 2022-04-11 09:32:00                        |
| 8       | -79.89347              | 43.27198             | 4                   | 2022-09-01 10:30:00                        | 2022-09-15 10:19:00                        |
| 3       | , ,                    | 15.27170             |                     | 2022 07 01 10.30.00                        | 2022 07 15 10.17.00                        |

| Site ID  | Longitud<br>e          | Latitude             | Concentration (ppb) | Start Time                                 | End Time                                   |
|----------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 8        | -79.89347              | 43.27198             | 7                   | 2022-12-06 11:08:00                        | 2022-12-20 10:09:00                        |
| 8        | -79.89347              | 43.27198             | 2                   | 2023-04-06 12:27:00                        | 2023-04-20 11:18:00                        |
| 9        | -79.84130              | 43.25292             | 11                  | 2022-02-08 10:29:52                        | 2022-02-21 16:17:00                        |
| 9        | -79.84130              | 43.25292             | 5                   | 2022-07-22 13:12:00                        | 2022-08-05 13:58:00                        |
| 9        | -79.84130              | 43.25292             | 11                  | 2022-10-13 10:48:00                        | 2022-10-27 13:11:00                        |
| 9        | -79.84130              | 43.25292             | 10                  | 2023-01-21 13:08:00                        | 2023-02-11 13:53:00                        |
| 9        | -79.84130              | 43.25292             | 11                  | 2023-05-17 13:23:00                        | 2023-05-31 13:10:00                        |
| 10       | -79.81977              | 43.24809             | 5                   | 2022-07-21 16:57:00                        | 2022-08-05 14:25:00                        |
| 10       | -79.81977              | 43.24809             | 11                  | 2022-10-12 15:06:00                        | 2022-10-27 12:48:00                        |
| 10       | -79.81977              | 43.24809             | 8                   | 2023-01-21 12:30:29                        | 2023-02-11 13:18:00                        |
| 10       | -79.81977              | 43.24809             | 9                   | 2023-05-17 11:54:00                        | 2023-05-31 11:50:00                        |
| 11       | -79.87039              | 43.24652             | 9                   | 2022-03-02 10:18:40                        | 2022-03-16 10:38:00                        |
| 11       | -79.87039              | 43.24652             | 7                   | 2022-08-12 12:15:00                        | 2022-08-26 11:37:00                        |
| 11       | -79.87039              | 43.24652             | 7                   | 2022-08-12 12:12:00                        | 2022-08-26 11:38:00                        |
| 11       | -79.87039              | 43.24652             | 9                   | 2022-11-15 09:59:00                        | 2022-11-29 11:25:00                        |
| 11       | -79.87039              | 43.24652             | 9                   | 2022-11-15 10:01:00                        | 2022-11-29 11:26:00                        |
| 11       | -79.87039              | 43.24652             | 9                   | 2023-03-02 17:58:00                        | 2023-03-15 14:57:00                        |
| 11       | -79.87039              | 43.24652             | 10                  | 2023-03-02 18:02:00                        | 2023-03-15 15:03:00                        |
| 12       | -79.86280              | 43.25830             | 9                   | 2022-02-08 09:44:00                        | 2022-02-21 17:10:00                        |
| 12       | -79.86280              | 43.25830             | 11                  | 2022-03-02 09:25:00                        | 2022-03-16 09:57:00                        |
| 12       | -79.86280              | 43.25830             | 10                  | 2022-03-28 13:59:00                        | 2022-04-11 11:46:00                        |
| 12       | -79.86280              | 43.25830             | 6                   | 2022-07-22 12:56:17                        | 2022-08-05 13:23:00                        |
| 12       | -79.86280              | 43.25830             | 7                   | 2022-08-12 13:12:00                        | 2022-08-26 10:59:00                        |
| 12       | -79.86280              | 43.25830             | 7                   | 2022-09-02 10:11:00                        | 2022-09-16 15:29:00                        |
| 12       | -79.86280              | 43.25830             | 11                  | 2022-10-13 11:01:00                        | 2022-10-27 13:36:00                        |
| 12       | -79.86280              | 43.25830             | 11                  | 2022-11-15 11:39:00                        | 2022-11-29 12:54:00                        |
| 12       | -79.86280              | 43.25830             | 12                  | 2022-12-06 12:04:00                        | 2022-12-19 11:37:00                        |
| 12       | -79.86280              | 43.25830             | 9                   | 2023-01-21 15:54:00                        | 2023-02-10 13:24:00                        |
| 12       | -79.86280              | 43.25830             | 9                   | 2023-03-02 17:31:00                        | 2023-03-15 14:40:00                        |
| 12       | -79.86280              | 43.25830             | 7                   | 2023-04-06 14:12:00                        | 2023-04-20 12:22:00                        |
| 12       | -79.86280              | 43.25830             | 10                  | 2023-05-17 14:08:00<br>2022-03-28 13:24:00 | 2023-05-31 13:53:00<br>2022-04-11 11:32:00 |
| 13<br>13 | -79.88769<br>-79.88769 | 43.26304<br>43.26304 | 11                  | 2022-09-01 10:12:00                        | 2022-04-11 11:32:00 2022-09-15 10:10:00    |
| 13       | -79.88769              | 43.26304             | 10                  | 2022-12-06 11:22:00                        | 2022-13-10.10.00                           |
| 13       | -79.88769              | 43.26304             | 7                   | 2023-04-06 13:21:00                        | 2023-04-20 12:02:00                        |
| 14       | -79.87515              | 43.25988             | 10                  | 2022-02-08 08:47:00                        | 2022-02-21 17:21:00                        |
| 14       | -79.87515              | 43.25988             | 6                   | 2022-07-22 12:27:00                        | 2022-08-05 13:03:00                        |
| 14       | -79.87515              | 43.25988             | 13                  | 2022-10-13 11:52:02                        | 2022-10-27 14:20:00                        |
| 14       | -79.87515              | 43.25988             | 10                  | 2023-01-20 14:01:00                        | 2023-02-10 12:57:00                        |
| 14       | -79.87515              | 43.25988             | 14                  | 2023-05-17 15:17:00                        | 2023-05-31 15:06:00                        |
| 15       | -79.85348              | 43.24520             | 8                   | 2022-03-28 14:19:00                        | 2022-04-11 12:26:00                        |
| 15       | -79.85348              | 43.24520             | 5                   | 2022-09-02 10:18:04                        | 2022-09-16 15:12:00                        |
|          |                        |                      |                     |                                            | ;                                          |

| Site ID  | Longitud<br>e          | Latitude             | Concentration (ppb) | Start Time                                 | End Time                                   |
|----------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 15       | -79.85348              | 43.24520             | 8                   | 2023-04-06 15:55:00                        | 2023-04-20 13:12:00                        |
| 16       | -79.76332              | 43.23767             | 9                   | 2022-02-07 16:03:00                        | 2022-02-21 14:35:00                        |
| 16       | -79.76332              | 43.23767             | 4                   | 2022-07-21 14:32:00                        | 2022-08-04 15:49:00                        |
| 16       | -79.76332              | 43.23767             | 9                   | 2022-10-12 14:22:00                        | 2022-10-27 11:28:00                        |
| 16       | -79.76332              | 43.23767             | 9                   | 2023-01-21 09:56:00                        | 2023-02-11 10:13:00                        |
| 16       | -79.76332              | 43.23767             | 6                   | 2023-05-16 16:08:00                        | 2023-05-30 20:32:00                        |
| 17       | -79.77257              | 43.26563             | 10                  | 2022-03-28 16:52:00                        | 2022-04-11 14:10:00                        |
| 17       | -79.77257              | 43.26563             | 7                   | 2022-09-01 16:17:00                        | 2022-09-15 15:06:00                        |
| 17       | -79.77257              | 43.26563             | 8                   | 2022-12-06 13:23:00                        | 2022-12-19 09:32:00                        |
| 17       | -79.77257              | 43.26563             | 9                   | 2023-04-07 09:56:00                        | 2023-04-20 14:17:00                        |
| 18       | -79.90889              | 43.25761             | 5                   | 2022-02-07 12:35:57                        | 2022-02-21 11:08:00                        |
| 18       | -79.90889              | 43.25761             | 8                   | 2022-03-01 10:23:00                        | 2022-03-15 10:07:00                        |
| 18       | -79.90889              | 43.25761             | 7                   | 2022-03-28 10:42:00                        | 2022-04-11 10:00:00                        |
| 18       | -79.90889              | 43.25761             | 4                   | 2022-07-21 12:14:00                        | 2022-08-04 13:49:00                        |
| 18       | -79.90889              | 43.25761             | 6                   | 2022-08-11 11:32:00                        | 2022-08-25 10:31:00                        |
| 18       | -79.90889              | 43.25761             | 5                   | 2022-09-01 10:43:00                        | 2022-09-15 10:30:00                        |
| 18       | -79.90889              | 43.25761             | 9                   | 2022-10-13 13:15:00                        | 2022-10-27 09:02:00                        |
| 18       | -79.90889              | 43.25761             | 9                   | 2022-11-15 09:27:00                        | 2022-11-29 10:59:00                        |
| 18       | -79.90889              | 43.25761             | 10                  | 2022-12-06 10:30:00                        | 2022-12-20 10:26:00                        |
| 18       | -79.90889              | 43.25761             | 8                   | 2023-01-20 13:26:00                        | 2023-02-10 11:55:00                        |
| 18       | -79.90889              | 43.25761             | 7                   | 2023-03-02 16:01:00                        | 2023-03-15 13:00:00                        |
| 18       | -79.90889              | 43.25761             | 5                   | 2023-04-06 12:08:00                        | 2023-04-20 11:04:00                        |
| 18       | -79.90889              | 43.25761             | 7                   | 2023-05-17 16:11:00                        | 2023-05-31 15:45:00                        |
| 19       | -79.78008              | 43.27556             | 9                   | 2022-03-01 16:21:00                        | 2022-03-15 14:09:00                        |
| 19       | -79.78008              | 43.27556             | 9                   | 2022-03-28 16:37:00                        | 2022-04-11 14:19:00                        |
| 19       | -79.78008              | 43.27556             | 10                  | 2022-07-21 15:58:00                        | 2022-08-04 16:46:00                        |
| 19       | -79.78008              | 43.27556             | 6                   | 2022-08-11 16:12:00                        | 2022-08-25 14:44:00                        |
| 19<br>19 | -79.78008<br>-79.78008 | 43.27556             | 6                   | 2022-09-01 16:25:00                        | 2022-09-15 15:12:00<br>2022-10-27 11:43:00 |
| 19       | -79.78008              | 43.27556<br>43.27556 | 14                  | 2022-10-13 10:07:00<br>2022-11-14 15:53:00 | 2022-10-27 11:43:00 2022-11-28 15:13:00    |
| 19       | -79.78008              | 43.27556             | 12                  | 2022-11-14 13.33.00                        | 2022-11-28 13.13.00 2022-12-19 09:23:00    |
| 19       | -79.78008              | 43.27556             | 9                   | 2023-01-21 09:35:00                        | 2023-02-10 14:13:00                        |
| 19       | -79.78008              | 43.27556             | 8                   | 2023-03-03 09:21:00                        | 2023-02-16 14:13:00                        |
| 19       | -79.78008              | 43.27556             | 7                   | 2023-04-07 09:34:00                        | 2023-04-20 14:07:00                        |
| 19       | -79.78008              | 43.27556             | 4                   | 2023-05-17 09:44:00                        | 2023-05-31 10:08:00                        |
| 20       | -79.80758              | 43.25468             | 8                   | 2022-02-08 12:03:00                        | 2022-02-21 15:14:00                        |
| 20       | -79.80758              | 43.25468             | 10                  | 2022-03-02 11:37:00                        | 2022-03-16 11:43:00                        |
| 20       | -79.80758              | 43.25468             | 10                  | 2022-03-28 14:50:00                        | 2022-04-11 13:20:00                        |
| 21       | -79.83783              | 43.26147             | 11                  | 2022-03-02 10:55:00                        | 2022-03-16 11:23:00                        |
| 21       | -79.83783              | 43.26147             | 7                   | 2022-08-12 13:38:59                        | 2022-08-26 10:32:00                        |
| 21       | -79.83783              | 43.26147             | 10                  | 2022-11-15 11:24:00                        | 2022-11-29 12:24:00                        |
| 21       | -79.83783              | 43.26147             | 9                   | 2023-03-03 12:27:00                        | 2023-03-16 12:00:00                        |
|          |                        |                      |                     |                                            |                                            |

| Site ID  | Longitud<br>e          | Latitude             | Concentration (ppb) | <b>Start Time</b>                          | End Time                                   |
|----------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 22       | -79.82556              | 43.25508             | 13                  | 2022-03-02 11:19:00                        | 2022-03-16 11:34:00                        |
| 22       | -79.82556              | 43.25508             | 5                   | 2022-07-22 13:58:00                        | 2022-08-05 14:15:00                        |
| 22       | -79.82556              | 43.25508             | 10                  | 2022-10-12 15:24:00                        | 2022-10-27 12:59:00                        |
| 22       | -79.82556              | 43.25508             | 11                  | 2022-10-12 15:24:00                        | 2022-10-27 12:56:00                        |
| 22       | -79.82556              | 43.25508             | 8                   | 2023-01-21 12:50:23                        | 2023-02-11 13:38:00                        |
| 22       | -79.82556              | 43.25508             | 12                  | 2023-05-17 12:12:00                        | 2023-05-31 12:53:00                        |
| 23       | -79.83996              | 43.27012             | 10                  | 2022-02-08 10:06:45                        | 2022-02-21 16:31:00                        |
| 23       | -79.83996              | 43.27012             | 11                  | 2022-03-02 10:43:00                        | 2022-03-16 11:15:00                        |
| 23       | -79.83996              | 43.27012             | 11                  | 2022-03-28 14:35:00                        | 2022-04-11 12:10:00                        |
| 23       | -79.83996              | 43.27012             | 8                   | 2022-07-22 13:27:00                        | 2022-08-05 13:49:00                        |
| 23       | -79.83996              | 43.27012             | 9                   | 2022-08-12 13:27:00                        | 2022-08-26 10:42:00                        |
| 23       | -79.83996              | 43.27012             | 7                   | 2022-09-02 11:45:59                        | 2022-09-16 14:24:00                        |
| 23       | -79.83996              | 43.27012             | 11                  | 2022-10-13 10:26:00                        | 2022-10-27 13:24:00                        |
| 23       | -79.83996              | 43.27012             | 14                  | 2022-11-15 11:04:00                        | 2022-11-29 12:36:00                        |
| 23       | -79.83996              | 43.27012             | 11                  | 2022-12-05 11:56:00                        | 2022-12-19 12:55:00                        |
| 23       | -79.83996              | 43.27012             | 9                   | 2023-01-21 13:49:00                        | 2023-02-10 13:51:00                        |
| 23       | -79.83996              | 43.27012             | 8                   | 2023-03-03 12:46:00                        | 2023-03-16 12:18:00                        |
| 23       | -79.83996              | 43.27012             | 9                   | 2023-04-06 15:22:00                        | 2023-04-20 12:53:00                        |
| 23       | -79.83996              | 43.27012             | 10                  | 2023-05-17 13:41:00                        | 2023-05-31 13:28:00                        |
| 24       | -79.80987              | 43.23355             | 6                   | 2022-02-08 11:04:00                        | 2022-02-21 15:37:00                        |
| 24       | -79.80987              | 43.23355             | 6                   | 2022-02-08 11:06:00                        | 2022-02-21 15:38:00                        |
| 24       | -79.80987              | 43.23355             | 5                   | 2022-07-21 16:33:00                        | 2022-08-04 17:06:00                        |
| 24       | -79.80987              | 43.23355             | 4                   | 2022-07-21 16:29:00                        | 2022-08-04 17:05:00                        |
| 24       | -79.80987              | 43.23355             | 8                   | 2022-10-12 14:41:00                        | 2022-10-27 12:31:00                        |
| 24       | -79.80987              | 43.23355             | 6                   | 2023-01-21 11:56:04                        | 2023-02-11 11:57:00                        |
| 24       | -79.80987              | 43.23355             | 7                   | 2023-01-21 11:50:00                        | 2023-02-11 11:52:00                        |
| 24       | -79.80987              | 43.23355             | 6                   | 2023-05-17 11:32:00                        | 2023-05-31 11:24:00                        |
| 24       | -79.80987              | 43.23355             | 7                   | 2023-05-17 11:28:00                        | 2023-05-31 11:22:00                        |
| 25       | -79.79859              | 43.24293             | 10                  | 2022-03-02 15:11:00                        | 2022-03-16 12:09:00                        |
| 25       | -79.79859              | 43.24293             | 7                   | 2022-08-12 11:09:00                        | 2022-08-26 10:05:00                        |
| 25       | -79.79859              | 43.24293             | 9                   | 2022-11-14 15:16:00                        | 2022-11-28 14:35:00                        |
| 25       | -79.79859              | 43.24293             | 9                   | 2022-11-14 15:17:00                        | 2022-11-28 14:36:00                        |
| 25<br>26 | -79.79859<br>70.70066  | 43.24293             | 9                   | 2023-03-03 10:53:00<br>2022-02-08 11:32:00 | 2023-03-16 11:17:00<br>2022-02-21 15:26:00 |
| 26       | -79.79966<br>-79.79966 | 43.24815<br>43.24815 | 10                  | 2022-03-02 11:50:00                        | 2022-02-21 13.20.00 2022-03-16 12:02:00    |
| 26       | -79.79966              | 43.24815             | 7                   | 2022-03-02 11:30:00                        | 2022-03-10 12:02:00 2022-04-11 13:29:00    |
| 27       | -79.80232              | 43.25612             | 14                  | 2022-03-28 13:02:00                        | 2022-04-11 13:29:00                        |
| 27       | -79.80232<br>-79.80232 | 43.25612             | 8                   | 2022-08-12 11:27:00                        | 2022-08-26 09:55:00                        |
| 27       | -79.80232<br>-79.80232 | 43.25612             | 16                  | 2022-08-12 11.27.00                        | 2022-08-20 09.53:00                        |
| 27       | -79.80232              | 43.25612             | 12                  | 2023-03-03 12:03:00                        | 2023-03-16 11:36:00                        |
| 28       | -79.91160              | 43.24346             | 10                  | 2022-03-03 12:03:00                        | 2022-04-12 10:21:00                        |
| 28       | -79.91160              | 43.24346             | 5                   | 2022-09-01 13:43:00                        | 2022-09-15 12:18:00                        |
| 20       | , , , , , , 1100       | 13.2 13.70           | 3                   | 2022 07 01 13.43.00                        | 2022 07 13 12.10.00                        |

| Site ID  | Longitud<br>e          | Latitude             | Concentration (ppb) | <b>Start Time</b>                          | End Time                                   |
|----------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 28       | -79.91160              | 43.24346             | 9                   | 2023-04-07 15:08:00                        | 2023-04-21 10:27:00                        |
| 29       | -79.85793              | 43.23566             | 8                   | 2022-03-01 12:00:00                        | 2022-03-15 12:00:00                        |
| 29       | -79.85793              | 43.23566             | 5                   | 2022-08-11 12:47:00                        | 2022-08-25 11:38:00                        |
| 29       | -79.85793              | 43.23566             | 8                   | 2022-11-14 12:07:00                        | 2022-11-28 12:07:00                        |
| 29       | -79.85793              | 43.23566             | 8                   | 2023-03-03 13:19:00                        | 2023-03-16 13:35:00                        |
| 30       | -79.86243              | 43.23386             | 7                   | 2022-03-01 11:43:03                        | 2022-03-15 11:06:00                        |
| 30       | -79.86243              | 43.23386             | 5                   | 2022-08-11 12:37:00                        | 2022-08-25 11:31:00                        |
| 30       | -79.86243              | 43.23386             | 8                   | 2022-11-14 11:53:00                        | 2022-11-28 23:57:00                        |
| 30       | -79.86243              | 43.23386             | 8                   | 2023-03-05 13:15:00                        | 2023-03-16 13:51:00                        |
| 31       | -79.78822              | 43.24164             | 8                   | 2022-03-01 16:00:00                        | 2022-03-15 13:57:00                        |
| 31       | -79.78822              | 43.24164             | 5                   | 2022-08-11 15:48:00                        | 2022-08-25 14:26:00                        |
| 31       | -79.78822              | 43.24164             | 6                   | 2022-08-11 15:50:00                        | 2022-08-25 14:27:00                        |
| 31       | -79.78822              | 43.24164             | 10                  | 2022-11-14 15:00:00                        | 2022-11-28 14:25:00                        |
| 31       | -79.78822              | 43.24164             | 8                   | 2023-03-03 10:26:00                        | 2023-03-16 10:49:00                        |
| 31       | -79.78822              | 43.24164             | 9                   | 2023-03-03 10:29:00                        | 2023-03-16 10:58:00                        |
| 32       | -79.79567              | 43.23573             | 8                   | 2022-03-28 15:32:00                        | 2022-04-11 13:40:00                        |
| 32       | -79.79567              | 43.23573             | 8                   | 2022-03-28 15:21:00                        | 2022-04-11 13:43:00                        |
| 32       | -79.79567              | 43.23573             | 5                   | 2022-09-02 11:09:17                        | 2022-09-16 14:43:00                        |
| 32       | -79.79567              | 43.23573             | 4                   | 2022-09-02 11:13:00                        | 2022-09-16 14:44:00                        |
| 32       | -79.79567              | 43.23573             | 10                  | 2022-12-05 11:25:00                        | 2022-12-19 10:04:00                        |
| 32       | -79.79567              | 43.23573             | 3                   | 2023-04-06 17:22:00                        | 2023-04-20 13:37:00                        |
| 32       | -79.79567              | 43.23573             | 5                   | 2023-04-06 17:19:00                        | 2023-04-20 13:35:00                        |
| 33       | -79.87714              | 43.25998             | 9                   | 2022-02-08 09:01:00                        | 2022-02-21 17:35:00                        |
| 33       | -79.87714              | 43.25998             | 6                   | 2022-07-22 12:13:00                        | 2022-08-05 12:51:00                        |
| 33       | -79.87714              | 43.25998             | 14                  | 2022-10-13 12:50:01                        | 2022-10-27 14:12:00                        |
| 33       | -79.87714              | 43.25998             | 11                  | 2023-01-20 13:46:00                        | 2023-02-10 12:12:00                        |
| 33       | -79.87714              | 43.25998             | 12                  | 2023-05-17 15:34:00                        | 2023-05-31 15:21:00                        |
| 34       | -79.77688              | 43.24551             | 8                   | 2022-03-28 16:21:00                        | 2022-04-11 13:58:00                        |
| 34       | -79.77688              | 43.24551             | 6                   | 2022-09-02 11:26:37                        | 2022-09-16 15:55:00                        |
| 34       | -79.77688              | 43.24551             | 10                  | 2022-12-05 12:23:00                        | 2022-12-19 09:50:00                        |
| 34       | -79.77688              | 43.24551             | 9                   | 2022-12-05 12:26:00                        | 2022-12-19 09:51:00                        |
| 34       | -79.77688              | 43.24551             | 4                   | 2023-04-06 17:52:00                        | 2023-04-20 13:53:00                        |
| 35       | -79.85331              | 43.19501             | 6                   | 2022-03-01 14:14:00                        | 2022-03-15 12:48:00                        |
| 35       | -79.85331              | 43.19501             | 6                   | 2022-08-11 14:23:00                        | 2022-08-25 13:09:00                        |
| 35       | -79.85331              | 43.19501             | 8                   | 2022-11-14 13:39:00                        | 2022-11-28 12:39:00                        |
| 35       | -79.85331              | 43.19501             | 7                   | 2023-03-05 14:08:00<br>2022-03-01 12:39:46 | 2023-03-16 15:52:00                        |
| 36       | -79.85331              | 43.21803             | 6                   |                                            | 2022-03-15 12:25:00                        |
| 36<br>36 | -79.85331<br>-79.85331 | 43.21803<br>43.21803 | 5                   | 2022-08-11 13:58:00<br>2023-03-03 14:00:00 | 2022-08-25 12:52:00<br>2023-03-16 14:14:00 |
| 37       | -79.83331<br>-79.83018 | 43.21803             | 6                   | 2023-03-03 14:00:00 2022-03-29 11:26:00    | 2022-04-12 11:15:00                        |
| 37       | -79.83018              | 43.22586             | 9                   | 2022-03-29 11.20.00 2022-12-06 14:10:00    | 2022-04-12 11.13.00                        |
| 37       | -79.83018<br>-79.83018 | 43.22586             | 5                   | 2023-04-07 13:32:00                        | 2022-12-20 14:13:00 2023-04-20 16:41:00    |
| 31       | -17.03010              | 75.44500             | 3                   | 2025-0 <del>4-</del> 07 15.52.00           | 2023-04-20 10.41.00                        |

| Site ID  | Longitud<br>e          | Latitude             | Concentration (ppb) | Start Time                                 | End Time                                   |
|----------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 38       | -79.85261              | 43.20847             | 7                   | 2022-03-29 11:46:00                        | 2022-04-12 11:33:00                        |
| 38       | -79.85261              | 43.20847             | 4                   | 2022-09-01 14:55:00                        | 2022-09-15 13:57:00                        |
| 38       | -79.85261              | 43.20847             | 8                   | 2022-12-06 13:53:00                        | 2022-12-20 14:28:00                        |
| 38       | -79.85261              | 43.20847             | 4                   | 2023-04-07 13:02:00                        | 2023-04-20 15:31:00                        |
| 39       | -79.84907              | 43.22251             | 5                   | 2022-02-07 14:15:00                        | 2022-02-21 12:17:00                        |
| 39       | -79.84907              | 43.22251             | 4                   | 2022-07-21 14:06:00                        | 2022-08-04 14:30:00                        |
| 39       | -79.84907              | 43.22251             | 7                   | 2022-10-12 12:07:00                        | 2022-10-27 09:50:00                        |
| 39       | -79.84907              | 43.22251             | 6                   | 2022-10-12 12:09:00                        | 2022-10-27 09:53:00                        |
| 39       | -79.84907              | 43.22251             | 5                   | 2023-01-21 14:15:00                        | 2023-02-11 14:19:00                        |
| 39       | -79.84907              | 43.22251             | 9                   | 2023-05-16 15:34:00                        | 2023-05-30 20:08:00                        |
| 40       | -79.84268              | 43.23868             | 9                   | 2022-03-29 11:02:00                        | 2022-04-12 11:02:00                        |
| 40       | -79.84268              | 43.23868             | 5                   | 2022-09-01 14:26:00                        | 2022-09-15 13:34:00                        |
| 40       | -79.84268              | 43.23868             | 5                   | 2023-04-07 13:48:00                        | 2023-04-20 16:59:00                        |
| 41       | -79.88866              | 43.24066             | 4                   | 2022-02-07 13:51:00                        | 2022-02-21 12:02:00                        |
| 41       | -79.88866              | 43.24066             | 7                   | 2022-03-01 11:15:47                        | 2022-03-15 10:57:00                        |
| 41       | -79.88866              | 43.24066             | 8                   | 2022-03-29 10:13:00                        | 2022-04-12 10:32:00                        |
| 41       | -79.88866              | 43.24066             | 3                   | 2022-07-21 13:48:00                        | 2022-08-04 14:18:00                        |
| 41       | -79.88866              | 43.24066             | 5                   | 2022-08-11 12:23:00                        | 2022-08-25 11:23:00                        |
| 41       | -79.88866              | 43.24066             | 5                   | 2022-09-01 13:53:00                        | 2022-09-15 12:29:00                        |
| 41       | -79.88866              | 43.24066             | 8                   | 2022-10-12 11:48:00                        | 2022-10-27 09:39:00                        |
| 41       | -79.88866              | 43.24066             | 7                   | 2022-11-14 11:39:00                        | 2022-11-28 11:45:00                        |
| 41       | -79.88866              | 43.24066             | 5                   | 2023-01-21 14:34:00                        | 2023-02-11 14:45:00                        |
| 41       | -79.88866              | 43.24066             | 6                   | 2023-03-05 10:56:00                        | 2023-03-16 14:37:00                        |
| 41       | -79.88866              | 43.24066             | 4                   | 2023-04-07 15:24:00                        | 2023-04-21 10:14:00                        |
| 41       | -79.88866              | 43.24066             | 7                   | 2023-05-16 15:08:00                        | 2023-05-30 19:49:00                        |
| 42       | -79.87756              | 43.22143             | 7                   | 2022-03-01 12:19:00                        | 2022-03-15 12:13:00                        |
| 42       | -79.87756              | 43.22143             | 3                   | 2022-08-11 13:01:00                        | 2022-08-25 11:50:00                        |
| 42       | -79.87756              | 43.22143             | 8                   | 2022-11-15 10:22:00                        | 2022-11-29 11:43:00                        |
| 42       | -79.87756              | 43.22143             | 7                   | 2023-03-05 12:07:00                        | 2023-03-16 15:14:00                        |
| 43       | -79.86076              | 43.20169             | 5                   | 2022-03-01 13:06:00                        | 2022-03-15 12:38:00                        |
| 43       | -79.86076              | 43.20169             | 5                   | 2022-08-11 14:11:00                        | 2022-08-25 13:01:00                        |
| 43       | -79.86076              | 43.20169             | 7                   | 2022-11-14 13:24:00                        | 2022-11-28 12:28:00                        |
| 43       | -79.86076              | 43.20169             | 7                   | 2023-03-05 13:42:00                        | 2023-03-16 15:36:00                        |
| 44       | -80.15050              | 43.24760             | 3                   | 2022-03-01 09:19:00                        | 2022-03-15 09:17:00<br>2022-08-25 09:50:00 |
| 44<br>44 | -80.15050<br>-80.15050 | 43.24760<br>43.24760 | 2                   | 2022-08-11 10:14:00<br>2022-11-14 10:46:00 | 2022-08-23 09:30:00 2022-11-28 10:24:00    |
| 44       | -80.15050              | 43.24760             | 3                   | 2023-03-02 13:26:00                        | 2023-03-15 11:55:00                        |
| 45       | -79.99404              | 43.28260             | 3                   | 2022-02-07 11:24:00                        | 2022-02-21 08:50:00                        |
| 45       | -79.99404              | 43.28260             | 3                   | 2022-07-21 11:49:00                        | 2022-02-21 08:30:00                        |
| 45       | -79.99404              | 43.28260             | 5                   | 2022-10-12 10:58:00                        | 2022-08-04 12:08:00                        |
| 45       | -79.99404              | 43.28260             | 3                   | 2023-01-20 12:09:00                        | 2023-02-10 11:15:00                        |
| 45       | -79.99404              | 43.28260             | 5                   | 2023-01-20 12:09:00                        | 2023-02-10 11:13:00 2023-05-30 17:48:00    |
| 73       | 17.77707               | 13.20200             | 3                   | 2023 03 10 13.32.00                        | 2023 03 30 17.40.00                        |

| Site ID  | Longitud<br>e         | Latitude | Concentration (ppb) | Start Time          | End Time            |
|----------|-----------------------|----------|---------------------|---------------------|---------------------|
| 46       | -80.02639             | 43.39417 | 2                   | 2022-02-07 10:36:00 | 2022-02-21 10:26:00 |
| 46       | -80.02639             | 43.39417 | 3                   | 2022-07-21 11:24:00 | 2022-08-04 11:47:00 |
| 46       | -80.02639             | 43.39417 | 3                   | 2022-10-12 10:31:00 | 2022-10-26 10:17:00 |
| 46       | -80.02639             | 43.39417 | 4                   | 2023-01-20 11:40:00 | 2023-02-10 10:38:00 |
| 46       | -80.02639             | 43.39417 | 3                   | 2023-05-16 12:40:00 | 2023-05-30 17:19:00 |
| 47       | -79.89756             | 43.22818 | 6                   | 2022-03-01 11:12:00 | 2022-03-15 10:43:00 |
| 47       | -79.89756             | 43.22818 | 5                   | 2022-08-11 12:12:00 | 2022-08-25 11:04:00 |
| 47       | -79.89756             | 43.22818 | 7                   | 2022-11-14 11:24:00 | 2022-11-28 11:22:00 |
| 47       | -79.89756             | 43.22818 | 7                   | 2023-03-05 11:40:00 | 2023-03-16 14:53:00 |
| 48       | -79.90779             | 43.17532 | 6                   | 2022-03-29 12:11:00 | 2022-04-12 12:00:00 |
| 48       | -79.90779             | 43.17532 | 4                   | 2022-09-01 12:04:00 | 2022-09-15 11:47:00 |
| 48       | -79.90779             | 43.17532 | 4                   | 2023-04-07 12:01:00 | 2023-04-20 16:13:00 |
| 49       | -79.98018             | 43.39443 | 3                   | 2022-02-07 10:10:00 | 2022-02-21 10:06:00 |
| 49       | -79.98018             | 43.39443 | 3                   | 2022-07-21 11:04:00 | 2022-08-04 11:34:00 |
| 49       | -79.98018             | 43.39443 | 5                   | 2022-10-12 10:15:00 | 2022-10-26 10:01:00 |
| 49       | -79.98018             | 43.39443 | 4                   | 2023-01-20 11:18:00 | 2023-02-10 10:17:00 |
| 49       | -79.98018             | 43.39443 | 3                   | 2023-05-16 12:13:00 | 2023-05-30 16:56:00 |
| 50       | -80.02733             | 43.39694 | 2                   | 2022-03-28 10:05:00 | 2022-04-11 08:55:00 |
| 50       | -80.02733             | 43.39694 | 2                   | 2022-09-01 09:44:00 | 2022-09-15 09:44:00 |
| 50       | -80.02733             | 43.39694 | 5                   | 2022-12-06 09:31:00 | 2022-12-20 09:38:00 |
| 50       | -80.02733             | 43.39694 | 2                   | 2023-04-06 10:59:00 | 2023-04-20 10:11:00 |
| 51       | -80.01173             | 43.19608 | 4                   | 2022-03-28 12:33:00 | 2022-04-11 10:55:00 |
| 51       | -80.01173             | 43.19608 | 5                   | 2022-09-01 11:42:00 | 2022-09-15 11:22:00 |
| 51       | -80.01173             | 43.19608 | 3                   | 2023-04-07 16:54:00 | 2023-04-21 11:32:00 |
| 52       | -79.88608             | 43.23003 | 10                  | 2022-03-29 10:34:00 | 2022-04-12 10:43:00 |
| 52       | -79.88608             | 43.23003 | 5                   | 2022-09-01 14:04:00 | 2022-09-15 12:37:00 |
| 52       | -79.88608             | 43.23003 | 6                   | 2023-04-07 14:34:00 | 2023-04-21 10:00:00 |
| 53       | -79.74238             | 43.22062 | 5                   | 2022-03-29 13:13:00 | 2022-04-12 12:51:00 |
| 53       | -79.74238             | 43.22062 | 2                   | 2022-09-01 15:53:00 | 2022-09-15 14:50:00 |
| 53       | -79.74238             | 43.22062 | 8                   | 2022-12-05 10:21:00 | 2022-12-19 10:20:00 |
| 53       | -79.74238             | 43.22062 | 5                   | 2023-04-07 10:35:00 | 2023-04-20 14:36:00 |
| 54       | -79.76893             | 43.19156 | 9                   | 2022-03-29 12:44:00 | 2022-04-12 12:28:00 |
| 54       | -79.76893             | 43.19156 | 5                   | 2022-03-29 12:46:00 | 2022-04-12 12:30:00 |
| 54       | -79.76893             | 43.19156 | 4                   | 2022-09-01 15:25:00 | 2022-09-15 14:19:00 |
| 54       | -79.76893             | 43.19156 | 4                   | 2022-09-01 15:27:00 | 2022-09-15 14:21:00 |
| 54       | -79.76893             | 43.19156 | 7                   | 2022-12-05 11:07:00 | 2022-12-19 10:37:00 |
| 54       | -79.76893             | 43.19156 | 14                  | 2022-12-05 11:01:10 | 2022-12-19 10:38:00 |
| 54       | -79.76893             | 43.19156 | 2                   | 2023-04-07 11:01:00 | 2023-04-20 15:04:00 |
| 54<br>55 | -79.76893             | 43.19156 | 4                   | 2023-04-07 11:04:00 | 2023-04-20 15:02:00 |
| 55<br>55 | -79.86829             | 43.25531 | 9                   | 2022-02-08 08:23:00 | 2022-02-21 17:56:00 |
| 55<br>55 | -79.86829<br>70.86820 | 43.25531 | 7                   | 2022-07-22 12:46:00 | 2022-08-05 13:13:00 |
| 55       | -79.86829             | 43.25531 | 12                  | 2022-10-13 11:32:00 | 2022-10-27 14:02:00 |

| Site ID  | Longitud<br>e          | Latitude             | Concentration (ppb) | <b>Start Time</b>                          | End Time                                   |
|----------|------------------------|----------------------|---------------------|--------------------------------------------|--------------------------------------------|
| 55       | -79.86829              | 43.25531             | 10                  | 2023-01-20 14:20:00                        | 2023-02-10 13:12:00                        |
| 55       | -79.86829              | 43.25531             | 13                  | 2023-05-17 14:30:00                        | 2023-05-31 14:19:00                        |
| 56       | -79.96290              | 43.22282             | 2                   | 2022-07-21 13:26:00                        | 2022-08-04 14:01:00                        |
| 56       | -79.96290              | 43.22282             | 7                   | 2022-10-12 11:26:00                        | 2022-10-27 09:19:00                        |
| 56       | -79.96290              | 43.22282             | 4                   | 2023-01-21 15:16:10                        | 2023-02-11 15:12:00                        |
| 56       | -79.96290              | 43.22282             | 4                   | 2023-01-21 15:13:00                        | 2023-02-11 15:10:00                        |
| 56       | -79.96290              | 43.22282             | 7                   | 2023-05-16 14:40:00                        | 2023-05-30 18:32:00                        |
| 56       | -79.96290              | 43.22282             | 7                   | 2023-05-16 14:33:00                        | 2023-05-30 18:28:00                        |
| 57       | -79.80905              | 43.12410             | 4                   | 2022-03-01 14:49:00                        | 2022-03-15 13:11:00                        |
| 57       | -79.80905              | 43.12410             | 4                   | 2022-08-11 14:49:00                        | 2022-08-25 13:35:00                        |
| 57       | -79.80905              | 43.12410             | 5                   | 2022-11-14 14:06:00                        | 2022-11-28 13:35:00                        |
| 57       | -79.80905              | 43.12410             | 4                   | 2023-03-05 15:37:00                        | 2023-03-16 16:20:00                        |
| 58       | -79.96591              | 43.22730             | 5                   | 2022-03-01 10:40:00                        | 2022-03-15 10:22:00                        |
| 58       | -79.96591              | 43.22730             | 6                   | 2022-03-01 10:46:00                        | 2022-03-15 10:46:00                        |
| 58       | -79.96591              | 43.22730             | 5                   | 2022-08-11 11:53:00                        | 2022-08-25 10:45:00                        |
| 58       | -79.96591              | 43.22730             | 4                   | 2022-08-11 11:56:00                        | 2022-08-25 10:47:00                        |
| 58       | -79.96591              | 43.22730             | 6                   | 2022-11-14 10:10:00                        | 2022-11-28 10:57:00                        |
| 58       | -79.96591              | 43.22730             | 6                   | 2022-11-14 10:05:00                        | 2022-11-28 10:58:00                        |
| 58       | -79.96591              | 43.22730             | 6                   | 2023-03-02 15:08:00                        | 2023-03-15 12:34:00                        |
| 58       | -79.96591              | 43.22730             | 6                   | 2023-03-02 15:02:00                        | 2023-03-15 12:31:00                        |
| 59       | -79.63123              | 43.22078             | 5                   | 2022-02-07 15:13:00                        | 2022-02-21 13:50:00                        |
| 59       | -79.63123              | 43.22078             | 5                   | 2022-07-21 15:36:00                        | 2022-08-04 16:10:00                        |
| 59       | -79.63123              | 43.22078             | 7                   | 2022-10-12 13:57:00                        | 2022-10-27 10:49:00                        |
| 59       | -79.63123              | 43.22078             | 5                   | 2023-01-21 10:41:00                        | 2023-02-11 10:54:00                        |
| 59       | -79.63123              | 43.22078             | 4                   | 2023-05-17 10:35:00                        | 2023-05-31 10:56:00                        |
| 60       | -79.94183              | 43.21791             | 6                   | 2022-03-28 12:58:00                        | 2022-04-11 11:14:00                        |
| 60       | -79.94183              | 43.21791             | 3                   | 2022-09-01 12:23:00                        | 2022-09-15 12:04:00                        |
| 60       | -79.94183              | 43.21791             | 4                   | 2023-04-07 15:47:00                        | 2023-04-21 10:46:00                        |
| 61       | -79.72187              | 43.22515             | 6                   | 2022-03-01 15:26:00                        | 2022-03-15 13:36:00                        |
| 61       | -79.72187              | 43.22515             | 4                   | 2022-08-11 15:20:00                        | 2022-08-25 14:07:00                        |
| 61       | -79.72187              | 43.22515<br>43.22515 | 7                   | 2022-11-14 14:36:00                        | 2022-11-28 14:05:00                        |
| 61<br>62 | -79.72187<br>-79.68842 | 43.22513             | 7                   | 2023-03-03 09:54:00<br>2022-02-07 15:35:00 | 2023-03-16 10:21:00<br>2022-02-21 14:08:00 |
| 62       | -79.68842              | 43.22587             | 5                   | 2022-07-21 15:10:00                        | 2022-02-21 14:08:00 2022-08-04 16:22:00    |
| 62       | -79.68842              | 43.22587             | 4                   | 2022-07-21 15:10:00                        | 2022-08-04 16:24:00                        |
| 62       | -79.68842              | 43.22587             | 7                   | 2022-07-21 13:14:20                        | 2022-10-27 11:07:00                        |
| 62       | -79.68842              | 43.22587             | 6                   | 2023-01-21 10:22:00                        | 2023-02-11 10:31:00                        |
| 62       | -79.68842              | 43.22587             | 6                   | 2023-05-17 10:12:00                        | 2023-05-31 10:32:00                        |
| 63       | -79.73423              | 43.21724             | 4                   | 2022-02-07 14:48:00                        | 2022-02-21 12:46:00                        |
| 63       | -79.73423              | 43.21724             | 3                   | 2022-07-21 14:51:00                        | 2022-08-04 14:54:00                        |
| 63       | -79.73423              | 43.21724             | 5                   | 2022-10-12 13:24:00                        | 2022-10-27 10:28:00                        |
| 63       | -79.73423              | 43.21724             | 5                   | 2023-01-21 11:11:00                        | 2023-02-11 11:23:00                        |
|          |                        |                      | _                   |                                            |                                            |

| Site ID | Longitud<br>e | Latitude | Concentration (ppb) | Start Time          | End Time            |
|---------|---------------|----------|---------------------|---------------------|---------------------|
| 63      | -79.73423     | 43.21724 | 4                   | 2023-05-16 16:30:00 | 2023-05-30 20:56:00 |
| 64      | -79.86795     | 43.25734 | 12                  | 2022-03-02 09:57:00 | 2022-03-16 10:10:00 |
| 64      | -79.86795     | 43.25734 | 9                   | 2022-08-12 12:55:00 | 2022-08-26 11:15:00 |
| 64      | -79.86795     | 43.25734 | 13                  | 2022-11-15 11:51:00 | 2022-11-29 13:10:00 |
| 64      | -79.86795     | 43.25734 | 11                  | 2023-03-02 17:10:00 | 2023-03-15 14:24:00 |
| 65      | -79.86636     | 43.26305 | 10                  | 2022-02-08 09:23:00 | 2022-02-21 16:46:00 |
| 65      | -79.86636     | 43.26305 | 11                  | 2022-02-08 09:25:00 | 2022-02-21 16:46:00 |
| 65      | -79.86636     | 43.26305 | 8                   | 2022-07-22 14:28:00 | 2022-08-05 13:34:00 |
| 65      | -79.86636     | 43.26305 | 8                   | 2022-07-22 14:35:00 | 2022-08-05 13:35:00 |
| 65      | -79.86636     | 43.26305 | 14                  | 2022-10-13 11:14:00 | 2022-10-27 13:44:00 |
| 65      | -79.86636     | 43.26305 | 13                  | 2022-10-13 11:16:00 | 2022-10-27 13:46:00 |
| 65      | -79.86636     | 43.26305 | 11                  | 2023-01-21 16:14:00 | 2023-02-11 15:46:00 |
| 65      | -79.86636     | 43.26305 | 1                   | 2023-01-21 16:10:00 | 2023-02-11 15:51:00 |
| 65      | -79.86636     | 43.26305 | 14                  | 2023-05-17 14:56:00 | 2023-05-31 14:45:00 |
| 65      | -79.86636     | 43.26305 | 15                  | 2023-05-17 14:50:00 | 2023-05-31 14:49:00 |
| 66      | -79.88054     | 43.34545 | 5                   | 2022-03-01 08:25:00 | 2022-03-15 08:39:00 |
| 66      | -79.88054     | 43.34545 | 3                   | 2022-08-11 09:34:00 | 2022-08-25 09:15:00 |
| 66      | -79.88054     | 43.34545 | 7                   | 2022-11-14 09:16:00 | 2022-11-28 09:27:00 |
| 66      | -79.88054     | 43.34545 | 4                   | 2023-03-02 11:02:00 | 2023-03-15 10:49:00 |
| 69      | -79.83052     | 43.24328 | 5                   | 2022-07-21 17:14:00 | 2022-08-05 14:08:00 |
| 69      | -79.83052     | 43.24328 | 9                   | 2022-08-12 11:45:27 | 2022-08-26 10:20:00 |
| 69      | -79.83052     | 43.24328 | 5                   | 2022-09-02 10:52:32 | 2022-09-16 15:01:00 |
| 69      | -79.83052     | 43.24328 | 9                   | 2022-10-12 14:55:00 | 2022-10-27 12:41:00 |
| 69      | -79.83052     | 43.24328 | 9                   | 2022-11-15 10:48:00 | 2022-11-29 12:09:00 |
| 69      | -79.83052     | 43.24328 | 10                  | 2022-12-05 11:43:00 | 2022-12-19 11:07:00 |
| 69      | -79.83052     | 43.24328 | 6                   | 2023-01-21 12:11:00 | 2023-02-11 13:04:00 |

# Appendix F: Nitrogen Oxides Passive Sampling Concentration Data

NA values in the concentration field represent values below the detection limit.

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 0       | -79.97277 | 43.22930 | 7                          | 2022-03-28 12:04:00 | 2022-04-11 10:32:00 |
| 0       | -79.97277 | 43.22930 | 8                          | 2022-03-28 12:08:00 | 2022-04-11 10:34:00 |
| 0       | -79.97277 | 43.22930 | 6                          | 2022-09-01 11:18:00 | 2022-09-15 11:00:00 |
| 0       | -79.97277 | 43.22930 | 6                          | 2022-09-01 11:21:00 | 2022-09-15 11:02:00 |
| 0       | -79.97277 | 43.22930 | 8                          | 2023-04-07 16:12:00 | 2023-04-21 11:07:00 |
| 0       | -79.97277 | 43.22930 | 7                          | 2023-04-07 16:09:00 | 2023-04-21 11:05:00 |
| 1       | -79.96449 | 43.27027 | 13                         | 2022-03-01 09:56:00 | 2022-03-15 09:50:00 |
| 1       | -79.96449 | 43.27027 | 7                          | 2022-08-11 10:42:00 | 2022-08-25 10:14:00 |
| 1       | -79.96449 | 43.27027 | 13                         | 2022-11-14 09:43:00 | 2022-11-28 09:57:00 |
| 1       | -79.96449 | 43.27027 | 14                         | 2023-03-02 12:00:00 | 2023-03-15 11:21:00 |
| 2       | -79.93388 | 43.26768 | 7                          | 2022-03-28 11:15:00 | 2022-04-11 10:10:00 |
| 2       | -79.93388 | 43.26768 | 6                          | 2022-09-01 10:55:00 | 2022-09-15 10:41:00 |
| 2       | -79.93388 | 43.26768 | 12                         | 2022-12-06 10:08:00 | 2022-12-20 10:43:00 |
| 2       | -79.93388 | 43.26768 | 7                          | 2023-04-06 11:47:00 | 2023-04-20 10:47:00 |
| 3       | -79.90811 | 43.32617 | 9                          | 2022-02-07 09:22:00 | 2022-02-21 09:29:00 |
| 3       | -79.90811 | 43.32617 | 4                          | 2022-07-21 10:40:00 | 2022-08-04 11:17:00 |
| 3       | -79.90811 | 43.32617 | 10                         | 2022-10-12 09:52:00 | 2022-10-26 09:42:00 |
| 3       | -79.90811 | 43.32617 | 9                          | 2023-01-20 10:53:00 | 2023-02-10 09:49:00 |
| 3       | -79.90811 | 43.32617 | 7                          | 2023-05-16 11:41:00 | 2023-05-30 16:20:00 |
| 4       | -79.86379 | 43.27244 | 11                         | 2022-03-28 13:45:00 | 2022-04-11 11:56:00 |
| 4       | -79.86379 | 43.27244 | 11                         | 2022-09-02 11:56:16 | 2022-09-16 14:15:00 |
| 4       | -79.86379 | 43.27244 | 14                         | 2022-12-06 11:52:00 | 2022-12-19 12:44:00 |
| 4       | -79.86379 | 43.27244 | 9                          | 2023-04-06 15:04:00 | 2023-04-20 12:39:00 |
| 5       | -79.91126 | 43.26163 | 13                         | 2022-02-07 12:07:00 | 2022-02-21 10:57:00 |
| 5       | -79.91126 | 43.26163 | 3                          | 2022-07-21 12:35:00 | 2022-08-04 13:42:00 |
| 5       | -79.91126 | 43.26163 | 16                         | 2022-10-13 13:08:01 | 2022-10-27 08:48:00 |
| 5       | -79.91126 | 43.26163 | 14                         | 2023-01-20 13:10:00 | 2023-02-10 11:42:00 |
| 5       | -79.91126 | 43.26163 | 13                         | 2023-05-17 16:25:00 | 2023-05-31 16:00:00 |
| 6       | -79.90107 | 43.33951 | 10                         | 2022-02-07 09:42:00 | 2022-02-21 09:45:00 |
| 6       | -79.90107 | 43.33951 | 3                          | 2022-07-21 10:23:00 | 2022-08-04 11:06:00 |
| 6       | -79.90107 | 43.33951 | 12                         | 2022-10-12 09:39:00 | 2022-10-26 09:30:00 |
| 6       | -79.90107 | 43.33951 | 11                         | 2023-01-20 10:34:00 | 2023-02-10 09:32:00 |
| 6       | -79.90107 | 43.33951 | 6                          | 2023-05-16 11:03:00 | 2023-05-30 15:59:00 |
| 7       | -79.88915 | 43.25292 | 20                         | 2022-03-02 08:47:00 | 2022-03-16 10:49:00 |
| 7       | -79.88915 | 43.25292 | 11                         | 2022-08-12 14:06:00 | 2022-08-26 11:53:00 |
| 7       | -79.88915 | 43.25292 | 22                         | 2022-11-15 09:39:00 | 2022-11-29 11:12:00 |
| 7       | -79.88915 | 43.25292 | 22                         | 2023-03-02 16:36:00 | 2023-03-15 13:55:00 |
| 8       | -79.89347 | 43.27198 | 8                          | 2022-03-28 10:55:00 | 2022-04-11 09:32:00 |
| 8       | -79.89347 | 43.27198 | 8                          | 2022-09-01 10:30:00 | 2022-09-15 10:19:00 |
| 8       | -79.89347 | 43.27198 | 13                         | 2022-12-06 11:08:00 | 2022-12-20 10:09:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 8       | -79.89347 | 43.27198 | 8                          | 2023-04-06 12:27:00 | 2023-04-20 11:18:00 |
| 9       | -79.84130 | 43.25292 | 20                         | 2022-02-08 10:29:52 | 2022-02-21 16:17:00 |
| 9       | -79.84130 | 43.25292 | 5                          | 2022-07-22 13:12:00 | 2022-08-05 13:58:00 |
| 9       | -79.84130 | 43.25292 | 22                         | 2022-10-13 10:48:00 | 2022-10-27 13:11:00 |
| 9       | -79.84130 | 43.25292 | 19                         | 2023-01-21 13:08:00 | 2023-02-11 13:53:00 |
| 9       | -79.84130 | 43.25292 | 20                         | 2023-05-17 13:23:00 | 2023-05-31 13:10:00 |
| 10      | -79.81977 | 43.24809 | 5                          | 2022-07-21 16:57:00 | 2022-08-05 14:25:00 |
| 10      | -79.81977 | 43.24809 | 18                         | 2022-10-12 15:06:00 | 2022-10-27 12:48:00 |
| 10      | -79.81977 | 43.24809 | 17                         | 2023-01-21 12:30:29 | 2023-02-11 13:18:00 |
| 10      | -79.81977 | 43.24809 | 16                         | 2023-05-17 11:54:00 | 2023-05-31 11:50:00 |
| 11      | -79.87039 | 43.24652 | 15                         | 2022-03-02 10:18:40 | 2022-03-16 10:38:00 |
| 11      | -79.87039 | 43.24652 | 10                         | 2022-08-12 12:15:00 | 2022-08-26 11:37:00 |
| 11      | -79.87039 | 43.24652 | 10                         | 2022-08-12 12:12:00 | 2022-08-26 11:38:00 |
| 11      | -79.87039 | 43.24652 | 16                         | 2022-11-15 09:59:00 | 2022-11-29 11:25:00 |
| 11      | -79.87039 | 43.24652 | 15                         | 2022-11-15 10:01:00 | 2022-11-29 11:26:00 |
| 11      | -79.87039 | 43.24652 | 19                         | 2023-03-02 17:58:00 | 2023-03-15 14:57:00 |
| 11      | -79.87039 | 43.24652 | 17                         | 2023-03-02 18:02:00 | 2023-03-15 15:03:00 |
| 12      | -79.86280 | 43.25830 | NA                         | 2022-02-08 09:44:00 | 2022-02-21 17:10:00 |
| 12      | -79.86280 | 43.25830 | 18                         | 2022-03-02 09:25:00 | 2022-03-16 09:57:00 |
| 12      | -79.86280 | 43.25830 | 14                         | 2022-03-28 13:59:00 | 2022-04-11 11:46:00 |
| 12      | -79.86280 | 43.25830 | 6                          | 2022-07-22 12:56:17 | 2022-08-05 13:23:00 |
| 12      | -79.86280 | 43.25830 | 10                         | 2022-08-12 13:12:00 | 2022-08-26 10:59:00 |
| 12      | -79.86280 | 43.25830 | 11                         | 2022-09-02 10:11:00 | 2022-09-16 15:29:00 |
| 12      | -79.86280 | 43.25830 | 21                         | 2022-10-13 11:01:00 | 2022-10-27 13:36:00 |
| 12      | -79.86280 | 43.25830 | 23                         | 2022-11-15 11:39:00 | 2022-11-29 12:54:00 |
| 12      | -79.86280 | 43.25830 | 19                         | 2022-12-06 12:04:00 | 2022-12-19 11:37:00 |
| 12      | -79.86280 | 43.25830 | 16                         | 2023-01-21 15:54:00 | 2023-02-10 13:24:00 |
| 12      | -79.86280 | 43.25830 | 17                         | 2023-03-02 17:31:00 | 2023-03-15 14:40:00 |
| 12      | -79.86280 | 43.25830 | 15                         | 2023-04-06 14:12:00 | 2023-04-20 12:22:00 |
| 12      | -79.86280 | 43.25830 | NA                         | 2023-05-17 14:08:00 | 2023-05-31 13:53:00 |
| 13      | -79.88769 | 43.26304 | 14                         | 2022-03-28 13:24:00 | 2022-04-11 11:32:00 |
| 13      | -79.88769 | 43.26304 | 14                         | 2022-09-01 10:12:00 | 2022-09-15 10:10:00 |
| 13      | -79.88769 | 43.26304 | 18                         | 2022-12-06 11:22:00 | 2022-12-19 11:50:00 |
| 13      | -79.88769 | 43.26304 | 14                         | 2023-04-06 13:21:00 | 2023-04-20 12:02:00 |
| 14      | -79.87515 | 43.25988 | 17                         | 2022-02-08 08:47:00 | 2022-02-21 17:21:00 |
| 14      | -79.87515 | 43.25988 | 6                          | 2022-07-22 12:27:00 | 2022-08-05 13:03:00 |
| 14      | -79.87515 | 43.25988 | 25                         | 2022-10-13 11:52:02 | 2022-10-27 14:20:00 |
| 14      | -79.87515 | 43.25988 | 16                         | 2023-01-20 14:01:00 | 2023-02-10 12:57:00 |
| 14      | -79.87515 | 43.25988 | 23                         | 2023-05-17 15:17:00 | 2023-05-31 15:06:00 |
| 15      | -79.85348 | 43.24520 | 14                         | 2022-03-28 14:19:00 | 2022-04-11 12:26:00 |
| 15      | -79.85348 | 43.24520 | 12                         | 2022-09-02 10:18:04 | 2022-09-16 15:12:00 |
| 15      | -79.85348 | 43.24520 | 9                          | 2023-04-06 15:55:00 | 2023-04-20 13:12:00 |
| 16      | -79.76332 | 43.23767 | 23                         | 2022-02-07 16:03:00 | 2022-02-21 14:35:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 16      | -79.76332 | 43.23767 | 5                          | 2022-07-21 14:32:00 | 2022-08-04 15:49:00 |
| 16      | -79.76332 | 43.23767 | 18                         | 2022-10-12 14:22:00 | 2022-10-27 11:28:00 |
| 16      | -79.76332 | 43.23767 | 18                         | 2023-01-21 09:56:00 | 2023-02-11 10:13:00 |
| 16      | -79.76332 | 43.23767 | 13                         | 2023-05-16 16:08:00 | 2023-05-30 20:32:00 |
| 17      | -79.77257 | 43.26563 | 19                         | 2022-03-28 16:52:00 | 2022-04-11 14:10:00 |
| 17      | -79.77257 | 43.26563 | 13                         | 2022-09-01 16:17:00 | 2022-09-15 15:06:00 |
| 17      | -79.77257 | 43.26563 | 16                         | 2022-12-06 13:23:00 | 2022-12-19 09:32:00 |
| 17      | -79.77257 | 43.26563 | 13                         | 2023-04-07 09:56:00 | 2023-04-20 14:17:00 |
| 18      | -79.90889 | 43.25761 | 14                         | 2022-02-07 12:35:57 | 2022-02-21 11:08:00 |
| 18      | -79.90889 | 43.25761 | 15                         | 2022-03-01 10:23:00 | 2022-03-15 10:07:00 |
| 18      | -79.90889 | 43.25761 | 13                         | 2022-03-28 10:42:00 | 2022-04-11 10:00:00 |
| 18      | -79.90889 | 43.25761 | 4                          | 2022-07-21 12:14:00 | 2022-08-04 13:49:00 |
| 18      | -79.90889 | 43.25761 | 9                          | 2022-08-11 11:32:00 | 2022-08-25 10:31:00 |
| 18      | -79.90889 | 43.25761 | 12                         | 2022-09-01 10:43:00 | 2022-09-15 10:30:00 |
| 18      | -79.90889 | 43.25761 | 17                         | 2022-10-13 13:15:00 | 2022-10-27 09:02:00 |
| 18      | -79.90889 | 43.25761 | 18                         | 2022-11-15 09:27:00 | 2022-11-29 10:59:00 |
| 18      | -79.90889 | 43.25761 | 16                         | 2022-12-06 10:30:00 | 2022-12-20 10:26:00 |
| 18      | -79.90889 | 43.25761 | 15                         | 2023-01-20 13:26:00 | 2023-02-10 11:55:00 |
| 18      | -79.90889 | 43.25761 | 18                         | 2023-03-02 16:01:00 | 2023-03-15 13:00:00 |
| 18      | -79.90889 | 43.25761 | 10                         | 2023-04-06 12:08:00 | 2023-04-20 11:04:00 |
| 18      | -79.90889 | 43.25761 | 15                         | 2023-05-17 16:11:00 | 2023-05-31 15:45:00 |
| 19      | -79.78008 | 43.27556 | 20                         | 2022-03-01 16:21:00 | 2022-03-15 14:09:00 |
| 19      | -79.78008 | 43.27556 | 18                         | 2022-03-28 16:37:00 | 2022-04-11 14:19:00 |
| 19      | -79.78008 | 43.27556 | 11                         | 2022-07-21 15:58:00 | 2022-08-04 16:46:00 |
| 19      | -79.78008 | 43.27556 | 11                         | 2022-08-11 16:12:00 | 2022-08-25 14:44:00 |
| 19      | -79.78008 | 43.27556 | 11                         | 2022-09-01 16:25:00 | 2022-09-15 15:12:00 |
| 19      | -79.78008 | 43.27556 | 19                         | 2022-10-13 10:07:00 | 2022-10-27 11:43:00 |
| 19      | -79.78008 | 43.27556 | 28                         | 2022-11-14 15:53:00 | 2022-11-28 15:13:00 |
| 19      | -79.78008 | 43.27556 | 16                         | 2022-12-05 09:35:00 | 2022-12-19 09:23:00 |
| 19      | -79.78008 | 43.27556 | 18                         | 2023-01-21 09:35:00 | 2023-02-10 14:13:00 |
| 19      | -79.78008 | 43.27556 | 15                         | 2023-03-03 09:21:00 | 2023-03-16 09:54:00 |
| 19      | -79.78008 | 43.27556 | 15                         | 2023-04-07 09:34:00 | 2023-04-20 14:07:00 |
| 19      | -79.78008 | 43.27556 | 11                         | 2023-05-17 09:44:00 | 2023-05-31 10:08:00 |
| 20      | -79.80758 | 43.25468 | 17                         | 2022-02-08 12:03:00 | 2022-02-21 15:14:00 |
| 20      | -79.80758 | 43.25468 | 18                         | 2022-03-02 11:37:00 | 2022-03-16 11:43:00 |
| 20      | -79.80758 | 43.25468 | 15                         | 2022-03-28 14:50:00 | 2022-04-11 13:20:00 |
| 21      | -79.83783 | 43.26147 | 16                         | 2022-03-02 10:55:00 | 2022-03-16 11:23:00 |
| 21      | -79.83783 | 43.26147 | 12                         | 2022-08-12 13:38:59 | 2022-08-26 10:32:00 |
| 21      | -79.83783 | 43.26147 | 14                         | 2022-11-15 11:24:00 | 2022-11-29 12:24:00 |
| 21      | -79.83783 | 43.26147 | 17                         | 2023-03-03 12:27:00 | 2023-03-16 12:00:00 |
| 22      | -79.82556 | 43.25508 | 21                         | 2022-03-02 11:19:00 | 2022-03-16 11:34:00 |
| 22      | -79.82556 | 43.25508 | 5                          | 2022-07-22 13:58:00 | 2022-08-05 14:15:00 |
| 22      | -79.82556 | 43.25508 | 20                         | 2022-10-12 15:24:00 | 2022-10-27 12:59:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 22      | -79.82556 | 43.25508 | 19                         | 2022-10-12 15:24:00 | 2022-10-27 12:56:00 |
| 22      | -79.82556 | 43.25508 | 16                         | 2023-01-21 12:50:23 | 2023-02-11 13:38:00 |
| 22      | -79.82556 | 43.25508 | 20                         | 2023-05-17 12:12:00 | 2023-05-31 12:53:00 |
| 23      | -79.83996 | 43.27012 | 18                         | 2022-02-08 10:06:45 | 2022-02-21 16:31:00 |
| 23      | -79.83996 | 43.27012 | 20                         | 2022-03-02 10:43:00 | 2022-03-16 11:15:00 |
| 23      | -79.83996 | 43.27012 | 18                         | 2022-03-28 14:35:00 | 2022-04-11 12:10:00 |
| 23      | -79.83996 | 43.27012 | 10                         | 2022-07-22 13:27:00 | 2022-08-05 13:49:00 |
| 23      | -79.83996 | 43.27012 | 16                         | 2022-08-12 13:27:00 | 2022-08-26 10:42:00 |
| 23      | -79.83996 | 43.27012 | 12                         | 2022-09-02 11:45:59 | 2022-09-16 14:24:00 |
| 23      | -79.83996 | 43.27012 | 22                         | 2022-10-13 10:26:00 | 2022-10-27 13:24:00 |
| 23      | -79.83996 | 43.27012 | 30                         | 2022-11-15 11:04:00 | 2022-11-29 12:36:00 |
| 23      | -79.83996 | 43.27012 | 22                         | 2022-12-05 11:56:00 | 2022-12-19 12:55:00 |
| 23      | -79.83996 | 43.27012 | 16                         | 2023-03-03 12:46:00 | 2023-03-16 12:18:00 |
| 23      | -79.83996 | 43.27012 | 14                         | 2023-04-06 15:22:00 | 2023-04-20 12:53:00 |
| 23      | -79.83996 | 43.27012 | 19                         | 2023-05-17 13:41:00 | 2023-05-31 13:28:00 |
| 23      | -79.83996 | 43.27012 | NA                         | 2023-01-21 13:49:00 | 2023-02-10 13:51:00 |
| 24      | -79.80987 | 43.23355 | 16                         | 2022-02-08 11:04:00 | 2022-02-21 15:37:00 |
| 24      | -79.80987 | 43.23355 | 13                         | 2022-02-08 11:06:00 | 2022-02-21 15:38:00 |
| 24      | -79.80987 | 43.23355 | 5                          | 2022-07-21 16:33:00 | 2022-08-04 17:06:00 |
| 24      | -79.80987 | 43.23355 | 4                          | 2022-07-21 16:29:00 | 2022-08-04 17:05:00 |
| 24      | -79.80987 | 43.23355 | 12                         | 2022-10-12 14:41:00 | 2022-10-27 12:31:00 |
| 24      | -79.80987 | 43.23355 | 11                         | 2023-01-21 11:56:04 | 2023-02-11 11:57:00 |
| 24      | -79.80987 | 43.23355 | 12                         | 2023-01-21 11:50:00 | 2023-02-11 11:52:00 |
| 24      | -79.80987 | 43.23355 | 12                         | 2023-05-17 11:32:00 | 2023-05-31 11:24:00 |
| 24      | -79.80987 | 43.23355 | 12                         | 2023-05-17 11:28:00 | 2023-05-31 11:22:00 |
| 25      | -79.79859 | 43.24293 | 17                         | 2022-03-02 15:11:00 | 2022-03-16 12:09:00 |
| 25      | -79.79859 | 43.24293 | 10                         | 2022-08-12 11:09:00 | 2022-08-26 10:05:00 |
| 25      | -79.79859 | 43.24293 | 18                         | 2022-11-14 15:16:00 | 2022-11-28 14:35:00 |
| 25      | -79.79859 | 43.24293 | 19                         | 2022-11-14 15:17:00 | 2022-11-28 14:36:00 |
| 25      | -79.79859 | 43.24293 | 18                         | 2023-03-03 10:53:00 | 2023-03-16 11:17:00 |
| 26      | -79.79966 | 43.24815 | 19                         | 2022-02-08 11:32:00 | 2022-02-21 15:26:00 |
| 26      | -79.79966 | 43.24815 | 17                         | 2022-03-02 11:50:00 | 2022-03-16 12:02:00 |
| 26      | -79.79966 | 43.24815 | 16                         | 2022-03-28 15:02:00 | 2022-04-11 13:29:00 |
| 27      | -79.80232 | 43.25612 | 22                         | 2022-03-02 14:50:00 | 2022-03-16 11:51:00 |
| 27      | -79.80232 | 43.25612 | 16                         | 2022-08-12 11:27:00 | 2022-08-26 09:55:00 |
| 27      | -79.80232 | 43.25612 | 27                         | 2022-11-14 15:38:00 | 2022-11-28 14:51:00 |
| 27      | -79.80232 | 43.25612 | 25                         | 2023-03-03 12:03:00 | 2023-03-16 11:36:00 |
| 28      | -79.91160 | 43.24346 | 11                         | 2022-03-29 10:00:00 | 2022-04-12 10:21:00 |
| 28      | -79.91160 | 43.24346 | 9                          | 2022-09-01 13:43:00 | 2022-09-15 12:18:00 |
| 28      | -79.91160 | 43.24346 | 10                         | 2023-04-07 15:08:00 | 2023-04-21 10:27:00 |
| 29      | -79.85793 | 43.23566 | 13                         | 2022-03-01 12:00:00 | 2022-03-15 12:00:00 |
| 29      | -79.85793 | 43.23566 | 8                          | 2022-08-11 12:47:00 | 2022-08-25 11:38:00 |
| 29      | -79.85793 | 43.23566 | 17                         | 2022-11-14 12:07:00 | 2022-11-28 12:07:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 29      | -79.85793 | 43.23566 | 18                         | 2023-03-03 13:19:00 | 2023-03-16 13:35:00 |
| 30      | -79.86243 | 43.23386 | 13                         | 2022-03-01 11:43:03 | 2022-03-15 11:06:00 |
| 30      | -79.86243 | 43.23386 | 8                          | 2022-08-11 12:37:00 | 2022-08-25 11:31:00 |
| 30      | -79.86243 | 43.23386 | 18                         | 2023-03-05 13:15:00 | 2023-03-16 13:51:00 |
| 30      | -79.86243 | 43.23386 | NA                         | 2022-11-14 11:53:00 | 2022-11-28 23:57:00 |
| 31      | -79.78822 | 43.24164 | 15                         | 2022-03-01 16:00:00 | 2022-03-15 13:57:00 |
| 31      | -79.78822 | 43.24164 | 10                         | 2022-08-11 15:48:00 | 2022-08-25 14:26:00 |
| 31      | -79.78822 | 43.24164 | 11                         | 2022-08-11 15:50:00 | 2022-08-25 14:27:00 |
| 31      | -79.78822 | 43.24164 | 17                         | 2022-11-14 15:00:00 | 2022-11-28 14:25:00 |
| 31      | -79.78822 | 43.24164 | 18                         | 2023-03-03 10:26:00 | 2023-03-16 10:49:00 |
| 31      | -79.78822 | 43.24164 | 18                         | 2023-03-03 10:29:00 | 2023-03-16 10:58:00 |
| 32      | -79.79567 | 43.23573 | 11                         | 2022-03-28 15:32:00 | 2022-04-11 13:40:00 |
| 32      | -79.79567 | 43.23573 | 11                         | 2022-03-28 15:21:00 | 2022-04-11 13:43:00 |
| 32      | -79.79567 | 43.23573 | 5                          | 2022-09-02 11:09:17 | 2022-09-16 14:43:00 |
| 32      | -79.79567 | 43.23573 | 10                         | 2022-09-02 11:13:00 | 2022-09-16 14:44:00 |
| 32      | -79.79567 | 43.23573 | 18                         | 2022-12-05 11:25:00 | 2022-12-19 10:04:00 |
| 32      | -79.79567 | 43.23573 | 7                          | 2023-04-06 17:22:00 | 2023-04-20 13:37:00 |
| 32      | -79.79567 | 43.23573 | 5                          | 2023-04-06 17:19:00 | 2023-04-20 13:35:00 |
| 33      | -79.87714 | 43.25998 | 18                         | 2022-02-08 09:01:00 | 2022-02-21 17:35:00 |
| 33      | -79.87714 | 43.25998 | 6                          | 2022-07-22 12:13:00 | 2022-08-05 12:51:00 |
| 33      | -79.87714 | 43.25998 | 23                         | 2022-10-13 12:50:01 | 2022-10-27 14:12:00 |
| 33      | -79.87714 | 43.25998 | 18                         | 2023-01-20 13:46:00 | 2023-02-10 12:12:00 |
| 33      | -79.87714 | 43.25998 | 23                         | 2023-05-17 15:34:00 | 2023-05-31 15:21:00 |
| 34      | -79.77688 | 43.24551 | 11                         | 2022-03-28 16:21:00 | 2022-04-11 13:58:00 |
| 34      | -79.77688 | 43.24551 | 10                         | 2022-09-02 11:26:37 | 2022-09-16 15:55:00 |
| 34      | -79.77688 | 43.24551 | 15                         | 2022-12-05 12:23:00 | 2022-12-19 09:50:00 |
| 34      | -79.77688 | 43.24551 | 15                         | 2022-12-05 12:26:00 | 2022-12-19 09:51:00 |
| 34      | -79.77688 | 43.24551 | 8                          | 2023-04-06 17:52:00 | 2023-04-20 13:53:00 |
| 35      | -79.85331 | 43.19501 | 10                         | 2022-03-01 14:14:00 | 2022-03-15 12:48:00 |
| 35      | -79.85331 | 43.19501 | 9                          | 2022-08-11 14:23:00 | 2022-08-25 13:09:00 |
| 35      | -79.85331 | 43.19501 | 14                         | 2022-11-14 13:39:00 | 2022-11-28 12:39:00 |
| 35      | -79.85331 | 43.19501 | 18                         | 2023-03-05 14:08:00 | 2023-03-16 15:52:00 |
| 36      | -79.85331 | 43.21803 | 13                         | 2022-03-01 12:39:46 | 2022-03-15 12:25:00 |
| 36      | -79.85331 | 43.21803 | 8                          | 2022-08-11 13:58:00 | 2022-08-25 12:52:00 |
| 36      | -79.85331 | 43.21803 | 19                         | 2023-03-03 14:00:00 | 2023-03-16 14:14:00 |
| 37      | -79.83018 | 43.22586 | 15                         | 2022-03-29 11:26:00 | 2022-04-12 11:15:00 |
| 37      | -79.83018 | 43.22586 | 20                         | 2022-12-06 14:10:00 | 2022-12-20 14:15:00 |
| 37      | -79.83018 | 43.22586 | 9                          | 2023-04-07 13:32:00 | 2023-04-20 16:41:00 |
| 38      | -79.85261 | 43.20847 | 9                          | 2022-03-29 11:46:00 | 2022-04-12 11:33:00 |
| 38      | -79.85261 | 43.20847 | 7                          | 2022-09-01 14:55:00 | 2022-09-15 13:57:00 |
| 38      | -79.85261 | 43.20847 | 14                         | 2022-12-06 13:53:00 | 2022-12-20 14:28:00 |
| 38      | -79.85261 | 43.20847 | 7                          | 2023-04-07 13:02:00 | 2023-04-20 15:31:00 |
| 39      | -79.84907 | 43.22251 | 10                         | 2022-02-07 14:15:00 | 2022-02-21 12:17:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 39      | -79.84907 | 43.22251 | 4                          | 2022-07-21 14:06:00 | 2022-08-04 14:30:00 |
| 39      | -79.84907 | 43.22251 | 7                          | 2022-10-12 12:07:00 | 2022-10-27 09:50:00 |
| 39      | -79.84907 | 43.22251 | 10                         | 2022-10-12 12:09:00 | 2022-10-27 09:53:00 |
| 39      | -79.84907 | 43.22251 | 9                          | 2023-01-21 14:15:00 | 2023-02-11 14:19:00 |
| 39      | -79.84907 | 43.22251 | 11                         | 2023-05-16 15:34:00 | 2023-05-30 20:08:00 |
| 40      | -79.84268 | 43.23868 | 13                         | 2022-03-29 11:02:00 | 2022-04-12 11:02:00 |
| 40      | -79.84268 | 43.23868 | 9                          | 2022-09-01 14:26:00 | 2022-09-15 13:34:00 |
| 40      | -79.84268 | 43.23868 | 8                          | 2023-04-07 13:48:00 | 2023-04-20 16:59:00 |
| 41      | -79.88866 | 43.24066 | 9                          | 2022-02-07 13:51:00 | 2022-02-21 12:02:00 |
| 41      | -79.88866 | 43.24066 | 10                         | 2022-03-01 11:15:47 | 2022-03-15 10:57:00 |
| 41      | -79.88866 | 43.24066 | 10                         | 2022-03-29 10:13:00 | 2022-04-12 10:32:00 |
| 41      | -79.88866 | 43.24066 | 3                          | 2022-07-21 13:48:00 | 2022-08-04 14:18:00 |
| 41      | -79.88866 | 43.24066 | 8                          | 2022-08-11 12:23:00 | 2022-08-25 11:23:00 |
| 41      | -79.88866 | 43.24066 | 10                         | 2022-09-01 13:53:00 | 2022-09-15 12:29:00 |
| 41      | -79.88866 | 43.24066 | 12                         | 2022-10-12 11:48:00 | 2022-10-27 09:39:00 |
| 41      | -79.88866 | 43.24066 | 16                         | 2022-11-14 11:39:00 | 2022-11-28 11:45:00 |
| 41      | -79.88866 | 43.24066 | 16                         | 2023-03-05 10:56:00 | 2023-03-16 14:37:00 |
| 41      | -79.88866 | 43.24066 | 9                          | 2023-04-07 15:24:00 | 2023-04-21 10:14:00 |
| 41      | -79.88866 | 43.24066 | 14                         | 2023-05-16 15:08:00 | 2023-05-30 19:49:00 |
| 41      | -79.88866 | 43.24066 | NA                         | 2023-01-21 14:34:00 | 2023-02-11 14:45:00 |
| 42      | -79.87756 | 43.22143 | 12                         | 2022-03-01 12:19:00 | 2022-03-15 12:13:00 |
| 42      | -79.87756 | 43.22143 | 7                          | 2022-08-11 13:01:00 | 2022-08-25 11:50:00 |
| 42      | -79.87756 | 43.22143 | 8                          | 2022-11-15 10:22:00 | 2022-11-29 11:43:00 |
| 42      | -79.87756 | 43.22143 | 17                         | 2023-03-05 12:07:00 | 2023-03-16 15:14:00 |
| 43      | -79.86076 | 43.20169 | 12                         | 2022-03-01 13:06:00 | 2022-03-15 12:38:00 |
| 43      | -79.86076 | 43.20169 | 7                          | 2022-08-11 14:11:00 | 2022-08-25 13:01:00 |
| 43      | -79.86076 | 43.20169 | 13                         | 2022-11-14 13:24:00 | 2022-11-28 12:28:00 |
| 43      | -79.86076 | 43.20169 | 17                         | 2023-03-05 13:42:00 | 2023-03-16 15:36:00 |
| 44      | -80.15050 | 43.24760 | 6                          | 2022-03-01 09:19:00 | 2022-03-15 09:17:00 |
| 44      | -80.15050 | 43.24760 | 5                          | 2022-08-11 10:14:00 | 2022-08-25 09:50:00 |
| 44      | -80.15050 | 43.24760 | 9                          | 2022-11-14 10:46:00 | 2022-11-28 10:24:00 |
| 44      | -80.15050 | 43.24760 | 8                          | 2023-03-02 13:26:00 | 2023-03-15 11:55:00 |
| 45      | -79.99404 | 43.28260 | 7                          | 2022-02-07 11:24:00 | 2022-02-21 08:50:00 |
| 45      | -79.99404 | 43.28260 | 3                          | 2022-07-21 11:49:00 | 2022-08-04 12:08:00 |
| 45      | -79.99404 | 43.28260 | 7                          | 2022-10-12 10:58:00 | 2022-10-26 10:41:00 |
| 45      | -79.99404 | 43.28260 | 6                          | 2023-01-20 12:09:00 | 2023-02-10 11:15:00 |
| 45      | -79.99404 | 43.28260 | 8                          | 2023-05-16 13:52:00 | 2023-05-30 17:48:00 |
| 46      | -80.02639 | 43.39417 | 7                          | 2022-02-07 10:36:00 | 2022-02-21 10:26:00 |
| 46      | -80.02639 | 43.39417 | 3                          | 2022-07-21 11:24:00 | 2022-08-04 11:47:00 |
| 46      | -80.02639 | 43.39417 | 7                          | 2022-10-12 10:31:00 | 2022-10-26 10:17:00 |
| 46      | -80.02639 | 43.39417 | 7                          | 2023-01-20 11:40:00 | 2023-02-10 10:38:00 |
| 46      | -80.02639 | 43.39417 | 6                          | 2023-05-16 12:40:00 | 2023-05-30 17:19:00 |
| 47      | -79.89756 | 43.22818 | 11                         | 2022-03-01 11:12:00 | 2022-03-15 10:43:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 47      | -79.89756 | 43.22818 | 7                          | 2022-08-11 12:12:00 | 2022-08-25 11:04:00 |
| 47      | -79.89756 | 43.22818 | 13                         | 2022-11-14 11:24:00 | 2022-11-28 11:22:00 |
| 47      | -79.89756 | 43.22818 | 15                         | 2023-03-05 11:40:00 | 2023-03-16 14:53:00 |
| 48      | -79.90779 | 43.17532 | 10                         | 2022-03-29 12:11:00 | 2022-04-12 12:00:00 |
| 48      | -79.90779 | 43.17532 | 10                         | 2022-09-01 12:04:00 | 2022-09-15 11:47:00 |
| 48      | -79.90779 | 43.17532 | 8                          | 2023-04-07 12:01:00 | 2023-04-20 16:13:00 |
| 49      | -79.98018 | 43.39443 | 10                         | 2022-02-07 10:10:00 | 2022-02-21 10:06:00 |
| 49      | -79.98018 | 43.39443 | 3                          | 2022-07-21 11:04:00 | 2022-08-04 11:34:00 |
| 49      | -79.98018 | 43.39443 | 11                         | 2022-10-12 10:15:00 | 2022-10-26 10:01:00 |
| 49      | -79.98018 | 43.39443 | 9                          | 2023-01-20 11:18:00 | 2023-02-10 10:17:00 |
| 49      | -79.98018 | 43.39443 | 9                          | 2023-05-16 12:13:00 | 2023-05-30 16:56:00 |
| 50      | -80.02733 | 43.39694 | 5                          | 2022-03-28 10:05:00 | 2022-04-11 08:55:00 |
| 50      | -80.02733 | 43.39694 | 6                          | 2022-09-01 09:44:00 | 2022-09-15 09:44:00 |
| 50      | -80.02733 | 43.39694 | 8                          | 2022-12-06 09:31:00 | 2022-12-20 09:38:00 |
| 50      | -80.02733 | 43.39694 | 4                          | 2023-04-06 10:59:00 | 2023-04-20 10:11:00 |
| 51      | -80.01173 | 43.19608 | 8                          | 2022-03-28 12:33:00 | 2022-04-11 10:55:00 |
| 51      | -80.01173 | 43.19608 | 6                          | 2022-09-01 11:42:00 | 2022-09-15 11:22:00 |
| 51      | -80.01173 | 43.19608 | 8                          | 2023-04-07 16:54:00 | 2023-04-21 11:32:00 |
| 52      | -79.88608 | 43.23003 | 14                         | 2022-03-29 10:34:00 | 2022-04-12 10:43:00 |
| 52      | -79.88608 | 43.23003 | 11                         | 2022-09-01 14:04:00 | 2022-09-15 12:37:00 |
| 52      | -79.88608 | 43.23003 | 11                         | 2023-04-07 14:34:00 | 2023-04-21 10:00:00 |
| 53      | -79.74238 | 43.22062 | 8                          | 2022-03-29 13:13:00 | 2022-04-12 12:51:00 |
| 53      | -79.74238 | 43.22062 | 7                          | 2022-09-01 15:53:00 | 2022-09-15 14:50:00 |
| 53      | -79.74238 | 43.22062 | 15                         | 2022-12-05 10:21:00 | 2022-12-19 10:20:00 |
| 53      | -79.74238 | 43.22062 | 6                          | 2023-04-07 10:35:00 | 2023-04-20 14:36:00 |
| 54      | -79.76893 | 43.19156 | 9                          | 2022-03-29 12:44:00 | 2022-04-12 12:28:00 |
| 54      | -79.76893 | 43.19156 | 10                         | 2022-03-29 12:46:00 | 2022-04-12 12:30:00 |
| 54      | -79.76893 | 43.19156 | 10                         | 2022-09-01 15:25:00 | 2022-09-15 14:19:00 |
| 54      | -79.76893 | 43.19156 | 9                          | 2022-09-01 15:27:00 | 2022-09-15 14:21:00 |
| 54      | -79.76893 | 43.19156 | 13                         | 2022-12-05 11:07:00 | 2022-12-19 10:37:00 |
| 54      | -79.76893 | 43.19156 | 15                         | 2022-12-05 11:01:10 | 2022-12-19 10:38:00 |
| 54      | -79.76893 | 43.19156 | 5                          | 2023-04-07 11:01:00 | 2023-04-20 15:04:00 |
| 54      | -79.76893 | 43.19156 | 5                          | 2023-04-07 11:04:00 | 2023-04-20 15:02:00 |
| 55      | -79.86829 | 43.25531 | 17                         | 2022-02-08 08:23:00 | 2022-02-21 17:56:00 |
| 55      | -79.86829 | 43.25531 | 7                          | 2022-07-22 12:46:00 | 2022-08-05 13:13:00 |
| 55      | -79.86829 | 43.25531 | 23                         | 2022-10-13 11:32:00 | 2022-10-27 14:02:00 |
| 55      | -79.86829 | 43.25531 | 17                         | 2023-01-20 14:20:00 | 2023-02-10 13:12:00 |
| 55      | -79.86829 | 43.25531 | 23                         | 2023-05-17 14:30:00 | 2023-05-31 14:19:00 |
| 56      | -79.96290 | 43.22282 | NA                         | 2023-01-21 15:16:10 | 2023-02-11 15:12:00 |
| 56      | -79.96290 | 43.22282 | 2                          | 2022-07-21 13:26:00 | 2022-08-04 14:01:00 |
| 56      | -79.96290 | 43.22282 | 11                         | 2022-10-12 11:26:00 | 2022-10-27 09:19:00 |
| 56      | -79.96290 | 43.22282 | 9                          | 2023-01-21 15:13:00 | 2023-02-11 15:10:00 |
| 56      | -79.96290 | 43.22282 | 13                         | 2023-05-16 14:40:00 | 2023-05-30 18:32:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 56      | -79.96290 | 43.22282 | 12                         | 2023-05-16 14:33:00 | 2023-05-30 18:28:00 |
| 57      | -79.80905 | 43.12410 | 9                          | 2022-03-01 14:49:00 | 2022-03-15 13:11:00 |
| 57      | -79.80905 | 43.12410 | 5                          | 2022-08-11 14:49:00 | 2022-08-25 13:35:00 |
| 57      | -79.80905 | 43.12410 | 10                         | 2022-11-14 14:06:00 | 2022-11-28 13:35:00 |
| 57      | -79.80905 | 43.12410 | 12                         | 2023-03-05 15:37:00 | 2023-03-16 16:20:00 |
| 58      | -79.96591 | 43.22730 | 11                         | 2022-03-01 10:40:00 | 2022-03-15 10:22:00 |
| 58      | -79.96591 | 43.22730 | 11                         | 2022-03-01 10:46:00 | 2022-03-15 10:46:00 |
| 58      | -79.96591 | 43.22730 | 7                          | 2022-08-11 11:53:00 | 2022-08-25 10:45:00 |
| 58      | -79.96591 | 43.22730 | 7                          | 2022-08-11 11:56:00 | 2022-08-25 10:47:00 |
| 58      | -79.96591 | 43.22730 | 12                         | 2022-11-14 10:10:00 | 2022-11-28 10:57:00 |
| 58      | -79.96591 | 43.22730 | 12                         | 2022-11-14 10:05:00 | 2022-11-28 10:58:00 |
| 58      | -79.96591 | 43.22730 | 13                         | 2023-03-02 15:08:00 | 2023-03-15 12:34:00 |
| 58      | -79.96591 | 43.22730 | 13                         | 2023-03-02 15:02:00 | 2023-03-15 12:31:00 |
| 59      | -79.63123 | 43.22078 | 10                         | 2022-02-07 15:13:00 | 2022-02-21 13:50:00 |
| 59      | -79.63123 | 43.22078 | 6                          | 2022-07-21 15:36:00 | 2022-08-04 16:10:00 |
| 59      | -79.63123 | 43.22078 | 12                         | 2022-10-12 13:57:00 | 2022-10-27 10:49:00 |
| 59      | -79.63123 | 43.22078 | 5                          | 2023-01-21 10:41:00 | 2023-02-11 10:54:00 |
| 59      | -79.63123 | 43.22078 | 10                         | 2023-05-17 10:35:00 | 2023-05-31 10:56:00 |
| 60      | -79.94183 | 43.21791 | 9                          | 2022-03-28 12:58:00 | 2022-04-11 11:14:00 |
| 60      | -79.94183 | 43.21791 | 8                          | 2022-09-01 12:23:00 | 2022-09-15 12:04:00 |
| 60      | -79.94183 | 43.21791 | 8                          | 2023-04-07 15:47:00 | 2023-04-21 10:46:00 |
| 61      | -79.72187 | 43.22515 | 11                         | 2022-03-01 15:26:00 | 2022-03-15 13:36:00 |
| 61      | -79.72187 | 43.22515 | 8                          | 2022-08-11 15:20:00 | 2022-08-25 14:07:00 |
| 61      | -79.72187 | 43.22515 | 13                         | 2022-11-14 14:36:00 | 2022-11-28 14:05:00 |
| 61      | -79.72187 | 43.22515 | 14                         | 2023-03-03 09:54:00 | 2023-03-16 10:21:00 |
| 62      | -79.68842 | 43.22587 | 8                          | 2022-02-07 15:35:00 | 2022-02-21 14:08:00 |
| 62      | -79.68842 | 43.22587 | 5                          | 2022-07-21 15:10:00 | 2022-08-04 16:22:00 |
| 62      | -79.68842 | 43.22587 | 4                          | 2022-07-21 15:14:26 | 2022-08-04 16:24:00 |
| 62      | -79.68842 | 43.22587 | 13                         | 2022-10-12 13:40:00 | 2022-10-27 11:07:00 |
| 62      | -79.68842 | 43.22587 | 15                         | 2023-01-21 10:22:00 | 2023-02-11 10:31:00 |
| 62      | -79.68842 | 43.22587 | 12                         | 2023-05-17 10:12:00 | 2023-05-31 10:32:00 |
| 63      | -79.73423 | 43.21724 | 9                          | 2022-02-07 14:48:00 | 2022-02-21 12:46:00 |
| 63      | -79.73423 | 43.21724 | 3                          | 2022-07-21 14:51:00 | 2022-08-04 14:54:00 |
| 63      | -79.73423 | 43.21724 | 8                          | 2022-10-12 13:24:00 | 2022-10-27 10:28:00 |
| 63      | -79.73423 | 43.21724 | 9                          | 2023-01-21 11:11:00 | 2023-02-11 11:23:00 |
| 63      | -79.73423 | 43.21724 | 8                          | 2023-05-16 16:30:00 | 2023-05-30 20:56:00 |
| 64      | -79.86795 | 43.25734 | 21                         | 2022-03-02 09:57:00 | 2022-03-16 10:10:00 |
| 64      | -79.86795 | 43.25734 | 12                         | 2022-08-12 12:55:00 | 2022-08-26 11:15:00 |
| 64      | -79.86795 | 43.25734 | 27                         | 2022-11-15 11:51:00 | 2022-11-29 13:10:00 |
| 64      | -79.86795 | 43.25734 | 20                         | 2023-03-02 17:10:00 | 2023-03-15 14:24:00 |
| 65      | -79.86636 | 43.26305 | NA                         | 2023-01-21 16:14:00 | 2023-02-11 15:46:00 |
| 65      | -79.86636 | 43.26305 | 25                         | 2022-02-08 09:23:00 | 2022-02-21 16:46:00 |
| 65      | -79.86636 | 43.26305 | 23                         | 2022-02-08 09:25:00 | 2022-02-21 16:46:00 |

| Site ID | Longitude | Latitude | Concentration (ppb) | Start Time          | <b>End Time</b>     |
|---------|-----------|----------|---------------------|---------------------|---------------------|
| 65      | -79.86636 | 43.26305 | 10                  | 2022-07-22 14:28:00 | 2022-08-05 13:34:00 |
| 65      | -79.86636 | 43.26305 | 10                  | 2022-07-22 14:35:00 | 2022-08-05 13:35:00 |
| 65      | -79.86636 | 43.26305 | 28                  | 2022-10-13 11:14:00 | 2022-10-27 13:44:00 |
| 65      | -79.86636 | 43.26305 | 29                  | 2022-10-13 11:16:00 | 2022-10-27 13:46:00 |
| 65      | -79.86636 | 43.26305 | 23                  | 2023-01-21 16:10:00 | 2023-02-11 15:51:00 |
| 65      | -79.86636 | 43.26305 | 25                  | 2023-05-17 14:56:00 | 2023-05-31 14:45:00 |
| 65      | -79.86636 | 43.26305 | 25                  | 2023-05-17 14:50:00 | 2023-05-31 14:49:00 |
| 66      | -79.88054 | 43.34545 | 9                   | 2022-03-01 08:25:00 | 2022-03-15 08:39:00 |
| 66      | -79.88054 | 43.34545 | 5                   | 2022-08-11 09:34:00 | 2022-08-25 09:15:00 |
| 66      | -79.88054 | 43.34545 | 13                  | 2022-11-14 09:16:00 | 2022-11-28 09:27:00 |
| 66      | -79.88054 | 43.34545 | 10                  | 2023-03-02 11:02:00 | 2023-03-15 10:49:00 |
| 69      | -79.83052 | 43.24328 | NA                  | 2023-01-21 12:11:00 | 2023-02-11 13:04:00 |
| 69      | -79.83052 | 43.24328 | 5                   | 2022-07-21 17:14:00 | 2022-08-05 14:08:00 |
| 69      | -79.83052 | 43.24328 | 12                  | 2022-08-12 11:45:27 | 2022-08-26 10:20:00 |
| 69      | -79.83052 | 43.24328 | 11                  | 2022-09-02 10:52:32 | 2022-09-16 15:01:00 |
| 69      | -79.83052 | 43.24328 | 15                  | 2022-10-12 14:55:00 | 2022-10-27 12:41:00 |
| 69      | -79.83052 | 43.24328 | 18                  | 2022-11-15 10:48:00 | 2022-11-29 12:09:00 |
| 69      | -79.83052 | 43.24328 | 18                  | 2022-12-05 11:43:00 | 2022-12-19 11:07:00 |

Appendix G: Sulphur Dioxide Passive Sampling Concentration Data

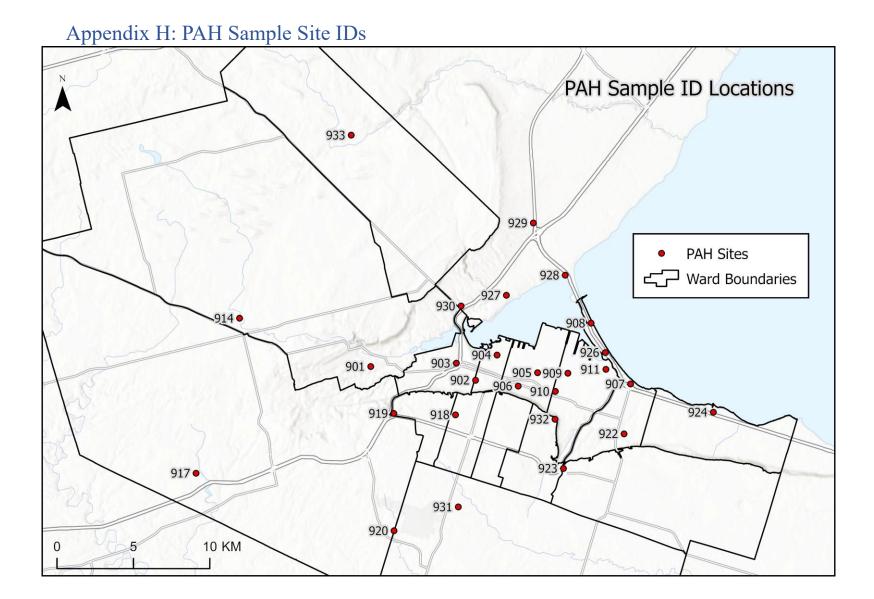
NA values in the concentration field represent values below the detection limit.

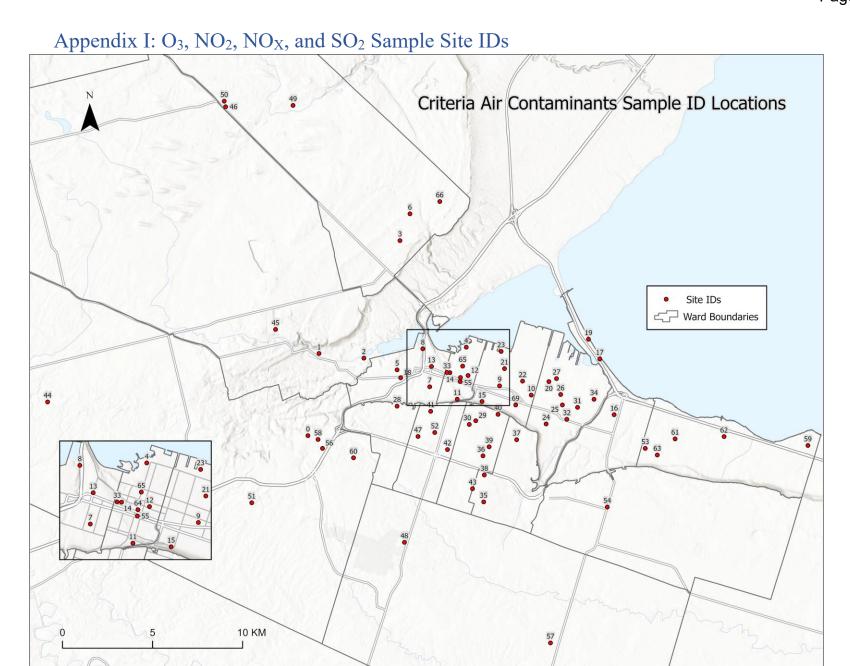
| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 0       | -79.9728  | 43.2293  | 1                          | 2022-03-28 12:05:00 | 2022-04-11 10:33:00 |
| 0       | -79.9728  | 43.2293  | 1                          | 2022-03-28 12:09:00 | 2022-04-11 10:34:00 |
| 0       | -79.9728  | 43.2293  | NA                         | 2022-09-01 11:18:00 | 2022-09-15 11:01:00 |
| 0       | -79.9728  | 43.2293  | 1                          | 2022-09-01 11:21:00 | 2022-09-15 11:02:00 |
| 0       | -79.9728  | 43.2293  | NA                         | 2023-04-07 16:13:00 | 2023-04-21 11:08:00 |
| 0       | -79.9728  | 43.2293  | NA                         | 2023-04-07 16:11:00 | 2023-04-21 11:06:00 |
| 1       | -79.9645  | 43.2703  | NA                         | 2022-03-01 09:57:00 | 2022-03-15 09:51:00 |
| 1       | -79.9645  | 43.2703  | 1                          | 2022-08-11 10:40:54 | 2022-08-25 10:15:00 |
| 1       | -79.9645  | 43.2703  | NA                         | 2022-11-14 09:43:00 | 2022-11-28 09:57:00 |
| 1       | -79.9645  | 43.2703  | 1                          | 2023-03-02 12:01:00 | 2023-03-15 11:22:00 |
| 2       | -79.9339  | 43.2677  | 1                          | 2022-03-28 11:16:00 | 2022-04-11 10:10:00 |
| 2       | -79.9339  | 43.2677  | 1                          | 2022-12-06 10:08:00 | 2022-12-20 10:43:00 |
| 2       | -79.9339  | 43.2677  | NA                         | 2022-09-01 10:56:00 | 2022-09-15 10:41:00 |
| 2       | -79.9339  | 43.2677  | NA                         | 2023-04-06 11:48:00 | 2023-04-20 10:47:00 |
| 3       | -79.9081  | 43.3262  | 1                          | 2022-10-12 09:52:00 | 2022-10-26 09:42:00 |
| 3       | -79.9081  | 43.3262  | 1                          | 2023-01-20 10:55:00 | 2023-02-10 09:48:00 |
| 3       | -79.9081  | 43.3262  | NA                         | 2022-07-21 10:41:00 | 2022-08-04 11:18:00 |
| 3       | -79.9081  | 43.3262  | NA                         | 2023-05-16 11:42:00 | 2023-05-30 16:22:00 |
| 3       | -79.9081  | 43.3262  | NA                         | 2022-02-07 09:26:00 | 2022-02-21 09:30:00 |
| 4       | -79.8638  | 43.2724  | 3                          | 2022-03-28 13:45:00 | 2022-04-11 11:57:00 |
| 4       | -79.8638  | 43.2724  | NA                         | 2022-09-02 11:58:33 | 2022-09-16 14:16:00 |
| 4       | -79.8638  | 43.2724  | 2                          | 2022-12-06 11:52:00 | 2022-12-19 12:44:00 |
| 4       | -79.8638  | 43.2724  | NA                         | 2023-04-06 15:05:00 | 2023-04-20 12:40:00 |
| 5       | -79.9113  | 43.2616  | 2                          | 2022-10-13 13:08:48 | 2022-10-27 08:48:52 |
| 5       | -79.9113  | 43.2616  | 1                          | 2023-01-20 13:14:00 | 2023-02-10 11:43:00 |
| 5       | -79.9113  | 43.2616  | 2                          | 2023-05-17 16:26:00 | 2023-05-31 16:01:00 |
| 5       | -79.9113  | 43.2616  | NA                         | 2022-07-21 12:35:56 | 2022-08-04 13:43:00 |
| 5       | -79.9113  | 43.2616  | NA                         | 2022-02-07 12:09:00 | 2022-02-21 10:58:00 |
| 6       | -79.9011  | 43.3395  | 1                          | 2022-10-12 09:39:00 | 2022-10-26 09:30:00 |
| 6       | -79.9011  | 43.3395  | 1                          | 2023-01-20 10:37:00 | 2023-02-10 09:34:00 |
| 6       | -79.9011  | 43.3395  | NA                         | 2022-07-21 10:24:00 | 2022-08-04 11:09:00 |
| 6       | -79.9011  | 43.3395  | NA                         | 2023-05-16 11:08:00 | 2023-05-30 16:02:00 |
| 6       | -79.9011  | 43.3395  | NA                         | 2022-02-07 09:43:00 | 2022-02-21 09:48:00 |
| 7       | -79.8891  | 43.2529  | NA                         | 2022-03-02 08:50:00 | 2022-03-16 10:50:00 |
| 7       | -79.8891  | 43.2529  | 1                          | 2022-08-12 14:07:07 | 2022-08-26 11:54:00 |
| 7       | -79.8891  | 43.2529  | NA                         | 2022-11-15 09:40:00 | 2022-11-29 11:12:00 |
| 7       | -79.8891  | 43.2529  | 1                          | 2023-03-02 16:38:00 | 2023-03-15 13:56:00 |
| 8       | -79.8935  | 43.2720  | 3                          | 2022-03-28 10:56:00 | 2022-04-11 09:33:00 |
| 8       | -79.8935  | 43.2720  | 1                          | 2022-09-01 10:30:00 | 2022-09-15 10:20:00 |
| 8       | -79.8935  | 43.2720  | NA                         | 2022-12-06 11:08:00 | 2022-12-20 10:10:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 8       | -79.8935  | 43.2720  | NA                         | 2023-04-06 12:28:00 | 2023-04-20 11:19:00 |
| 9       | -79.8413  | 43.2529  | NA                         | 2022-07-22 13:13:00 | 2022-08-05 13:58:00 |
| 9       | -79.8413  | 43.2529  | 3                          | 2022-10-13 10:49:58 | 2022-10-27 13:12:05 |
| 9       | -79.8413  | 43.2529  | 7                          | 2023-05-17 13:24:00 | 2023-05-31 13:11:00 |
| 9       | -79.8413  | 43.2529  | NA                         | 2022-02-08 10:34:00 | 2022-02-21 16:18:00 |
| 10      | -79.8198  | 43.2481  | 1                          | 2022-07-21 16:58:27 | 2022-08-05 14:26:00 |
| 10      | -79.8198  | 43.2481  | 2                          | 2022-10-12 15:07:00 | 2022-10-27 12:49:57 |
| 10      | -79.8198  | 43.2481  | 1                          | 2023-01-21 12:30:00 | 2023-02-11 13:20:00 |
| 10      | -79.8198  | 43.2481  | 5                          | 2023-05-17 11:55:00 | 2023-05-31 11:51:00 |
| 10      | -79.8198  | 43.2481  | NA                         | 2022-02-08 12:21:00 | 2022-02-21 15:59:00 |
| 11      | -79.8704  | 43.2465  | 2                          | 2022-08-12 12:16:53 | 2022-08-26 11:38:00 |
| 11      | -79.8704  | 43.2465  | 2                          | 2022-08-12 12:13:30 | 2022-08-26 11:39:00 |
| 11      | -79.8704  | 43.2465  | 2                          | 2022-11-15 10:00:00 | 2022-11-29 11:26:00 |
| 11      | -79.8704  | 43.2465  | NA                         | 2022-11-15 10:01:00 | 2022-11-29 11:27:00 |
| 11      | -79.8704  | 43.2465  | 3                          | 2023-03-02 18:00:00 | 2023-03-15 14:58:00 |
| 11      | -79.8704  | 43.2465  | 3                          | 2023-03-02 18:04:00 | 2023-03-15 15:04:00 |
| 12      | -79.8628  | 43.2583  | NA                         | 2022-03-02 09:26:56 | 2022-03-16 09:59:00 |
| 12      | -79.8628  | 43.2583  | 3                          | 2022-03-28 14:00:00 | 2022-04-11 11:47:00 |
| 12      | -79.8628  | 43.2583  | NA                         | 2022-07-22 12:57:00 | 2022-08-05 13:25:00 |
| 12      | -79.8628  | 43.2583  | 1                          | 2022-08-12 13:12:00 | 2022-08-26 11:00:00 |
| 12      | -79.8628  | 43.2583  | 2                          | 2022-09-02 10:11:45 | 2022-09-16 15:29:00 |
| 12      | -79.8628  | 43.2583  | 3                          | 2022-10-13 11:02:00 | 2022-10-27 13:37:00 |
| 12      | -79.8628  | 43.2583  | 1                          | 2022-12-06 12:05:00 | 2022-12-19 11:37:00 |
| 12      | -79.8628  | 43.2583  | 1                          | 2023-01-21 15:56:00 | 2023-02-10 13:25:00 |
| 12      | -79.8628  | 43.2583  | 4                          | 2023-03-02 17:32:00 | 2023-03-15 14:41:00 |
| 12      | -79.8628  | 43.2583  | 3                          | 2023-03-02 17:32:00 | 2023-03-15 14:41:00 |
| 12      | -79.8628  | 43.2583  | 10                         | 2023-05-17 14:10:00 | 2023-05-31 13:54:00 |
| 12      | -79.8628  | 43.2583  | NA                         | 2022-11-15 11:42:00 | 2022-11-29 12:55:00 |
| 12      | -79.8628  | 43.2583  | NA                         | 2023-04-06 14:13:00 | 2023-04-20 12:23:00 |
| 12      | -79.8628  | 43.2583  | NA                         | 2022-02-08 09:45:00 | 2022-02-21 17:10:00 |
| 13      | -79.8877  | 43.2630  | 1                          | 2022-03-28 13:25:00 | 2022-04-11 11:33:00 |
| 13      | -79.8877  | 43.2630  | NA                         | 2022-09-01 10:13:00 | 2022-09-15 10:10:00 |
| 13      | -79.8877  | 43.2630  | 1                          | 2022-12-06 11:22:00 | 2022-12-19 11:50:00 |
| 13      | -79.8877  | 43.2630  | NA                         | 2023-04-06 13:22:00 | 2023-04-20 12:03:00 |
| 14      | -79.8752  | 43.2599  | NA                         | 2022-07-22 12:28:00 | 2022-08-05 13:04:00 |
| 14      | -79.8752  | 43.2599  | 3                          | 2022-10-13 11:53:21 | 2022-10-27 14:21:00 |
| 14      | -79.8752  | 43.2599  | 1                          | 2023-01-20 14:02:05 | 2023-02-10 12:59:00 |
| 14      | -79.8752  | 43.2599  | 7                          | 2023-05-17 15:18:00 | 2023-05-31 15:07:00 |
| 14      | -79.8752  | 43.2599  | NA                         | 2022-02-08 08:48:00 | 2022-02-21 17:22:00 |
| 15      | -79.8535  | 43.2452  | 2                          | 2022-03-28 14:20:00 | 2022-04-11 12:27:00 |
| 15      | -79.8535  | 43.2452  | NA                         | 2022-09-02 10:34:19 | 2022-09-16 15:13:00 |
| 15      | -79.8535  | 43.2452  | NA                         | 2023-04-06 15:57:00 | 2023-04-20 13:13:00 |
| 16      | -79.7633  | 43.2377  | NA                         | 2022-07-21 14:33:00 | 2022-08-04 15:50:00 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | <b>End Time</b>     |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 16      | -79.7633  | 43.2377  | NA                         | 2022-10-12 14:22:00 | 2022-10-27 11:29:20 |
| 16      | -79.7633  | 43.2377  | 1                          | 2023-01-21 09:58:00 | 2023-02-11 10:14:00 |
| 16      | -79.7633  | 43.2377  | NA                         | 2023-05-16 16:10:00 | 2023-05-30 20:33:00 |
| 16      | -79.7633  | 43.2377  | NA                         | 2022-02-07 16:06:13 | 2022-02-21 14:36:00 |
| 17      | -79.7726  | 43.2656  | 7                          | 2022-03-28 16:49:00 | 2022-04-11 14:11:00 |
| 17      | -79.7726  | 43.2656  | 2                          | 2022-09-01 16:17:00 | 2022-09-15 15:07:00 |
| 17      | -79.7726  | 43.2656  | 4                          | 2022-12-06 13:23:00 | 2022-12-19 09:32:00 |
| 17      | -79.7726  | 43.2656  | 1                          | 2023-04-07 09:57:00 | 2023-04-20 14:18:00 |
| 18      | -79.9089  | 43.2576  | NA                         | 2022-03-01 10:23:00 | 2022-03-15 10:07:00 |
| 18      | -79.9089  | 43.2576  | NA                         | 2022-07-21 12:15:00 | 2022-08-04 13:49:00 |
| 18      | -79.9089  | 43.2576  | NA                         | 2022-08-11 11:32:46 | 2022-08-25 10:32:00 |
| 18      | -79.9089  | 43.2576  | 1                          | 2022-03-28 10:43:00 | 2022-04-11 10:02:00 |
| 18      | -79.9089  | 43.2576  | 1                          | 2022-09-01 10:44:00 | 2022-09-15 10:31:00 |
| 18      | -79.9089  | 43.2576  | 2                          | 2022-10-13 13:16:00 | 2022-10-27 09:03:00 |
| 18      | -79.9089  | 43.2576  | 1                          | 2022-12-06 10:30:00 | 2022-12-20 10:26:00 |
| 18      | -79.9089  | 43.2576  | 1                          | 2023-01-20 13:29:13 | 2023-02-10 11:56:00 |
| 18      | -79.9089  | 43.2576  | 1                          | 2023-03-02 16:02:00 | 2023-03-15 13:02:00 |
| 18      | -79.9089  | 43.2576  | 3                          | 2023-05-17 16:13:00 | 2023-05-31 15:46:00 |
| 18      | -79.9089  | 43.2576  | NA                         | 2022-11-15 09:27:00 | 2022-11-29 11:00:00 |
| 18      | -79.9089  | 43.2576  | NA                         | 2023-04-06 12:09:00 | 2023-04-20 11:06:00 |
| 18      | -79.9089  | 43.2576  | NA                         | 2022-02-07 12:37:16 | 2022-02-21 11:10:00 |
| 19      | -79.7801  | 43.2756  | 12                         | 2022-02-07 16:26:00 | 2022-02-21 14:54:00 |
| 19      | -79.7801  | 43.2756  | 8                          | 2022-03-01 16:22:00 | 2022-03-15 14:10:00 |
| 19      | -79.7801  | 43.2756  | 11                         | 2022-03-28 16:39:00 | 2022-04-11 14:18:00 |
| 19      | -79.7801  | 43.2756  | 8                          | 2022-07-21 15:59:00 | 2022-08-04 16:46:00 |
| 19      | -79.7801  | 43.2756  | 3                          | 2022-08-11 16:12:38 | 2022-08-25 14:44:00 |
| 19      | -79.7801  | 43.2756  | 4                          | 2022-09-01 16:25:00 | 2022-09-15 15:14:00 |
| 19      | -79.7801  | 43.2756  | 6                          | 2022-10-13 10:08:33 | 2022-10-27 11:44:00 |
| 19      | -79.7801  | 43.2756  | 7                          | 2022-11-14 15:53:00 | 2022-11-28 15:13:00 |
| 19      | -79.7801  | 43.2756  | 4                          | 2022-12-05 09:36:00 | 2022-12-19 09:23:00 |
| 19      | -79.7801  | 43.2756  | 8                          | 2023-01-21 09:37:00 | 2023-02-10 14:14:00 |
| 19      | -79.7801  | 43.2756  | 6                          | 2023-03-03 09:25:00 | 2023-03-16 09:55:00 |
| 19      | -79.7801  | 43.2756  | 6                          | 2023-04-07 09:35:00 | 2023-04-20 14:08:00 |
| 19      | -79.7801  | 43.2756  | 2                          | 2023-05-17 09:45:00 | 2023-05-31 10:10:00 |
| 20      | -79.8076  | 43.2547  | NA                         | 2022-03-02 11:38:00 | 2022-03-16 11:45:00 |
| 20      | -79.8076  | 43.2547  | NA                         | 2022-02-08 12:03:00 | 2022-02-21 15:15:00 |
| 21      | -79.8378  | 43.2615  | 1                          | 2022-03-02 10:55:00 | 2022-03-16 11:24:00 |
| 21      | -79.8378  | 43.2615  | 2                          | 2022-08-12 13:38:00 | 2022-08-26 10:33:00 |
| 21      | -79.8378  | 43.2615  | 2                          | 2023-03-03 12:28:00 | 2023-03-16 12:01:00 |
| 22      | -79.8256  | 43.2551  | NA                         | 2022-03-02 11:20:00 | 2022-03-16 11:35:00 |
| 22      | -79.8256  | 43.2551  | NA                         | 2022-07-22 13:59:00 | 2022-08-05 14:16:00 |
| 22      | -79.8256  | 43.2551  | 2                          | 2022-10-12 15:30:00 | 2022-10-27 12:59:50 |
| 22      | -79.8256  | 43.2551  | 5                          | 2022-10-12 15:25:00 | 2022-10-27 12:57:59 |

| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | <b>Start Time</b>   | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 22      | -79.8256  | 43.2551  | 1                          | 2023-01-21 12:51:01 | 2023-02-11 13:39:00 |
| 22      | -79.8256  | 43.2551  | 9                          | 2023-05-17 12:13:00 | 2023-05-31 12:55:00 |
| 23      | -79.8400  | 43.2701  | NA                         | 2022-07-22 13:27:00 | 2022-08-05 13:49:00 |
| 23      | -79.8400  | 43.2701  | 2                          | 2022-03-02 10:44:00 | 2022-03-16 11:16:00 |
| 23      | -79.8400  | 43.2701  | 6                          | 2022-03-28 14:37:00 | 2022-04-11 12:11:00 |
| 23      | -79.8400  | 43.2701  | 2                          | 2022-08-12 13:28:00 | 2022-08-26 10:42:00 |
| 23      | -79.8400  | 43.2701  | 2                          | 2022-09-02 11:46:54 | 2022-09-16 14:25:00 |
| 23      | -79.8400  | 43.2701  | 1                          | 2022-10-13 10:27:00 | 2022-10-27 13:24:59 |
| 23      | -79.8400  | 43.2701  | 1                          | 2022-11-15 11:04:00 | 2022-11-29 12:36:00 |
| 23      | -79.8400  | 43.2701  | 7                          | 2022-12-05 11:56:00 | 2022-12-19 12:56:00 |
| 23      | -79.8400  | 43.2701  | 3                          | 2023-01-21 13:50:30 | 2023-02-10 13:52:00 |
| 23      | -79.8400  | 43.2701  | 3                          | 2023-03-03 12:48:00 | 2023-03-16 12:19:00 |
| 23      | -79.8400  | 43.2701  | 11                         | 2023-05-17 13:43:00 | 2023-05-31 13:29:00 |
| 23      | -79.8400  | 43.2701  | NA                         | 2023-04-06 15:23:00 | 2023-04-20 12:54:00 |
| 23      | -79.8400  | 43.2701  | NA                         | 2022-02-08 10:13:00 | 2022-02-21 16:32:00 |
| 24      | -79.8099  | 43.2335  | 1                          | 2022-07-21 16:34:00 | 2022-08-04 17:07:00 |
| 24      | -79.8099  | 43.2335  | NA                         | 2022-07-21 16:30:07 | 2022-08-04 17:05:00 |
| 24      | -79.8099  | 43.2335  | 1                          | 2022-10-12 14:41:00 | 2022-10-27 12:32:24 |
| 24      | -79.8099  | 43.2335  | 1                          | 2023-01-21 11:57:00 | 2023-02-11 11:58:00 |
| 24      | -79.8099  | 43.2335  | NA                         | 2023-01-21 11:52:00 | 2023-02-11 11:53:00 |
| 24      | -79.8099  | 43.2335  | NA                         | 2023-05-17 11:33:00 | 2023-05-31 11:25:00 |
| 24      | -79.8099  | 43.2335  | NA                         | 2023-05-17 11:29:00 | 2023-05-31 11:23:00 |
| 24      | -79.8099  | 43.2335  | NA                         | 2022-02-08 11:05:00 | 2022-02-21 15:38:00 |
| 24      | -79.8099  | 43.2335  | NA                         | 2022-02-08 11:07:00 | 2022-02-21 15:39:00 |
| 25      | -79.7986  | 43.2429  | NA                         | 2022-03-02 15:12:00 | 2022-03-16 12:11:00 |
| 25      | -79.7986  | 43.2429  | 1                          | 2022-08-12 11:13:37 | 2022-08-26 10:06:00 |
| 25      | -79.7986  | 43.2429  | 3                          | 2023-03-03 10:55:00 | 2023-03-16 11:18:00 |
| 25      | -79.7986  | 43.2429  | NA                         | 2022-11-14 15:16:00 | 2022-11-28 14:35:00 |
| 25      | -79.7986  | 43.2429  | NA                         | 2022-11-14 15:17:00 | 2022-11-28 14:35:00 |
| 26      | -79.7997  | 43.2482  | NA                         | 2022-03-02 11:49:00 | 2022-03-16 12:03:00 |
| 26      | -79.7997  | 43.2482  | 3                          | 2022-03-28 15:03:00 | 2022-04-11 13:30:00 |
| 26      | -79.7997  | 43.2482  | NA                         | 2022-02-08 11:33:00 | 2022-02-21 15:26:00 |
| 27      | -79.8023  | 43.2561  | NA                         | 2022-03-02 14:51:00 | 2022-03-16 11:53:00 |
| 27      | -79.8023  | 43.2561  | 2                          | 2022-08-12 11:27:00 | 2022-08-26 09:56:00 |
| 27      | -79.8023  | 43.2561  | 5                          | 2023-03-03 12:05:00 | 2023-03-16 11:37:00 |
| 27      | -79.8023  | 43.2561  | NA                         | 2022-11-14 15:39:00 | 2022-11-28 14:52:00 |
| 28      | -79.9116  | 43.2435  | 3                          | 2022-03-29 10:01:00 | 2022-04-12 10:22:00 |
| 28      | -79.9116  | 43.2435  | NA                         | 2022-09-01 13:44:00 | 2022-09-15 12:18:00 |
| 28      | -79.9116  | 43.2435  | 2                          | 2023-04-07 15:09:00 | 2023-04-21 10:28:00 |
| 29      | -79.8579  | 43.2357  | 1                          | 2022-03-01 12:00:00 | 2022-03-15 12:01:00 |
| 29      | -79.8579  | 43.2357  | NA                         | 2022-08-11 12:49:29 | 2022-08-25 11:38:00 |
| 29      | -79.8579  | 43.2357  | 2                          | 2023-03-03 13:21:00 | 2023-03-16 13:36:00 |
| 29      | -79.8579  | 43.2357  | NA                         | 2022-11-14 12:07:00 | 2022-11-28 12:07:00 |


| Site ID | Longitude | Latitude | <b>Concentration (ppb)</b> | Start Time          | End Time            |
|---------|-----------|----------|----------------------------|---------------------|---------------------|
| 30      | -79.8624  | 43.2339  | NA                         | 2022-03-01 11:47:30 | 2022-03-15 11:07:00 |
| 30      | -79.8624  | 43.2339  | 2                          | 2022-08-11 12:40:00 | 2022-08-25 11:32:00 |
| 30      | -79.8624  | 43.2339  | 2                          | 2023-03-05 13:16:00 | 2023-03-16 13:52:00 |
| 30      | -79.8624  | 43.2339  | NA                         | 2022-11-14 11:53:00 | 2022-11-28 23:57:00 |
| 31      | -79.7882  | 43.2416  | 1                          | 2022-03-01 15:58:00 | 2022-03-15 13:55:00 |
| 31      | -79.7882  | 43.2416  | NA                         | 2022-03-01 16:01:00 | 2022-03-15 13:57:00 |
| 31      | -79.7882  | 43.2416  | NA                         | 2022-08-11 15:48:41 | 2022-08-25 14:26:00 |
| 31      | -79.7882  | 43.2416  | 1                          | 2022-08-11 15:51:02 | 2022-08-25 14:28:00 |
| 31      | -79.7882  | 43.2416  | 4                          | 2023-03-03 10:26:00 | 2023-03-16 10:57:00 |
| 31      | -79.7882  | 43.2416  | 4                          | 2023-03-03 10:29:00 | 2023-03-16 11:00:00 |
| 31      | -79.7882  | 43.2416  | NA                         | 2022-11-14 15:00:00 | 2022-11-28 14:26:00 |
| 32      | -79.7957  | 43.2357  | 2                          | 2022-03-28 15:33:00 | 2022-04-11 13:44:00 |
| 32      | -79.7957  | 43.2357  | 2                          | 2022-03-28 15:23:00 | 2022-04-11 13:41:00 |
| 32      | -79.7957  | 43.2357  | NA                         | 2022-09-02 11:11:48 | 2022-09-16 14:44:00 |
| 32      | -79.7957  | 43.2357  | NA                         | 2022-09-02 11:14:16 | 2022-09-16 14:45:00 |
| 32      | -79.7957  | 43.2357  | 1                          | 2022-12-05 11:25:00 | 2022-12-19 10:04:00 |
| 32      | -79.7957  | 43.2357  | NA                         | 2023-04-06 17:23:00 | 2023-04-20 13:38:00 |
| 32      | -79.7957  | 43.2357  | NA                         | 2023-04-06 17:20:00 | 2023-04-20 13:36:00 |
| 33      | -79.8771  | 43.2600  | NA                         | 2022-07-22 12:14:00 | 2022-08-05 12:52:00 |
| 33      | -79.8771  | 43.2600  | 3                          | 2022-10-13 12:51:06 | 2022-10-27 14:13:00 |
| 33      | -79.8771  | 43.2600  | 1                          | 2023-01-20 13:48:25 | 2023-02-10 12:13:00 |
| 33      | -79.8771  | 43.2600  | 6                          | 2023-05-17 15:36:00 | 2023-05-31 15:22:00 |
| 33      | -79.8771  | 43.2600  | NA                         | 2022-02-08 09:02:00 | 2022-02-21 17:36:00 |
| 34      | -79.7769  | 43.2455  | NA                         | 2022-09-02 11:28:43 | 2022-09-16 15:56:00 |
| 34      | -79.7769  | 43.2455  | 1                          | 2022-03-28 16:22:00 | 2022-04-11 13:59:00 |
| 34      | -79.7769  | 43.2455  | NA                         | 2022-12-05 12:27:00 | 2022-12-19 09:52:00 |
| 34      | -79.7769  | 43.2455  | NA                         | 2022-12-05 12:24:00 | 2022-12-19 09:50:00 |
| 34      | -79.7769  | 43.2455  | NA                         | 2023-04-06 17:53:00 | 2023-04-20 13:54:00 |
| 35      | -79.8533  | 43.1950  | NA                         | 2022-03-01 14:15:00 | 2022-03-15 12:49:00 |
| 35      | -79.8533  | 43.1950  | NA                         | 2022-11-14 13:39:00 | 2022-11-28 12:39:00 |
| 35      | -79.8533  | 43.1950  | 2                          | 2022-08-11 14:24:00 | 2022-08-25 13:10:00 |
| 35      | -79.8533  | 43.1950  | 1                          | 2023-03-05 14:09:00 | 2023-03-16 15:53:00 |
| 36      | -79.8533  | 43.2180  | NA                         | 2022-03-01 12:43:00 | 2022-03-15 12:27:00 |
| 36      | -79.8533  | 43.2180  | NA                         | 2022-08-11 13:59:23 | 2022-08-25 12:53:00 |
| 36      | -79.8533  | 43.2180  | 3                          | 2023-03-03 14:01:00 | 2023-03-16 14:15:00 |
| 37      | -79.8302  | 43.2259  | 3                          | 2022-03-29 11:27:00 | 2022-04-12 11:16:00 |
| 37      | -79.8302  | 43.2259  | NA                         | 2022-12-06 14:11:00 | 2022-12-20 14:16:00 |
| 37      | -79.8302  | 43.2259  | NA                         | 2023-04-07 13:33:00 | 2023-04-20 16:42:00 |
| 38      | -79.8526  | 43.2085  | 3                          | 2022-03-29 11:47:00 | 2022-04-12 11:34:00 |
| 38      | -79.8526  | 43.2085  | NA                         | 2022-09-01 14:55:00 | 2022-09-15 13:57:00 |
| 38      | -79.8526  | 43.2085  | NA                         | 2022-12-06 13:54:00 | 2022-12-20 14:28:00 |
| 38      | -79.8526  | 43.2085  | NA                         | 2023-04-07 13:04:00 | 2023-04-20 15:32:00 |
| 39      | -79.8491  | 43.2225  | NA                         | 2022-07-21 14:09:19 | 2022-08-04 14:32:00 |


| Site ID | Longitude | Latitude | Concentration (ppb) | ) | Start Time          | End Time            |
|---------|-----------|----------|---------------------|---|---------------------|---------------------|
| 39      | -79.8491  | 43.2225  | 1                   | 1 | 2022-10-12 12:08:00 | 2022-10-27 09:52:00 |
| 39      | -79.8491  | 43.2225  | 1                   | 1 | 2022-10-12 12:09:00 | 2022-10-27 09:54:00 |
| 39      | -79.8491  | 43.2225  | NA                  |   | 2023-01-21 14:17:06 | 2023-02-11 14:20:00 |
| 39      | -79.8491  | 43.2225  | 1                   | 1 | 2023-05-16 15:35:00 | 2023-05-30 20:09:00 |
| 39      | -79.8491  | 43.2225  | NA                  |   | 2022-02-07 14:16:00 | 2022-02-21 12:18:00 |
| 40      | -79.8427  | 43.2387  | 4                   | 4 | 2022-03-29 11:03:00 | 2022-04-12 11:03:00 |
| 40      | -79.8427  | 43.2387  | 1                   | 1 | 2022-09-01 14:27:00 | 2022-09-15 13:34:00 |
| 40      | -79.8427  | 43.2387  | NA                  |   | 2023-04-07 13:50:00 | 2023-04-20 17:00:00 |
| 41      | -79.8887  | 43.2407  | NA                  |   | 2022-07-21 13:49:04 | 2022-08-04 14:19:00 |
| 41      | -79.8887  | 43.2407  | NA                  |   | 2022-08-11 12:23:32 | 2022-08-25 11:23:00 |
| 41      | -79.8887  | 43.2407  | NA                  |   | 2022-09-01 13:53:00 | 2022-09-15 12:30:00 |
| 41      | -79.8887  | 43.2407  | NA                  |   | 2022-11-14 11:39:00 | 2022-11-28 11:45:00 |
| 41      | -79.8887  | 43.2407  | NA                  |   | 2022-03-01 11:32:00 | 2022-03-15 10:58:00 |
| 41      | -79.8887  | 43.2407  | 6                   | 6 | 2022-03-29 10:14:00 | 2022-04-12 10:33:00 |
| 41      | -79.8887  | 43.2407  | 3                   | 3 | 2022-10-12 11:49:00 | 2022-10-27 09:40:00 |
| 41      | -79.8887  | 43.2407  | 1                   | 1 | 2023-01-21 14:35:00 | 2023-02-11 14:46:00 |
| 41      | -79.8887  | 43.2407  | 3                   | 3 | 2023-03-05 10:58:00 | 2023-03-16 14:38:00 |
| 41      | -79.8887  | 43.2407  | 7                   | 7 | 2023-05-16 15:10:00 | 2023-05-30 19:51:00 |
| 41      | -79.8887  | 43.2407  | NA                  |   | 2023-04-07 15:25:00 | 2023-04-21 10:15:00 |
| 42      | -79.8776  | 43.2214  | 1                   | 1 | 2022-03-01 12:20:41 | 2022-03-15 12:13:00 |
| 42      | -79.8776  | 43.2214  | 1                   | 1 | 2022-08-11 13:02:21 | 2022-08-25 11:50:00 |
| 42      | -79.8776  | 43.2214  | NA                  |   | 2022-11-15 10:23:00 | 2022-11-29 11:44:00 |
| 42      | -79.8776  | 43.2214  | 2                   |   | 2023-03-05 12:09:00 | 2023-03-16 15:15:00 |
| 43      | -79.8608  | 43.2017  | NA                  |   | 2022-03-01 13:08:00 | 2022-03-15 12:38:00 |
| 43      | -79.8608  | 43.2017  | NA                  |   | 2022-11-14 13:24:00 | 2022-11-28 12:28:00 |
| 43      | -79.8608  | 43.2017  | NA                  |   | 2022-08-11 14:12:23 | 2022-08-25 13:02:00 |
| 43      | -79.8608  | 43.2017  | 2                   |   | 2023-03-05 13:44:00 | 2023-03-16 15:37:00 |
| 44      | -80.1505  | 43.2476  | NA                  |   | 2022-11-14 10:47:00 | 2022-11-28 10:24:00 |
| 44      | -80.1505  | 43.2476  | NA                  |   | 2022-03-01 09:27:00 | 2022-03-15 09:18:00 |
| 44      | -80.1505  | 43.2476  |                     |   | 2022-08-11 10:15:00 | 2022-08-25 10:14:00 |
| 44      | -80.1505  | 43.2476  | NA                  |   | 2023-03-02 13:27:00 | 2023-03-15 11:54:00 |
| 45      | -79.9940  | 43.2826  | NA                  |   | 2022-07-21 11:50:12 | 2022-08-04 12:09:00 |
| 45      | -79.9940  | 43.2826  | NA                  |   | 2022-10-12 10:59:00 | 2022-10-26 10:43:00 |
| 45      | -79.9940  | 43.2826  |                     |   | 2023-01-20 12:11:00 | 2023-02-10 11:16:00 |
| 45      | -79.9940  | 43.2826  | NA                  |   | 2023-05-16 13:54:00 | 2023-05-30 17:50:00 |
| 45      | -79.9940  | 43.2826  | NA                  |   | 2022-02-07 11:26:24 | 2022-02-21 08:50:00 |
| 46      | -80.0264  | 43.3942  | NA                  |   | 2022-07-21 11:25:14 | 2022-08-04 11:48:00 |
| 46      | -80.0264  | 43.3942  | NA                  |   | 2022-10-12 10:34:41 | 2022-10-26 10:17:00 |
| 46      | -80.0264  | 43.3942  | NA                  |   | 2023-01-20 11:42:00 | 2023-02-10 10:40:00 |
| 46      | -80.0264  | 43.3942  | NA                  |   | 2023-05-16 12:41:00 | 2023-05-30 17:20:00 |
| 46      | -80.0264  | 43.3942  | NA                  |   | 2022-02-07 10:38:24 | 2022-02-21 10:27:00 |
| 47      | -79.8976  | 43.2282  | NA<br>NA            |   | 2022-03-01 11:13:00 | 2022-03-15 10:44:00 |
| 47      | -79.8976  | 43.2282  | NA                  |   | 2022-08-11 12:13:24 | 2022-08-25 11:05:00 |

| Site ID | Longitude | Latitude | Concentration (ppb) | ) | <b>Start Time</b>   | <b>End Time</b>     |
|---------|-----------|----------|---------------------|---|---------------------|---------------------|
| 47      | -79.8976  | 43.2282  | NA                  |   | 2022-11-14 11:24:00 | 2022-11-28 11:22:00 |
| 47      | -79.8976  | 43.2282  | 3                   | 3 | 2023-03-05 11:44:00 | 2023-03-16 14:54:00 |
| 48      | -79.9078  | 43.1753  | 2                   | 2 | 2022-03-29 12:12:00 | 2022-04-12 12:01:00 |
| 48      | -79.9078  | 43.1753  | 2                   | 2 | 2022-09-01 12:04:00 | 2022-09-15 11:48:00 |
| 48      | -79.9078  | 43.1753  | NA                  |   | 2023-04-07 12:04:00 | 2023-04-20 16:14:00 |
| 49      | -79.9802  | 43.3944  | NA                  |   | 2022-07-21 11:06:30 | 2022-08-04 11:35:00 |
| 49      | -79.9802  | 43.3944  | 2                   | 2 | 2022-10-12 10:15:00 | 2022-10-26 10:01:00 |
| 49      | -79.9802  | 43.3944  | NA                  |   | 2023-01-20 11:20:00 | 2023-02-10 10:19:00 |
| 49      | -79.9802  | 43.3944  | NA                  |   | 2023-05-16 12:15:00 | 2023-05-30 16:58:00 |
| 49      | -79.9802  | 43.3944  | NA                  |   | 2022-02-07 10:12:00 | 2022-02-21 10:07:00 |
| 50      | -80.0273  | 43.3969  | NA                  |   | 2022-09-01 09:44:00 | 2022-09-15 09:45:00 |
| 50      | -80.0273  | 43.3969  | NA                  |   | 2022-12-06 09:31:00 | 2022-12-20 09:38:00 |
| 50      | -80.0273  | 43.3969  | 1                   | 1 | 2022-03-28 10:06:00 | 2022-04-11 08:57:00 |
| 50      | -80.0273  | 43.3969  | NA                  |   | 2023-04-06 11:01:00 | 2023-04-20 10:12:00 |
| 51      | -80.0117  | 43.1961  | NA                  |   | 2022-09-01 11:42:00 | 2022-09-15 11:23:00 |
| 51      | -80.0117  | 43.1961  | 1                   | 1 | 2022-03-28 12:34:00 | 2022-04-11 10:56:00 |
| 51      | -80.0117  | 43.1961  | NA                  |   | 2023-04-07 16:56:00 | 2023-04-21 11:33:00 |
| 52      | -79.8861  | 43.2300  | 5                   | 5 | 2022-03-29 10:34:00 | 2022-04-12 10:44:00 |
| 52      | -79.8861  | 43.2300  | NA                  |   | 2022-09-01 14:05:00 | 2022-09-15 12:38:00 |
| 52      | -79.8861  | 43.2300  | NA                  |   | 2023-04-07 14:35:00 | 2023-04-21 10:01:00 |
| 53      | -79.7424  | 43.2206  | NA                  |   | 2022-03-29 13:14:00 | 2022-04-12 12:51:00 |
| 53      | -79.7424  | 43.2206  | NA                  |   | 2022-12-05 10:22:00 | 2022-12-19 10:21:00 |
| 53      | -79.7424  | 43.2206  | NA                  |   | 2022-09-01 15:54:00 | 2022-09-15 14:50:00 |
| 53      | -79.7424  | 43.2206  | NA                  |   | 2023-04-07 10:36:00 | 2023-04-20 14:37:00 |
| 54      | -79.7689  | 43.1916  | NA                  |   | 2022-09-01 15:25:00 | 2022-09-15 14:20:00 |
| 54      | -79.7689  | 43.1916  | NA                  |   | 2022-09-01 15:27:00 | 2022-09-15 14:23:00 |
| 54      | -79.7689  | 43.1916  | NA                  |   | 2022-12-05 11:08:00 | 2022-12-19 10:37:00 |
| 54      | -79.7689  | 43.1916  | 1                   | 1 | 2022-03-29 12:45:00 | 2022-04-12 12:29:00 |
| 54      | -79.7689  | 43.1916  | 1                   | 1 | 2022-03-29 12:47:00 | 2022-04-12 12:31:00 |
| 54      | -79.7689  | 43.1916  | NA                  |   | 2022-12-05 11:00:00 | 2022-12-19 10:39:00 |
| 54      | -79.7689  | 43.1916  | NA                  |   | 2023-04-07 11:05:00 | 2023-04-20 15:03:00 |
| 55      | -79.8683  | 43.2553  | NA                  |   | 2022-07-22 12:47:00 | 2022-08-05 13:14:00 |
| 55      | -79.8683  | 43.2553  | $\epsilon$          | 5 | 2022-10-13 11:32:45 | 2022-10-27 14:03:11 |
| 55      | -79.8683  | 43.2553  | 1                   | 1 | 2023-01-20 14:22:00 | 2023-02-10 13:13:00 |
| 55      | -79.8683  | 43.2553  | 12                  | 2 | 2023-05-17 14:31:00 | 2023-05-31 14:20:00 |
| 56      | -79.9629  | 43.2228  | NA                  |   | 2022-07-21 13:27:00 | 2022-08-04 14:02:00 |
| 56      | -79.9629  | 43.2228  | 1                   | 1 | 2022-10-12 11:29:02 | 2022-10-27 09:20:11 |
| 56      | -79.9629  | 43.2228  | 1                   | 1 | 2023-01-21 15:18:00 | 2023-02-11 15:13:00 |
| 56      | -79.9629  | 43.2228  | NA                  |   | 2023-01-21 15:14:00 | 2023-02-11 15:11:00 |
| 56      | -79.9629  | 43.2228  | 2                   | 2 | 2023-05-16 14:41:00 | 2023-05-30 18:34:00 |
| 56      | -79.9629  | 43.2228  |                     | 2 | 2023-05-16 14:34:00 | 2023-05-30 18:30:00 |
| 57      | -79.8090  | 43.1241  | NA                  |   | 2022-03-01 14:50:00 | 2022-03-15 13:12:00 |
| 57      | -79.8090  | 43.1241  | NA                  |   | 2022-08-11 14:49:22 | 2022-08-25 13:36:00 |

| Site ID | Longitude | Latitude | Concentration (pph | <b>)</b> | Start Time          | End Time            |
|---------|-----------|----------|--------------------|----------|---------------------|---------------------|
| 57      | -79.8090  | 43.1241  | NA                 |          | 2022-11-14 14:07:00 | 2022-11-28 13:35:00 |
| 57      | -79.8090  | 43.1241  |                    | 1        | 2023-03-05 15:39:00 | 2023-03-16 16:21:00 |
| 58      | -79.9659  | 43.2273  | NA                 |          | 2022-03-01 10:43:00 | 2022-03-15 10:24:00 |
| 58      | -79.9659  | 43.2273  | NA                 |          | 2022-03-01 10:46:00 | 2022-03-15 10:27:00 |
| 58      | -79.9659  | 43.2273  | NA                 |          | 2022-08-11 11:53:56 | 2022-08-25 10:46:00 |
| 58      | -79.9659  | 43.2273  | NA                 |          | 2022-11-14 10:06:00 | 2022-11-28 10:57:00 |
| 58      | -79.9659  | 43.2273  |                    | 1        | 2022-08-11 11:57:43 | 2022-08-25 10:47:00 |
| 58      | -79.9659  | 43.2273  |                    | 1        | 2022-11-14 10:10:00 | 2022-11-28 10:57:00 |
| 58      | -79.9659  | 43.2273  |                    | 1        | 2023-03-02 15:09:00 | 2023-03-15 12:35:00 |
| 58      | -79.9659  | 43.2273  |                    | 1        | 2023-03-02 15:03:00 | 2023-03-15 12:32:00 |
| 59      | -79.6312  | 43.2208  | NA                 |          | 2022-07-21 15:37:29 | 2022-08-04 16:10:00 |
| 59      | -79.6312  | 43.2208  | NA                 |          | 2022-10-12 13:57:00 | 2022-10-27 10:52:00 |
| 59      | -79.6312  | 43.2208  | NA                 |          | 2023-01-21 10:43:05 | 2023-02-11 10:55:00 |
| 59      | -79.6312  | 43.2208  | NA                 |          | 2023-05-17 10:36:00 | 2023-05-31 10:57:00 |
| 59      | -79.6312  | 43.2208  | NA                 |          | 2022-02-07 15:15:00 | 2022-02-21 13:50:00 |
| 60      | -79.9418  | 43.2179  | NA                 |          | 2022-09-01 12:24:00 | 2022-09-15 12:05:00 |
| 60      | -79.9418  | 43.2179  |                    | 2        | 2022-03-28 12:59:00 | 2022-04-11 11:15:00 |
| 60      | -79.9418  | 43.2179  | NA                 |          | 2023-04-07 15:49:00 | 2023-04-21 10:48:00 |
| 61      | -79.7219  | 43.2252  | NA                 |          | 2022-03-01 15:27:00 | 2022-03-15 13:37:00 |
| 61      | -79.7219  | 43.2252  | NA                 |          | 2022-08-11 15:20:27 | 2022-08-25 14:08:00 |
| 61      | -79.7219  | 43.2252  | NA                 |          | 2022-11-14 14:36:00 | 2022-11-28 14:05:00 |
| 61      | -79.7219  | 43.2252  |                    | 2        | 2023-03-03 09:58:00 | 2023-03-16 10:22:00 |
| 62      | -79.6884  | 43.2259  | NA                 |          | 2022-07-21 15:10:57 | 2022-08-04 16:23:00 |
| 62      | -79.6884  | 43.2259  | NA                 |          | 2022-07-21 15:14:57 | 2022-08-04 16:25:00 |
| 62      | -79.6884  | 43.2259  | NA                 |          | 2022-10-12 13:41:00 | 2022-10-27 11:08:05 |
| 62      | -79.6884  | 43.2259  | NA                 |          | 2023-01-21 10:23:56 | 2023-02-11 10:33:00 |
| 62      | -79.6884  | 43.2259  | NA                 |          | 2023-05-17 10:14:00 | 2023-05-31 10:34:00 |
| 62      | -79.6884  | 43.2259  | NA                 |          | 2022-02-07 15:38:00 | 2022-02-21 14:09:00 |
| 63      | -79.7342  | 43.2172  | NA                 |          | 2022-07-21 14:51:31 | 2022-08-04 14:55:00 |
| 63      | -79.7342  | 43.2172  |                    |          | 2022-10-12 13:24:00 | 2022-10-27 10:28:50 |
| 63      | -79.7342  | 43.2172  |                    | 1        | 2023-01-21 11:11:00 | 2023-02-11 11:25:00 |
| 63      | -79.7342  | 43.2172  | NA                 |          | 2023-05-16 16:31:00 | 2023-05-30 20:57:00 |
| 63      | -79.7342  | 43.2172  | NA                 |          | 2022-02-07 14:49:00 | 2022-02-21 12:46:00 |
| 64      | -79.8680  | 43.2573  |                    | 1        | 2022-03-02 09:58:57 | 2022-03-16 10:13:00 |
| 64      | -79.8680  | 43.2573  |                    | 2        | 2022-08-12 12:55:00 | 2022-08-26 11:15:00 |
| 64      | -79.8680  | 43.2573  | NA                 | •        | 2022-11-15 11:51:00 | 2022-11-29 13:10:00 |
| 64      | -79.8680  | 43.2573  |                    | 2        | 2023-03-02 17:11:00 | 2023-03-15 14:25:00 |
| 65      | -79.8664  | 43.2631  | NA                 |          | 2022-07-22 14:29:00 | 2022-08-05 13:34:00 |
| 65      | -79.8664  | 43.2631  | NA                 | _        | 2022-07-22 14:36:00 | 2022-08-05 13:36:00 |
| 65      | -79.8664  | 43.2631  |                    | 3        | 2022-10-13 11:15:03 | 2022-10-27 13:45:05 |
| 65      | -79.8664  | 43.2631  |                    | 3        | 2022-10-13 11:16:34 | 2022-10-27 13:46:59 |
| 65      | -79.8664  | 43.2631  |                    | 3        | 2023-01-21 16:16:00 | 2023-02-11 15:49:00 |
| 65      | -79.8664  | 43.2631  |                    | 1        | 2023-01-21 16:11:33 | 2023-02-11 15:52:00 |

| Site ID | Longitude | Latitude | Concentration (ppb) | Start Time          | End Time            |
|---------|-----------|----------|---------------------|---------------------|---------------------|
| 65      | -79.8664  | 43.2631  | 7                   | 2023-05-17 14:58:00 | 2023-05-31 14:49:00 |
| 65      | -79.8664  | 43.2631  | 7                   | 2023-05-17 14:51:00 | 2023-05-31 14:50:00 |
| 65      | -79.8664  | 43.2631  | NA                  | 2022-02-08 09:25:00 | 2022-02-21 16:47:00 |
| 65      | -79.8664  | 43.2631  | NA                  | 2022-02-08 09:28:00 | 2022-02-21 16:50:00 |
| 66      | -79.8805  | 43.3454  | NA                  | 2022-03-01 08:34:00 | 2022-03-15 08:39:00 |
| 66      | -79.8805  | 43.3454  | NA                  | 2022-08-11 09:35:00 | 2022-08-25 09:17:00 |
| 66      | -79.8805  | 43.3454  | NA                  | 2022-11-14 09:17:00 | 2022-11-28 09:27:00 |
| 66      | -79.8805  | 43.3454  | 1                   | 2022-11-14 09:16:00 | 2022-11-28 09:27:00 |
| 66      | -79.8805  | 43.3454  | NA                  | 2023-03-02 11:03:00 | 2023-03-15 10:50:00 |
| 69      | -79.8305  | 43.2433  | NA                  | 2022-09-02 10:53:15 | 2022-09-16 15:02:00 |
| 69      | -79.8305  | 43.2433  | NA                  | 2022-07-21 17:15:00 | 2022-08-05 14:08:00 |
| 69      | -79.8305  | 43.2433  | 2                   | 2022-08-12 11:54:00 | 2022-08-26 10:20:00 |
| 69      | -79.8305  | 43.2433  | 1                   | 2022-10-12 14:56:00 | 2022-10-27 12:42:00 |
| 69      | -79.8305  | 43.2433  | 2                   | 2022-11-15 10:49:00 | 2022-11-29 12:10:00 |
| 69      | -79.8305  | 43.2433  | 2                   | 2022-12-05 11:43:00 | 2022-12-19 11:07:00 |
| 69      | -79.8305  | 43.2433  | 1                   | 2023-01-21 12:14:00 | 2023-02-11 13:05:00 |
| 69      | -79.8305  | 43.2433  | 1                   | 2023-01-21 12:14:00 | 2023-02-11 13:05:00 |



